linux_dsm_epyc7002/drivers/mtd/nand/raw/cadence-nand-controller.c
Miquel Raynal 8b88f4e0a8 mtd: rawnand: cadence: Stop using nand_release()
This helper is not very useful and very often people get confused:
they use nand_release() instead of nand_cleanup().

Let's stop using nand_release() by calling mtd_device_unregister() and
nand_cleanup() directly.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200519130035.1883-6-miquel.raynal@bootlin.com
2020-05-31 10:53:33 +02:00

3043 lines
81 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Cadence NAND flash controller driver
*
* Copyright (C) 2019 Cadence
*
* Author: Piotr Sroka <piotrs@cadence.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_device.h>
#include <linux/iopoll.h>
/*
* HPNFC can work in 3 modes:
* - PIO - can work in master or slave DMA
* - CDMA - needs Master DMA for accessing command descriptors.
* - Generic mode - can use only slave DMA.
* CDMA and PIO modes can be used to execute only base commands.
* Generic mode can be used to execute any command
* on NAND flash memory. Driver uses CDMA mode for
* block erasing, page reading, page programing.
* Generic mode is used for executing rest of commands.
*/
#define MAX_ADDRESS_CYC 6
#define MAX_ERASE_ADDRESS_CYC 3
#define MAX_DATA_SIZE 0xFFFC
#define DMA_DATA_SIZE_ALIGN 8
/* Register definition. */
/*
* Command register 0.
* Writing data to this register will initiate a new transaction
* of the NF controller.
*/
#define CMD_REG0 0x0000
/* Command type field mask. */
#define CMD_REG0_CT GENMASK(31, 30)
/* Command type CDMA. */
#define CMD_REG0_CT_CDMA 0uL
/* Command type generic. */
#define CMD_REG0_CT_GEN 3uL
/* Command thread number field mask. */
#define CMD_REG0_TN GENMASK(27, 24)
/* Command register 2. */
#define CMD_REG2 0x0008
/* Command register 3. */
#define CMD_REG3 0x000C
/* Pointer register to select which thread status will be selected. */
#define CMD_STATUS_PTR 0x0010
/* Command status register for selected thread. */
#define CMD_STATUS 0x0014
/* Interrupt status register. */
#define INTR_STATUS 0x0110
#define INTR_STATUS_SDMA_ERR BIT(22)
#define INTR_STATUS_SDMA_TRIGG BIT(21)
#define INTR_STATUS_UNSUPP_CMD BIT(19)
#define INTR_STATUS_DDMA_TERR BIT(18)
#define INTR_STATUS_CDMA_TERR BIT(17)
#define INTR_STATUS_CDMA_IDL BIT(16)
/* Interrupt enable register. */
#define INTR_ENABLE 0x0114
#define INTR_ENABLE_INTR_EN BIT(31)
#define INTR_ENABLE_SDMA_ERR_EN BIT(22)
#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
#define INTR_ENABLE_DDMA_TERR_EN BIT(18)
#define INTR_ENABLE_CDMA_TERR_EN BIT(17)
#define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
/* Controller internal state. */
#define CTRL_STATUS 0x0118
#define CTRL_STATUS_INIT_COMP BIT(9)
#define CTRL_STATUS_CTRL_BUSY BIT(8)
/* Command Engine threads state. */
#define TRD_STATUS 0x0120
/* Command Engine interrupt thread error status. */
#define TRD_ERR_INT_STATUS 0x0128
/* Command Engine interrupt thread error enable. */
#define TRD_ERR_INT_STATUS_EN 0x0130
/* Command Engine interrupt thread complete status. */
#define TRD_COMP_INT_STATUS 0x0138
/*
* Transfer config 0 register.
* Configures data transfer parameters.
*/
#define TRAN_CFG_0 0x0400
/* Offset value from the beginning of the page. */
#define TRAN_CFG_0_OFFSET GENMASK(31, 16)
/* Numbers of sectors to transfer within singlNF device's page. */
#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
/*
* Transfer config 1 register.
* Configures data transfer parameters.
*/
#define TRAN_CFG_1 0x0404
/* Size of last data sector. */
#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
/* Size of not-last data sector. */
#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
/* ECC engine configuration register 0. */
#define ECC_CONFIG_0 0x0428
/* Correction strength. */
#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
/* Enable erased pages detection mechanism. */
#define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
/* Enable controller ECC check bits generation and correction. */
#define ECC_CONFIG_0_ECC_EN BIT(0)
/* ECC engine configuration register 1. */
#define ECC_CONFIG_1 0x042C
/* Multiplane settings register. */
#define MULTIPLANE_CFG 0x0434
/* Cache operation settings. */
#define CACHE_CFG 0x0438
/* DMA settings register. */
#define DMA_SETINGS 0x043C
/* Enable SDMA error report on access unprepared slave DMA interface. */
#define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
/* Transferred data block size for the slave DMA module. */
#define SDMA_SIZE 0x0440
/* Thread number associated with transferred data block
* for the slave DMA module.
*/
#define SDMA_TRD_NUM 0x0444
/* Thread number mask. */
#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
#define CONTROL_DATA_CTRL 0x0494
/* Thread number mask. */
#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
#define CTRL_VERSION 0x800
#define CTRL_VERSION_REV GENMASK(7, 0)
/* Available hardware features of the controller. */
#define CTRL_FEATURES 0x804
/* Support for NV-DDR2/3 work mode. */
#define CTRL_FEATURES_NVDDR_2_3 BIT(28)
/* Support for NV-DDR work mode. */
#define CTRL_FEATURES_NVDDR BIT(27)
/* Support for asynchronous work mode. */
#define CTRL_FEATURES_ASYNC BIT(26)
/* Support for asynchronous work mode. */
#define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
/* Slave and Master DMA data width. */
#define CTRL_FEATURES_DMA_DWITH64 BIT(21)
/* Availability of Control Data feature.*/
#define CTRL_FEATURES_CONTROL_DATA BIT(10)
/* BCH Engine identification register 0 - correction strengths. */
#define BCH_CFG_0 0x838
#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
/* BCH Engine identification register 1 - correction strengths. */
#define BCH_CFG_1 0x83C
#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
/* BCH Engine identification register 2 - sector sizes. */
#define BCH_CFG_2 0x840
#define BCH_CFG_2_SECT_0 GENMASK(15, 0)
#define BCH_CFG_2_SECT_1 GENMASK(31, 16)
/* BCH Engine identification register 3. */
#define BCH_CFG_3 0x844
#define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
/* Ready/Busy# line status. */
#define RBN_SETINGS 0x1004
/* Common settings. */
#define COMMON_SET 0x1008
/* 16 bit device connected to the NAND Flash interface. */
#define COMMON_SET_DEVICE_16BIT BIT(8)
/* Skip_bytes registers. */
#define SKIP_BYTES_CONF 0x100C
#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
#define SKIP_BYTES_OFFSET 0x1010
#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
/* Timings configuration. */
#define ASYNC_TOGGLE_TIMINGS 0x101c
#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
#define TIMINGS0 0x1024
#define TIMINGS0_TADL GENMASK(31, 24)
#define TIMINGS0_TCCS GENMASK(23, 16)
#define TIMINGS0_TWHR GENMASK(15, 8)
#define TIMINGS0_TRHW GENMASK(7, 0)
#define TIMINGS1 0x1028
#define TIMINGS1_TRHZ GENMASK(31, 24)
#define TIMINGS1_TWB GENMASK(23, 16)
#define TIMINGS1_TVDLY GENMASK(7, 0)
#define TIMINGS2 0x102c
#define TIMINGS2_TFEAT GENMASK(25, 16)
#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
/* Configuration of the resynchronization of slave DLL of PHY. */
#define DLL_PHY_CTRL 0x1034
#define DLL_PHY_CTRL_DLL_RST_N BIT(24)
#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
/* Register controlling DQ related timing. */
#define PHY_DQ_TIMING 0x2000
/* Register controlling DSQ related timing. */
#define PHY_DQS_TIMING 0x2004
#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
/* Register controlling the gate and loopback control related timing. */
#define PHY_GATE_LPBK_CTRL 0x2008
#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
/* Register holds the control for the master DLL logic. */
#define PHY_DLL_MASTER_CTRL 0x200C
#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
/* Register holds the control for the slave DLL logic. */
#define PHY_DLL_SLAVE_CTRL 0x2010
/* This register handles the global control settings for the PHY. */
#define PHY_CTRL 0x2080
#define PHY_CTRL_SDR_DQS BIT(14)
#define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
/*
* This register handles the global control settings
* for the termination selects for reads.
*/
#define PHY_TSEL 0x2084
/* Generic command layout. */
#define GCMD_LAY_CS GENMASK_ULL(11, 8)
/*
* This bit informs the minicotroller if it has to wait for tWB
* after sending the last CMD/ADDR/DATA in the sequence.
*/
#define GCMD_LAY_TWB BIT_ULL(6)
/* Type of generic instruction. */
#define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
/* Generic CMD sequence type. */
#define GCMD_LAY_INSTR_CMD 0
/* Generic ADDR sequence type. */
#define GCMD_LAY_INSTR_ADDR 1
/* Generic data transfer sequence type. */
#define GCMD_LAY_INSTR_DATA 2
/* Input part of generic command type of input is command. */
#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
/* Generic command address sequence - address fields. */
#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
/* Generic command address sequence - address size. */
#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
/* Transfer direction field of generic command data sequence. */
#define GCMD_DIR BIT_ULL(11)
/* Read transfer direction of generic command data sequence. */
#define GCMD_DIR_READ 0
/* Write transfer direction of generic command data sequence. */
#define GCMD_DIR_WRITE 1
/* ECC enabled flag of generic command data sequence - ECC enabled. */
#define GCMD_ECC_EN BIT_ULL(12)
/* Generic command data sequence - sector size. */
#define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
/* Generic command data sequence - sector count. */
#define GCMD_SECT_CNT GENMASK_ULL(39, 32)
/* Generic command data sequence - last sector size. */
#define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
/* CDMA descriptor fields. */
/* Erase command type of CDMA descriptor. */
#define CDMA_CT_ERASE 0x1000
/* Program page command type of CDMA descriptor. */
#define CDMA_CT_WR 0x2100
/* Read page command type of CDMA descriptor. */
#define CDMA_CT_RD 0x2200
/* Flash pointer memory shift. */
#define CDMA_CFPTR_MEM_SHIFT 24
/* Flash pointer memory mask. */
#define CDMA_CFPTR_MEM GENMASK(26, 24)
/*
* Command DMA descriptor flags. If set causes issue interrupt after
* the completion of descriptor processing.
*/
#define CDMA_CF_INT BIT(8)
/*
* Command DMA descriptor flags - the next descriptor
* address field is valid and descriptor processing should continue.
*/
#define CDMA_CF_CONT BIT(9)
/* DMA master flag of command DMA descriptor. */
#define CDMA_CF_DMA_MASTER BIT(10)
/* Operation complete status of command descriptor. */
#define CDMA_CS_COMP BIT(15)
/* Operation complete status of command descriptor. */
/* Command descriptor status - operation fail. */
#define CDMA_CS_FAIL BIT(14)
/* Command descriptor status - page erased. */
#define CDMA_CS_ERP BIT(11)
/* Command descriptor status - timeout occurred. */
#define CDMA_CS_TOUT BIT(10)
/*
* Maximum amount of correction applied to one ECC sector.
* It is part of command descriptor status.
*/
#define CDMA_CS_MAXERR GENMASK(9, 2)
/* Command descriptor status - uncorrectable ECC error. */
#define CDMA_CS_UNCE BIT(1)
/* Command descriptor status - descriptor error. */
#define CDMA_CS_ERR BIT(0)
/* Status of operation - OK. */
#define STAT_OK 0
/* Status of operation - FAIL. */
#define STAT_FAIL 2
/* Status of operation - uncorrectable ECC error. */
#define STAT_ECC_UNCORR 3
/* Status of operation - page erased. */
#define STAT_ERASED 5
/* Status of operation - correctable ECC error. */
#define STAT_ECC_CORR 6
/* Status of operation - unsuspected state. */
#define STAT_UNKNOWN 7
/* Status of operation - operation is not completed yet. */
#define STAT_BUSY 0xFF
#define BCH_MAX_NUM_CORR_CAPS 8
#define BCH_MAX_NUM_SECTOR_SIZES 2
struct cadence_nand_timings {
u32 async_toggle_timings;
u32 timings0;
u32 timings1;
u32 timings2;
u32 dll_phy_ctrl;
u32 phy_ctrl;
u32 phy_dqs_timing;
u32 phy_gate_lpbk_ctrl;
};
/* Command DMA descriptor. */
struct cadence_nand_cdma_desc {
/* Next descriptor address. */
u64 next_pointer;
/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
u32 flash_pointer;
/*field appears in HPNFC version 13*/
u16 bank;
u16 rsvd0;
/* Operation the controller needs to perform. */
u16 command_type;
u16 rsvd1;
/* Flags for operation of this command. */
u16 command_flags;
u16 rsvd2;
/* System/host memory address required for data DMA commands. */
u64 memory_pointer;
/* Status of operation. */
u32 status;
u32 rsvd3;
/* Address pointer to sync buffer location. */
u64 sync_flag_pointer;
/* Controls the buffer sync mechanism. */
u32 sync_arguments;
u32 rsvd4;
/* Control data pointer. */
u64 ctrl_data_ptr;
};
/* Interrupt status. */
struct cadence_nand_irq_status {
/* Thread operation complete status. */
u32 trd_status;
/* Thread operation error. */
u32 trd_error;
/* Controller status. */
u32 status;
};
/* Cadence NAND flash controller capabilities get from driver data. */
struct cadence_nand_dt_devdata {
/* Skew value of the output signals of the NAND Flash interface. */
u32 if_skew;
/* It informs if slave DMA interface is connected to DMA engine. */
unsigned int has_dma:1;
};
/* Cadence NAND flash controller capabilities read from registers. */
struct cdns_nand_caps {
/* Maximum number of banks supported by hardware. */
u8 max_banks;
/* Slave and Master DMA data width in bytes (4 or 8). */
u8 data_dma_width;
/* Control Data feature supported. */
bool data_control_supp;
/* Is PHY type DLL. */
bool is_phy_type_dll;
};
struct cdns_nand_ctrl {
struct device *dev;
struct nand_controller controller;
struct cadence_nand_cdma_desc *cdma_desc;
/* IP capability. */
const struct cadence_nand_dt_devdata *caps1;
struct cdns_nand_caps caps2;
u8 ctrl_rev;
dma_addr_t dma_cdma_desc;
u8 *buf;
u32 buf_size;
u8 curr_corr_str_idx;
/* Register interface. */
void __iomem *reg;
struct {
void __iomem *virt;
dma_addr_t dma;
} io;
int irq;
/* Interrupts that have happened. */
struct cadence_nand_irq_status irq_status;
/* Interrupts we are waiting for. */
struct cadence_nand_irq_status irq_mask;
struct completion complete;
/* Protect irq_mask and irq_status. */
spinlock_t irq_lock;
int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
struct nand_ecc_caps ecc_caps;
int curr_trans_type;
struct dma_chan *dmac;
u32 nf_clk_rate;
/*
* Estimated Board delay. The value includes the total
* round trip delay for the signals and is used for deciding on values
* associated with data read capture.
*/
u32 board_delay;
struct nand_chip *selected_chip;
unsigned long assigned_cs;
struct list_head chips;
u8 bch_metadata_size;
};
struct cdns_nand_chip {
struct cadence_nand_timings timings;
struct nand_chip chip;
u8 nsels;
struct list_head node;
/*
* part of oob area of NAND flash memory page.
* This part is available for user to read or write.
*/
u32 avail_oob_size;
/* Sector size. There are few sectors per mtd->writesize */
u32 sector_size;
u32 sector_count;
/* Offset of BBM. */
u8 bbm_offs;
/* Number of bytes reserved for BBM. */
u8 bbm_len;
/* ECC strength index. */
u8 corr_str_idx;
u8 cs[];
};
struct ecc_info {
int (*calc_ecc_bytes)(int step_size, int strength);
int max_step_size;
};
static inline struct
cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
{
return container_of(chip, struct cdns_nand_chip, chip);
}
static inline struct
cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
{
return container_of(controller, struct cdns_nand_ctrl, controller);
}
static bool
cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
u32 buf_len)
{
u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
return buf && virt_addr_valid(buf) &&
likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
}
static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
u32 reg_offset, u32 timeout_us,
u32 mask, bool is_clear)
{
u32 val;
int ret;
ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
val, !(val & mask) == is_clear,
10, timeout_us);
if (ret < 0) {
dev_err(cdns_ctrl->dev,
"Timeout while waiting for reg %x with mask %x is clear %d\n",
reg_offset, mask, is_clear);
}
return ret;
}
static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
bool enable)
{
u32 reg;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
if (enable)
reg |= ECC_CONFIG_0_ECC_EN;
else
reg &= ~ECC_CONFIG_0_ECC_EN;
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
return 0;
}
static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
u8 corr_str_idx)
{
u32 reg;
if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
return;
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
reg &= ~ECC_CONFIG_0_CORR_STR;
reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
cdns_ctrl->curr_corr_str_idx = corr_str_idx;
}
static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
u8 strength)
{
int i, corr_str_idx = -1;
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
if (cdns_ctrl->ecc_strengths[i] == strength) {
corr_str_idx = i;
break;
}
}
return corr_str_idx;
}
static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
u16 marker_value)
{
u32 reg;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
reg &= ~SKIP_BYTES_MARKER_VALUE;
reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
marker_value);
writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
return 0;
}
static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
u8 num_of_bytes,
u32 offset_value,
int enable)
{
u32 reg, skip_bytes_offset;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
if (!enable) {
num_of_bytes = 0;
offset_value = 0;
}
reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
reg &= ~SKIP_BYTES_NUM_OF_BYTES;
reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
num_of_bytes);
skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
offset_value);
writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
return 0;
}
/* Functions enables/disables hardware detection of erased data */
static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
bool enable,
u8 bitflips_threshold)
{
u32 reg;
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
if (enable)
reg |= ECC_CONFIG_0_ERASE_DET_EN;
else
reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
}
static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
bool bit_bus16)
{
u32 reg;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
if (!bit_bus16)
reg &= ~COMMON_SET_DEVICE_16BIT;
else
reg |= COMMON_SET_DEVICE_16BIT;
writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
return 0;
}
static void
cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
struct cadence_nand_irq_status *irq_status)
{
writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
writel_relaxed(irq_status->trd_status,
cdns_ctrl->reg + TRD_COMP_INT_STATUS);
writel_relaxed(irq_status->trd_error,
cdns_ctrl->reg + TRD_ERR_INT_STATUS);
}
static void
cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
struct cadence_nand_irq_status *irq_status)
{
irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
+ TRD_COMP_INT_STATUS);
irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
+ TRD_ERR_INT_STATUS);
}
static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
struct cadence_nand_irq_status *irq_status)
{
cadence_nand_read_int_status(cdns_ctrl, irq_status);
return irq_status->status || irq_status->trd_status ||
irq_status->trd_error;
}
static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
{
unsigned long flags;
spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
}
/*
* This is the interrupt service routine. It handles all interrupts
* sent to this device.
*/
static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
{
struct cdns_nand_ctrl *cdns_ctrl = dev_id;
struct cadence_nand_irq_status irq_status;
irqreturn_t result = IRQ_NONE;
spin_lock(&cdns_ctrl->irq_lock);
if (irq_detected(cdns_ctrl, &irq_status)) {
/* Handle interrupt. */
/* First acknowledge it. */
cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
/* Status in the device context for someone to read. */
cdns_ctrl->irq_status.status |= irq_status.status;
cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
/* Notify anyone who cares that it happened. */
complete(&cdns_ctrl->complete);
/* Tell the OS that we've handled this. */
result = IRQ_HANDLED;
}
spin_unlock(&cdns_ctrl->irq_lock);
return result;
}
static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
struct cadence_nand_irq_status *irq_mask)
{
writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
cdns_ctrl->reg + INTR_ENABLE);
writel_relaxed(irq_mask->trd_error,
cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
}
static void
cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
struct cadence_nand_irq_status *irq_mask,
struct cadence_nand_irq_status *irq_status)
{
unsigned long timeout = msecs_to_jiffies(10000);
unsigned long time_left;
time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
timeout);
*irq_status = cdns_ctrl->irq_status;
if (time_left == 0) {
/* Timeout error. */
dev_err(cdns_ctrl->dev, "timeout occurred:\n");
dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
irq_status->status, irq_mask->status);
dev_err(cdns_ctrl->dev,
"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
irq_status->trd_status, irq_mask->trd_status);
dev_err(cdns_ctrl->dev,
"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
irq_status->trd_error, irq_mask->trd_error);
}
}
/* Execute generic command on NAND controller. */
static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
u8 chip_nr,
u64 mini_ctrl_cmd)
{
u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
cadence_nand_reset_irq(cdns_ctrl);
writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
/* Select generic command. */
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
/* Thread number. */
reg |= FIELD_PREP(CMD_REG0_TN, 0);
/* Issue command. */
writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
return 0;
}
/* Wait for data on slave DMA interface. */
static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
u8 *out_sdma_trd,
u32 *out_sdma_size)
{
struct cadence_nand_irq_status irq_mask, irq_status;
irq_mask.trd_status = 0;
irq_mask.trd_error = 0;
irq_mask.status = INTR_STATUS_SDMA_TRIGG
| INTR_STATUS_SDMA_ERR
| INTR_STATUS_UNSUPP_CMD;
cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
if (irq_status.status == 0) {
dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
return -ETIMEDOUT;
}
if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
*out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
*out_sdma_trd =
FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
} else {
dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
irq_status.status);
return -EIO;
}
return 0;
}
static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
{
u32 reg;
reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
cdns_ctrl->caps2.data_dma_width = 8;
else
cdns_ctrl->caps2.data_dma_width = 4;
if (reg & CTRL_FEATURES_CONTROL_DATA)
cdns_ctrl->caps2.data_control_supp = true;
if (reg & (CTRL_FEATURES_NVDDR_2_3
| CTRL_FEATURES_NVDDR))
cdns_ctrl->caps2.is_phy_type_dll = true;
}
/* Prepare CDMA descriptor. */
static void
cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
dma_addr_t ctrl_data_ptr, u16 ctype)
{
struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
/* Set fields for one descriptor. */
cdma_desc->flash_pointer = flash_ptr;
if (cdns_ctrl->ctrl_rev >= 13)
cdma_desc->bank = nf_mem;
else
cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
cdma_desc->command_flags |= CDMA_CF_INT;
cdma_desc->memory_pointer = mem_ptr;
cdma_desc->status = 0;
cdma_desc->sync_flag_pointer = 0;
cdma_desc->sync_arguments = 0;
cdma_desc->command_type = ctype;
cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
}
static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
u32 desc_status)
{
if (desc_status & CDMA_CS_ERP)
return STAT_ERASED;
if (desc_status & CDMA_CS_UNCE)
return STAT_ECC_UNCORR;
if (desc_status & CDMA_CS_ERR) {
dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
return STAT_FAIL;
}
if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
return STAT_ECC_CORR;
return STAT_FAIL;
}
static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
{
struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
u8 status = STAT_BUSY;
if (desc_ptr->status & CDMA_CS_FAIL) {
status = cadence_nand_check_desc_error(cdns_ctrl,
desc_ptr->status);
dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
} else if (desc_ptr->status & CDMA_CS_COMP) {
/* Descriptor finished with no errors. */
if (desc_ptr->command_flags & CDMA_CF_CONT) {
dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
status = STAT_UNKNOWN;
} else {
/* Last descriptor. */
status = STAT_OK;
}
}
return status;
}
static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
u8 thread)
{
u32 reg;
int status;
/* Wait for thread ready. */
status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
1000000,
BIT(thread), true);
if (status)
return status;
cadence_nand_reset_irq(cdns_ctrl);
reinit_completion(&cdns_ctrl->complete);
writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
cdns_ctrl->reg + CMD_REG2);
writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
/* Select CDMA mode. */
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
/* Thread number. */
reg |= FIELD_PREP(CMD_REG0_TN, thread);
/* Issue command. */
writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
return 0;
}
/* Send SDMA command and wait for finish. */
static u32
cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
u8 thread)
{
struct cadence_nand_irq_status irq_mask, irq_status = {0};
int status;
irq_mask.trd_status = BIT(thread);
irq_mask.trd_error = BIT(thread);
irq_mask.status = INTR_STATUS_CDMA_TERR;
cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
status = cadence_nand_cdma_send(cdns_ctrl, thread);
if (status)
return status;
cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
if (irq_status.status == 0 && irq_status.trd_status == 0 &&
irq_status.trd_error == 0) {
dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
return -ETIMEDOUT;
}
if (irq_status.status & irq_mask.status) {
dev_err(cdns_ctrl->dev, "CDMA command failed\n");
return -EIO;
}
return 0;
}
/*
* ECC size depends on configured ECC strength and on maximum supported
* ECC step size.
*/
static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
{
int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
return ALIGN(nbytes, 2);
}
#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
static int \
cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
int strength)\
{\
return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
}
CADENCE_NAND_CALC_ECC_BYTES(256)
CADENCE_NAND_CALC_ECC_BYTES(512)
CADENCE_NAND_CALC_ECC_BYTES(1024)
CADENCE_NAND_CALC_ECC_BYTES(2048)
CADENCE_NAND_CALC_ECC_BYTES(4096)
/* Function reads BCH capabilities. */
static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
{
struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
int max_step_size = 0, nstrengths, i;
u32 reg;
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
if (cdns_ctrl->bch_metadata_size < 4) {
dev_err(cdns_ctrl->dev,
"Driver needs at least 4 bytes of BCH meta data\n");
return -EIO;
}
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
cdns_ctrl->ecc_stepinfos[0].stepsize =
FIELD_GET(BCH_CFG_2_SECT_0, reg);
cdns_ctrl->ecc_stepinfos[1].stepsize =
FIELD_GET(BCH_CFG_2_SECT_1, reg);
nstrengths = 0;
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
if (cdns_ctrl->ecc_strengths[i] != 0)
nstrengths++;
}
ecc_caps->nstepinfos = 0;
for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
/* ECC strengths are common for all step infos. */
cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
cdns_ctrl->ecc_stepinfos[i].strengths =
cdns_ctrl->ecc_strengths;
if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
ecc_caps->nstepinfos++;
if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
}
ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
switch (max_step_size) {
case 256:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
break;
case 512:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
break;
case 1024:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
break;
case 2048:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
break;
case 4096:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
break;
default:
dev_err(cdns_ctrl->dev,
"Unsupported sector size(ecc step size) %d\n",
max_step_size);
return -EIO;
}
return 0;
}
/* Hardware initialization. */
static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
{
int status;
u32 reg;
status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_INIT_COMP, false);
if (status)
return status;
reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
dev_info(cdns_ctrl->dev,
"%s: cadence nand controller version reg %x\n",
__func__, reg);
/* Disable cache and multiplane. */
writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
/* Clear all interrupts. */
writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
cadence_nand_get_caps(cdns_ctrl);
if (cadence_nand_read_bch_caps(cdns_ctrl))
return -EIO;
/*
* Set IO width access to 8.
* It is because during SW device discovering width access
* is expected to be 8.
*/
status = cadence_nand_set_access_width16(cdns_ctrl, false);
return status;
}
#define TT_MAIN_OOB_AREAS 2
#define TT_RAW_PAGE 3
#define TT_BBM 4
#define TT_MAIN_OOB_AREA_EXT 5
/* Prepare size of data to transfer. */
static void
cadence_nand_prepare_data_size(struct nand_chip *chip,
int transfer_type)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 sec_size = 0, offset = 0, sec_cnt = 1;
u32 last_sec_size = cdns_chip->sector_size;
u32 data_ctrl_size = 0;
u32 reg = 0;
if (cdns_ctrl->curr_trans_type == transfer_type)
return;
switch (transfer_type) {
case TT_MAIN_OOB_AREA_EXT:
sec_cnt = cdns_chip->sector_count;
sec_size = cdns_chip->sector_size;
data_ctrl_size = cdns_chip->avail_oob_size;
break;
case TT_MAIN_OOB_AREAS:
sec_cnt = cdns_chip->sector_count;
last_sec_size = cdns_chip->sector_size
+ cdns_chip->avail_oob_size;
sec_size = cdns_chip->sector_size;
break;
case TT_RAW_PAGE:
last_sec_size = mtd->writesize + mtd->oobsize;
break;
case TT_BBM:
offset = mtd->writesize + cdns_chip->bbm_offs;
last_sec_size = 8;
break;
}
reg = 0;
reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
reg = 0;
reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
if (cdns_ctrl->caps2.data_control_supp) {
reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
reg &= ~CONTROL_DATA_CTRL_SIZE;
reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
}
cdns_ctrl->curr_trans_type = transfer_type;
}
static int
cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
int page, void *buf, void *ctrl_dat, u32 buf_size,
u32 ctrl_dat_size, enum dma_data_direction dir,
bool with_ecc)
{
dma_addr_t dma_buf, dma_ctrl_dat = 0;
u8 thread_nr = chip_nr;
int status;
u16 ctype;
if (dir == DMA_FROM_DEVICE)
ctype = CDMA_CT_RD;
else
ctype = CDMA_CT_WR;
cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
return -EIO;
}
if (ctrl_dat && ctrl_dat_size) {
dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
ctrl_dat_size, dir);
if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
dma_unmap_single(cdns_ctrl->dev, dma_buf,
buf_size, dir);
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
return -EIO;
}
}
cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
dma_buf, dma_ctrl_dat, ctype);
status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
dma_unmap_single(cdns_ctrl->dev, dma_buf,
buf_size, dir);
if (ctrl_dat && ctrl_dat_size)
dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
ctrl_dat_size, dir);
if (status)
return status;
return cadence_nand_cdma_finish(cdns_ctrl);
}
static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
struct cadence_nand_timings *t)
{
writel_relaxed(t->async_toggle_timings,
cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
if (cdns_ctrl->caps2.is_phy_type_dll)
writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
if (cdns_ctrl->caps2.is_phy_type_dll) {
writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
writel_relaxed(t->phy_dqs_timing,
cdns_ctrl->reg + PHY_DQS_TIMING);
writel_relaxed(t->phy_gate_lpbk_ctrl,
cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
}
}
static int cadence_nand_select_target(struct nand_chip *chip)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
if (chip == cdns_ctrl->selected_chip)
return 0;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
cadence_nand_set_ecc_strength(cdns_ctrl,
cdns_chip->corr_str_idx);
cadence_nand_set_erase_detection(cdns_ctrl, true,
chip->ecc.strength);
cdns_ctrl->curr_trans_type = -1;
cdns_ctrl->selected_chip = chip;
return 0;
}
static int cadence_nand_erase(struct nand_chip *chip, u32 page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int status;
u8 thread_nr = cdns_chip->cs[chip->cur_cs];
cadence_nand_cdma_desc_prepare(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, 0, 0,
CDMA_CT_ERASE);
status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
if (status) {
dev_err(cdns_ctrl->dev, "erase operation failed\n");
return -EIO;
}
status = cadence_nand_cdma_finish(cdns_ctrl);
if (status)
return status;
return 0;
}
static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
{
int status;
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
cadence_nand_prepare_data_size(chip, TT_BBM);
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
/*
* Read only bad block marker from offset
* defined by a memory manufacturer.
*/
status = cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, cdns_ctrl->buf, NULL,
mtd->oobsize,
0, DMA_FROM_DEVICE, false);
if (status) {
dev_err(cdns_ctrl->dev, "read BBM failed\n");
return -EIO;
}
memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
return 0;
}
static int cadence_nand_write_page(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int status;
u16 marker_val = 0xFFFF;
status = cadence_nand_select_target(chip);
if (status)
return status;
cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
mtd->writesize
+ cdns_chip->bbm_offs,
1);
if (oob_required) {
marker_val = *(u16 *)(chip->oob_poi
+ cdns_chip->bbm_offs);
} else {
/* Set oob data to 0xFF. */
memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
cdns_chip->avail_oob_size);
}
cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
cdns_ctrl->caps2.data_control_supp) {
u8 *oob;
if (oob_required)
oob = chip->oob_poi;
else
oob = cdns_ctrl->buf + mtd->writesize;
status = cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, (void *)buf, oob,
mtd->writesize,
cdns_chip->avail_oob_size,
DMA_TO_DEVICE, true);
if (status) {
dev_err(cdns_ctrl->dev, "write page failed\n");
return -EIO;
}
return 0;
}
if (oob_required) {
/* Transfer the data to the oob area. */
memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
cdns_chip->avail_oob_size);
}
memcpy(cdns_ctrl->buf, buf, mtd->writesize);
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
return cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, cdns_ctrl->buf, NULL,
mtd->writesize
+ cdns_chip->avail_oob_size,
0, DMA_TO_DEVICE, true);
}
static int cadence_nand_write_oob(struct nand_chip *chip, int page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
}
static int cadence_nand_write_page_raw(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int writesize = mtd->writesize;
int oobsize = mtd->oobsize;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
void *tmp_buf = cdns_ctrl->buf;
int oob_skip = cdns_chip->bbm_len;
size_t size = writesize + oobsize;
int i, pos, len;
int status = 0;
status = cadence_nand_select_target(chip);
if (status)
return status;
/*
* Fill the buffer with 0xff first except the full page transfer.
* This simplifies the logic.
*/
if (!buf || !oob_required)
memset(tmp_buf, 0xff, size);
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
/* Arrange the buffer for syndrome payload/ecc layout. */
if (buf) {
for (i = 0; i < ecc_steps; i++) {
pos = i * (ecc_size + ecc_bytes);
len = ecc_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(tmp_buf + pos, buf, len);
buf += len;
if (len < ecc_size) {
len = ecc_size - len;
memcpy(tmp_buf + writesize + oob_skip, buf,
len);
buf += len;
}
}
}
if (oob_required) {
const u8 *oob = chip->oob_poi;
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
(cdns_chip->sector_size + chip->ecc.bytes)
+ cdns_chip->sector_size + oob_skip;
/* BBM at the beginning of the OOB area. */
memcpy(tmp_buf + writesize, oob, oob_skip);
/* OOB free. */
memcpy(tmp_buf + oob_data_offset, oob,
cdns_chip->avail_oob_size);
oob += cdns_chip->avail_oob_size;
/* OOB ECC. */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
if (i == (ecc_steps - 1))
pos += cdns_chip->avail_oob_size;
len = ecc_bytes;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(tmp_buf + pos, oob, len);
oob += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
memcpy(tmp_buf + writesize + oob_skip, oob,
len);
oob += len;
}
}
}
cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
return cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, cdns_ctrl->buf, NULL,
mtd->writesize +
mtd->oobsize,
0, DMA_TO_DEVICE, false);
}
static int cadence_nand_write_oob_raw(struct nand_chip *chip,
int page)
{
return cadence_nand_write_page_raw(chip, NULL, true, page);
}
static int cadence_nand_read_page(struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int status = 0;
int ecc_err_count = 0;
status = cadence_nand_select_target(chip);
if (status)
return status;
cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
mtd->writesize
+ cdns_chip->bbm_offs, 1);
/*
* If data buffer can be accessed by DMA and data_control feature
* is supported then transfer data and oob directly.
*/
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
cdns_ctrl->caps2.data_control_supp) {
u8 *oob;
if (oob_required)
oob = chip->oob_poi;
else
oob = cdns_ctrl->buf + mtd->writesize;
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
status = cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, buf, oob,
mtd->writesize,
cdns_chip->avail_oob_size,
DMA_FROM_DEVICE, true);
/* Otherwise use bounce buffer. */
} else {
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
status = cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, cdns_ctrl->buf,
NULL, mtd->writesize
+ cdns_chip->avail_oob_size,
0, DMA_FROM_DEVICE, true);
memcpy(buf, cdns_ctrl->buf, mtd->writesize);
if (oob_required)
memcpy(chip->oob_poi,
cdns_ctrl->buf + mtd->writesize,
mtd->oobsize);
}
switch (status) {
case STAT_ECC_UNCORR:
mtd->ecc_stats.failed++;
ecc_err_count++;
break;
case STAT_ECC_CORR:
ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
cdns_ctrl->cdma_desc->status);
mtd->ecc_stats.corrected += ecc_err_count;
break;
case STAT_ERASED:
case STAT_OK:
break;
default:
dev_err(cdns_ctrl->dev, "read page failed\n");
return -EIO;
}
if (oob_required)
if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
return -EIO;
return ecc_err_count;
}
/* Reads OOB data from the device. */
static int cadence_nand_read_oob(struct nand_chip *chip, int page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
}
static int cadence_nand_read_page_raw(struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int oob_skip = cdns_chip->bbm_len;
int writesize = mtd->writesize;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
void *tmp_buf = cdns_ctrl->buf;
int i, pos, len;
int status = 0;
status = cadence_nand_select_target(chip);
if (status)
return status;
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
status = cadence_nand_cdma_transfer(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
page, cdns_ctrl->buf, NULL,
mtd->writesize
+ mtd->oobsize,
0, DMA_FROM_DEVICE, false);
switch (status) {
case STAT_ERASED:
case STAT_OK:
break;
default:
dev_err(cdns_ctrl->dev, "read raw page failed\n");
return -EIO;
}
/* Arrange the buffer for syndrome payload/ecc layout. */
if (buf) {
for (i = 0; i < ecc_steps; i++) {
pos = i * (ecc_size + ecc_bytes);
len = ecc_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(buf, tmp_buf + pos, len);
buf += len;
if (len < ecc_size) {
len = ecc_size - len;
memcpy(buf, tmp_buf + writesize + oob_skip,
len);
buf += len;
}
}
}
if (oob_required) {
u8 *oob = chip->oob_poi;
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
(cdns_chip->sector_size + chip->ecc.bytes)
+ cdns_chip->sector_size + oob_skip;
/* OOB free. */
memcpy(oob, tmp_buf + oob_data_offset,
cdns_chip->avail_oob_size);
/* BBM at the beginning of the OOB area. */
memcpy(oob, tmp_buf + writesize, oob_skip);
oob += cdns_chip->avail_oob_size;
/* OOB ECC */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
len = ecc_bytes;
if (i == (ecc_steps - 1))
pos += cdns_chip->avail_oob_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(oob, tmp_buf + pos, len);
oob += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
memcpy(oob, tmp_buf + writesize + oob_skip,
len);
oob += len;
}
}
}
return 0;
}
static int cadence_nand_read_oob_raw(struct nand_chip *chip,
int page)
{
return cadence_nand_read_page_raw(chip, NULL, true, page);
}
static void cadence_nand_slave_dma_transfer_finished(void *data)
{
struct completion *finished = data;
complete(finished);
}
static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
void *buf,
dma_addr_t dev_dma, size_t len,
enum dma_data_direction dir)
{
DECLARE_COMPLETION_ONSTACK(finished);
struct dma_chan *chan;
struct dma_device *dma_dev;
dma_addr_t src_dma, dst_dma, buf_dma;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
chan = cdns_ctrl->dmac;
dma_dev = chan->device;
buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
if (dma_mapping_error(dma_dev->dev, buf_dma)) {
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
goto err;
}
if (dir == DMA_FROM_DEVICE) {
src_dma = cdns_ctrl->io.dma;
dst_dma = buf_dma;
} else {
src_dma = buf_dma;
dst_dma = cdns_ctrl->io.dma;
}
tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
goto err_unmap;
}
tx->callback = cadence_nand_slave_dma_transfer_finished;
tx->callback_param = &finished;
cookie = dmaengine_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
goto err_unmap;
}
dma_async_issue_pending(cdns_ctrl->dmac);
wait_for_completion(&finished);
dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
return 0;
err_unmap:
dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
err:
dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
return -EIO;
}
static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
u8 *buf, int len)
{
u8 thread_nr = 0;
u32 sdma_size;
int status;
/* Wait until slave DMA interface is ready to data transfer. */
status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
if (status)
return status;
if (!cdns_ctrl->caps1->has_dma) {
int len_in_words = len >> 2;
/* read alingment data */
ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
if (sdma_size > len) {
/* read rest data from slave DMA interface if any */
ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
sdma_size / 4 - len_in_words);
/* copy rest of data */
memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
len - (len_in_words << 2));
}
return 0;
}
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
cdns_ctrl->io.dma,
len, DMA_FROM_DEVICE);
if (status == 0)
return 0;
dev_warn(cdns_ctrl->dev,
"Slave DMA transfer failed. Try again using bounce buffer.");
}
/* If DMA transfer is not possible or failed then use bounce buffer. */
status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
cdns_ctrl->io.dma,
sdma_size, DMA_FROM_DEVICE);
if (status) {
dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
return status;
}
memcpy(buf, cdns_ctrl->buf, len);
return 0;
}
static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
const u8 *buf, int len)
{
u8 thread_nr = 0;
u32 sdma_size;
int status;
/* Wait until slave DMA interface is ready to data transfer. */
status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
if (status)
return status;
if (!cdns_ctrl->caps1->has_dma) {
int len_in_words = len >> 2;
iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
if (sdma_size > len) {
/* copy rest of data */
memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
len - (len_in_words << 2));
/* write all expected by nand controller data */
iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
sdma_size / 4 - len_in_words);
}
return 0;
}
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
cdns_ctrl->io.dma,
len, DMA_TO_DEVICE);
if (status == 0)
return 0;
dev_warn(cdns_ctrl->dev,
"Slave DMA transfer failed. Try again using bounce buffer.");
}
/* If DMA transfer is not possible or failed then use bounce buffer. */
memcpy(cdns_ctrl->buf, buf, len);
status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
cdns_ctrl->io.dma,
sdma_size, DMA_TO_DEVICE);
if (status)
dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
return status;
}
static int cadence_nand_force_byte_access(struct nand_chip *chip,
bool force_8bit)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
int status;
/*
* Callers of this function do not verify if the NAND is using a 16-bit
* an 8-bit bus for normal operations, so we need to take care of that
* here by leaving the configuration unchanged if the NAND does not have
* the NAND_BUSWIDTH_16 flag set.
*/
if (!(chip->options & NAND_BUSWIDTH_16))
return 0;
status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
return status;
}
static int cadence_nand_cmd_opcode(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
const struct nand_op_instr *instr;
unsigned int op_id = 0;
u64 mini_ctrl_cmd = 0;
int ret;
instr = &subop->instrs[op_id];
if (instr->delay_ns > 0)
mini_ctrl_cmd |= GCMD_LAY_TWB;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
GCMD_LAY_INSTR_CMD);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
instr->ctx.cmd.opcode);
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
mini_ctrl_cmd);
if (ret)
dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
instr->ctx.cmd.opcode);
return ret;
}
static int cadence_nand_cmd_address(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
const struct nand_op_instr *instr;
unsigned int op_id = 0;
u64 mini_ctrl_cmd = 0;
unsigned int offset, naddrs;
u64 address = 0;
const u8 *addrs;
int ret;
int i;
instr = &subop->instrs[op_id];
if (instr->delay_ns > 0)
mini_ctrl_cmd |= GCMD_LAY_TWB;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
GCMD_LAY_INSTR_ADDR);
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
for (i = 0; i < naddrs; i++)
address |= (u64)addrs[i] << (8 * i);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
address);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
naddrs - 1);
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
mini_ctrl_cmd);
if (ret)
dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
return ret;
}
static int cadence_nand_cmd_erase(struct nand_chip *chip,
const struct nand_subop *subop)
{
unsigned int op_id;
if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
int i;
const struct nand_op_instr *instr = NULL;
unsigned int offset, naddrs;
const u8 *addrs;
u32 page = 0;
instr = &subop->instrs[1];
offset = nand_subop_get_addr_start_off(subop, 1);
naddrs = nand_subop_get_num_addr_cyc(subop, 1);
addrs = &instr->ctx.addr.addrs[offset];
for (i = 0; i < naddrs; i++)
page |= (u32)addrs[i] << (8 * i);
return cadence_nand_erase(chip, page);
}
/*
* If it is not an erase operation then handle operation
* by calling exec_op function.
*/
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
int ret;
const struct nand_operation nand_op = {
.cs = chip->cur_cs,
.instrs = &subop->instrs[op_id],
.ninstrs = 1};
ret = chip->controller->ops->exec_op(chip, &nand_op, false);
if (ret)
return ret;
}
return 0;
}
static int cadence_nand_cmd_data(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
const struct nand_op_instr *instr;
unsigned int offset, op_id = 0;
u64 mini_ctrl_cmd = 0;
int len = 0;
int ret;
instr = &subop->instrs[op_id];
if (instr->delay_ns > 0)
mini_ctrl_cmd |= GCMD_LAY_TWB;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
GCMD_LAY_INSTR_DATA);
if (instr->type == NAND_OP_DATA_OUT_INSTR)
mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
GCMD_DIR_WRITE);
len = nand_subop_get_data_len(subop, op_id);
offset = nand_subop_get_data_start_off(subop, op_id);
mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
if (instr->ctx.data.force_8bit) {
ret = cadence_nand_force_byte_access(chip, true);
if (ret) {
dev_err(cdns_ctrl->dev,
"cannot change byte access generic data cmd failed\n");
return ret;
}
}
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
cdns_chip->cs[chip->cur_cs],
mini_ctrl_cmd);
if (ret) {
dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
return ret;
}
if (instr->type == NAND_OP_DATA_IN_INSTR) {
void *buf = instr->ctx.data.buf.in + offset;
ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
} else {
const void *buf = instr->ctx.data.buf.out + offset;
ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
}
if (ret) {
dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
return ret;
}
if (instr->ctx.data.force_8bit) {
ret = cadence_nand_force_byte_access(chip, false);
if (ret) {
dev_err(cdns_ctrl->dev,
"cannot change byte access generic data cmd failed\n");
}
}
return ret;
}
static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
const struct nand_subop *subop)
{
int status;
unsigned int op_id = 0;
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
const struct nand_op_instr *instr = &subop->instrs[op_id];
u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
timeout_us,
BIT(cdns_chip->cs[chip->cur_cs]),
false);
return status;
}
static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
cadence_nand_cmd_erase,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
cadence_nand_cmd_opcode,
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
NAND_OP_PARSER_PATTERN(
cadence_nand_cmd_address,
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
NAND_OP_PARSER_PATTERN(
cadence_nand_cmd_data,
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
NAND_OP_PARSER_PATTERN(
cadence_nand_cmd_data,
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
NAND_OP_PARSER_PATTERN(
cadence_nand_cmd_waitrdy,
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
);
static int cadence_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
if (!check_only) {
int status = cadence_nand_select_target(chip);
if (status)
return status;
}
return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
check_only);
}
static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
if (section)
return -ERANGE;
oobregion->offset = cdns_chip->bbm_len;
oobregion->length = cdns_chip->avail_oob_size
- cdns_chip->bbm_len;
return 0;
}
static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
if (section)
return -ERANGE;
oobregion->offset = cdns_chip->avail_oob_size;
oobregion->length = chip->ecc.total;
return 0;
}
static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
.free = cadence_nand_ooblayout_free,
.ecc = cadence_nand_ooblayout_ecc,
};
static int calc_cycl(u32 timing, u32 clock)
{
if (timing == 0 || clock == 0)
return 0;
if ((timing % clock) > 0)
return timing / clock;
else
return timing / clock - 1;
}
/* Calculate max data valid window. */
static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
u32 board_delay_skew_min, u32 ext_mode)
{
if (ext_mode == 0)
clk_period /= 2;
return (trp_cnt + 1) * clk_period + trhoh_min +
board_delay_skew_min;
}
/* Calculate data valid window. */
static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
u32 trea_max, u32 ext_mode)
{
if (ext_mode == 0)
clk_period /= 2;
return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
}
static int
cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
const struct nand_data_interface *conf)
{
const struct nand_sdr_timings *sdr;
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
struct cadence_nand_timings *t = &cdns_chip->timings;
u32 reg;
u32 board_delay = cdns_ctrl->board_delay;
u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
cdns_ctrl->nf_clk_rate);
u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
u32 if_skew = cdns_ctrl->caps1->if_skew;
u32 board_delay_skew_min = board_delay - if_skew;
u32 board_delay_skew_max = board_delay + if_skew;
u32 dqs_sampl_res, phony_dqs_mod;
u32 tdvw, tdvw_min, tdvw_max;
u32 ext_rd_mode, ext_wr_mode;
u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
u32 sampling_point;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
memset(t, 0, sizeof(*t));
/* Sampling point calculation. */
if (cdns_ctrl->caps2.is_phy_type_dll)
phony_dqs_mod = 2;
else
phony_dqs_mod = 1;
dqs_sampl_res = clk_period / phony_dqs_mod;
tdvw_min = sdr->tREA_max + board_delay_skew_max;
/*
* The idea of those calculation is to get the optimum value
* for tRP and tRH timings. If it is NOT possible to sample data
* with optimal tRP/tRH settings, the parameters will be extended.
* If clk_period is 50ns (the lowest value) this condition is met
* for asynchronous timing modes 1, 2, 3, 4 and 5.
* If clk_period is 20ns the condition is met only
* for asynchronous timing mode 5.
*/
if (sdr->tRC_min <= clk_period &&
sdr->tRP_min <= (clk_period / 2) &&
sdr->tREH_min <= (clk_period / 2)) {
/* Performance mode. */
ext_rd_mode = 0;
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
sdr->tREA_max, ext_rd_mode);
tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
board_delay_skew_min,
ext_rd_mode);
/*
* Check if data valid window and sampling point can be found
* and is not on the edge (ie. we have hold margin).
* If not extend the tRP timings.
*/
if (tdvw > 0) {
if (tdvw_max <= tdvw_min ||
(tdvw_max % dqs_sampl_res) == 0) {
/*
* No valid sampling point so the RE pulse need
* to be widen widening by half clock cycle.
*/
ext_rd_mode = 1;
}
} else {
/*
* There is no valid window
* to be able to sample data the tRP need to be widen.
* Very safe calculations are performed here.
*/
trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ dqs_sampl_res) / clk_period;
ext_rd_mode = 1;
}
} else {
/* Extended read mode. */
u32 trh;
ext_rd_mode = 1;
trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
if (sdr->tREH_min >= trh)
trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
else
trh_cnt = calc_cycl(trh, clk_period);
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
sdr->tREA_max, ext_rd_mode);
/*
* Check if data valid window and sampling point can be found
* or if it is at the edge check if previous is valid
* - if not extend the tRP timings.
*/
if (tdvw > 0) {
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
sdr->tRHOH_min,
board_delay_skew_min,
ext_rd_mode);
if ((((tdvw_max / dqs_sampl_res)
* dqs_sampl_res) <= tdvw_min) ||
(((tdvw_max % dqs_sampl_res) == 0) &&
(((tdvw_max / dqs_sampl_res - 1)
* dqs_sampl_res) <= tdvw_min))) {
/*
* Data valid window width is lower than
* sampling resolution and do not hit any
* sampling point to be sure the sampling point
* will be found the RE low pulse width will be
* extended by one clock cycle.
*/
trp_cnt = trp_cnt + 1;
}
} else {
/*
* There is no valid window to be able to sample data.
* The tRP need to be widen.
* Very safe calculations are performed here.
*/
trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ dqs_sampl_res) / clk_period;
}
}
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
sdr->tRHOH_min,
board_delay_skew_min, ext_rd_mode);
if (sdr->tWC_min <= clk_period &&
(sdr->tWP_min + if_skew) <= (clk_period / 2) &&
(sdr->tWH_min + if_skew) <= (clk_period / 2)) {
ext_wr_mode = 0;
} else {
u32 twh;
ext_wr_mode = 1;
twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
clk_period);
twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
if (sdr->tWH_min >= twh)
twh = sdr->tWH_min;
twh_cnt = calc_cycl(twh + if_skew, clk_period);
}
reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
t->async_toggle_timings = reg;
dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
/*
* If timing exceeds delay field in timing register
* then use maximum value.
*/
if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
else
reg |= TIMINGS0_TCCS;
reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
t->timings0 = reg;
dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
/* The following is related to single signal so skew is not needed. */
trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
trhz_cnt = trhz_cnt + 1;
twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
/*
* Because of the two stage syncflop the value must be increased by 3
* first value is related with sync, second value is related
* with output if delay.
*/
twb_cnt = twb_cnt + 3 + 5;
/*
* The following is related to the we edge of the random data input
* sequence so skew is not needed.
*/
tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
t->timings1 = reg;
dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
if (tfeat_cnt < twb_cnt)
tfeat_cnt = twb_cnt;
tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
t->timings2 = reg;
dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
if (cdns_ctrl->caps2.is_phy_type_dll) {
reg = DLL_PHY_CTRL_DLL_RST_N;
if (ext_wr_mode)
reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
if (ext_rd_mode)
reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
t->dll_phy_ctrl = reg;
dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
}
/* Sampling point calculation. */
if ((tdvw_max % dqs_sampl_res) > 0)
sampling_point = tdvw_max / dqs_sampl_res;
else
sampling_point = (tdvw_max / dqs_sampl_res - 1);
if (sampling_point * dqs_sampl_res > tdvw_min) {
dll_phy_dqs_timing =
FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
phony_dqs_timing = sampling_point / phony_dqs_mod;
if ((sampling_point % 2) > 0) {
dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
if ((tdvw_max % dqs_sampl_res) == 0)
/*
* Calculation for sampling point at the edge
* of data and being odd number.
*/
phony_dqs_timing = (tdvw_max / dqs_sampl_res)
/ phony_dqs_mod - 1;
if (!cdns_ctrl->caps2.is_phy_type_dll)
phony_dqs_timing--;
} else {
phony_dqs_timing--;
}
rd_del_sel = phony_dqs_timing + 3;
} else {
dev_warn(cdns_ctrl->dev,
"ERROR : cannot find valid sampling point\n");
}
reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
if (cdns_ctrl->caps2.is_phy_type_dll)
reg |= PHY_CTRL_SDR_DQS;
t->phy_ctrl = reg;
dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
if (cdns_ctrl->caps2.is_phy_type_dll) {
dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
dll_phy_dqs_timing);
t->phy_dqs_timing = dll_phy_dqs_timing;
reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
reg);
t->phy_gate_lpbk_ctrl = reg;
dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
PHY_DLL_MASTER_CTRL_BYPASS_MODE);
dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
}
return 0;
}
static int cadence_nand_attach_chip(struct nand_chip *chip)
{
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
u32 ecc_size;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
if (chip->options & NAND_BUSWIDTH_16) {
ret = cadence_nand_set_access_width16(cdns_ctrl, true);
if (ret)
return ret;
}
chip->bbt_options |= NAND_BBT_USE_FLASH;
chip->bbt_options |= NAND_BBT_NO_OOB;
chip->ecc.mode = NAND_ECC_HW;
chip->options |= NAND_NO_SUBPAGE_WRITE;
cdns_chip->bbm_offs = chip->badblockpos;
cdns_chip->bbm_offs &= ~0x01;
/* this value should be even number */
cdns_chip->bbm_len = 2;
ret = nand_ecc_choose_conf(chip,
&cdns_ctrl->ecc_caps,
mtd->oobsize - cdns_chip->bbm_len);
if (ret) {
dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
return ret;
}
dev_dbg(cdns_ctrl->dev,
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
/* Error correction configuration. */
cdns_chip->sector_size = chip->ecc.size;
cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
> mtd->oobsize)
cdns_chip->avail_oob_size -= 4;
ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
if (ret < 0)
return -EINVAL;
cdns_chip->corr_str_idx = (u8)ret;
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1000000,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
cadence_nand_set_ecc_strength(cdns_ctrl,
cdns_chip->corr_str_idx);
cadence_nand_set_erase_detection(cdns_ctrl, true,
chip->ecc.strength);
/* Override the default read operations. */
chip->ecc.read_page = cadence_nand_read_page;
chip->ecc.read_page_raw = cadence_nand_read_page_raw;
chip->ecc.write_page = cadence_nand_write_page;
chip->ecc.write_page_raw = cadence_nand_write_page_raw;
chip->ecc.read_oob = cadence_nand_read_oob;
chip->ecc.write_oob = cadence_nand_write_oob;
chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
/* Is 32-bit DMA supported? */
ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
return ret;
}
mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
return 0;
}
static const struct nand_controller_ops cadence_nand_controller_ops = {
.attach_chip = cadence_nand_attach_chip,
.exec_op = cadence_nand_exec_op,
.setup_data_interface = cadence_nand_setup_data_interface,
};
static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
struct device_node *np)
{
struct cdns_nand_chip *cdns_chip;
struct mtd_info *mtd;
struct nand_chip *chip;
int nsels, ret, i;
u32 cs;
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (nsels <= 0) {
dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
return -EINVAL;
}
/* Allocate the nand chip structure. */
cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
(nsels * sizeof(u8)),
GFP_KERNEL);
if (!cdns_chip) {
dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
return -ENOMEM;
}
cdns_chip->nsels = nsels;
for (i = 0; i < nsels; i++) {
/* Retrieve CS id. */
ret = of_property_read_u32_index(np, "reg", i, &cs);
if (ret) {
dev_err(cdns_ctrl->dev,
"could not retrieve reg property: %d\n",
ret);
return ret;
}
if (cs >= cdns_ctrl->caps2.max_banks) {
dev_err(cdns_ctrl->dev,
"invalid reg value: %u (max CS = %d)\n",
cs, cdns_ctrl->caps2.max_banks);
return -EINVAL;
}
if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
dev_err(cdns_ctrl->dev,
"CS %d already assigned\n", cs);
return -EINVAL;
}
cdns_chip->cs[i] = cs;
}
chip = &cdns_chip->chip;
chip->controller = &cdns_ctrl->controller;
nand_set_flash_node(chip, np);
mtd = nand_to_mtd(chip);
mtd->dev.parent = cdns_ctrl->dev;
/*
* Default to HW ECC engine mode. If the nand-ecc-mode property is given
* in the DT node, this entry will be overwritten in nand_scan_ident().
*/
chip->ecc.mode = NAND_ECC_HW;
ret = nand_scan(chip, cdns_chip->nsels);
if (ret) {
dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(cdns_ctrl->dev,
"failed to register mtd device: %d\n", ret);
nand_cleanup(chip);
return ret;
}
list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
return 0;
}
static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
{
struct cdns_nand_chip *entry, *temp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
chip = &entry->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&entry->node);
}
}
static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
{
struct device_node *np = cdns_ctrl->dev->of_node;
struct device_node *nand_np;
int max_cs = cdns_ctrl->caps2.max_banks;
int nchips, ret;
nchips = of_get_child_count(np);
if (nchips > max_cs) {
dev_err(cdns_ctrl->dev,
"too many NAND chips: %d (max = %d CS)\n",
nchips, max_cs);
return -EINVAL;
}
for_each_child_of_node(np, nand_np) {
ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
if (ret) {
of_node_put(nand_np);
cadence_nand_chips_cleanup(cdns_ctrl);
return ret;
}
}
return 0;
}
static void
cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
{
/* Disable interrupts. */
writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
}
static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
{
dma_cap_mask_t mask;
int ret;
cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
sizeof(*cdns_ctrl->cdma_desc),
&cdns_ctrl->dma_cdma_desc,
GFP_KERNEL);
if (!cdns_ctrl->dma_cdma_desc)
return -ENOMEM;
cdns_ctrl->buf_size = SZ_16K;
cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
if (!cdns_ctrl->buf) {
ret = -ENOMEM;
goto free_buf_desc;
}
if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
IRQF_SHARED, "cadence-nand-controller",
cdns_ctrl)) {
dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
ret = -ENODEV;
goto free_buf;
}
spin_lock_init(&cdns_ctrl->irq_lock);
init_completion(&cdns_ctrl->complete);
ret = cadence_nand_hw_init(cdns_ctrl);
if (ret)
goto disable_irq;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
if (cdns_ctrl->caps1->has_dma) {
cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
if (!cdns_ctrl->dmac) {
dev_err(cdns_ctrl->dev,
"Unable to get a DMA channel\n");
ret = -EBUSY;
goto disable_irq;
}
}
nand_controller_init(&cdns_ctrl->controller);
INIT_LIST_HEAD(&cdns_ctrl->chips);
cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
cdns_ctrl->curr_corr_str_idx = 0xFF;
ret = cadence_nand_chips_init(cdns_ctrl);
if (ret) {
dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
ret);
goto dma_release_chnl;
}
kfree(cdns_ctrl->buf);
cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
if (!cdns_ctrl->buf) {
ret = -ENOMEM;
goto dma_release_chnl;
}
return 0;
dma_release_chnl:
if (cdns_ctrl->dmac)
dma_release_channel(cdns_ctrl->dmac);
disable_irq:
cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
free_buf:
kfree(cdns_ctrl->buf);
free_buf_desc:
dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
return ret;
}
/* Driver exit point. */
static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
{
cadence_nand_chips_cleanup(cdns_ctrl);
cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
kfree(cdns_ctrl->buf);
dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
if (cdns_ctrl->dmac)
dma_release_channel(cdns_ctrl->dmac);
}
struct cadence_nand_dt {
struct cdns_nand_ctrl cdns_ctrl;
struct clk *clk;
};
static const struct cadence_nand_dt_devdata cadence_nand_default = {
.if_skew = 0,
.has_dma = 1,
};
static const struct of_device_id cadence_nand_dt_ids[] = {
{
.compatible = "cdns,hp-nfc",
.data = &cadence_nand_default
}, {}
};
MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
static int cadence_nand_dt_probe(struct platform_device *ofdev)
{
struct resource *res;
struct cadence_nand_dt *dt;
struct cdns_nand_ctrl *cdns_ctrl;
int ret;
const struct of_device_id *of_id;
const struct cadence_nand_dt_devdata *devdata;
u32 val;
of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
if (of_id) {
ofdev->id_entry = of_id->data;
devdata = of_id->data;
} else {
pr_err("Failed to find the right device id.\n");
return -ENOMEM;
}
dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
if (!dt)
return -ENOMEM;
cdns_ctrl = &dt->cdns_ctrl;
cdns_ctrl->caps1 = devdata;
cdns_ctrl->dev = &ofdev->dev;
cdns_ctrl->irq = platform_get_irq(ofdev, 0);
if (cdns_ctrl->irq < 0)
return cdns_ctrl->irq;
dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
if (IS_ERR(cdns_ctrl->reg)) {
dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
return PTR_ERR(cdns_ctrl->reg);
}
res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
cdns_ctrl->io.dma = res->start;
cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
if (IS_ERR(cdns_ctrl->io.virt)) {
dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n");
return PTR_ERR(cdns_ctrl->io.virt);
}
dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
if (IS_ERR(dt->clk))
return PTR_ERR(dt->clk);
cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
ret = of_property_read_u32(ofdev->dev.of_node,
"cdns,board-delay-ps", &val);
if (ret) {
val = 4830;
dev_info(cdns_ctrl->dev,
"missing cdns,board-delay-ps property, %d was set\n",
val);
}
cdns_ctrl->board_delay = val;
ret = cadence_nand_init(cdns_ctrl);
if (ret)
return ret;
platform_set_drvdata(ofdev, dt);
return 0;
}
static int cadence_nand_dt_remove(struct platform_device *ofdev)
{
struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
cadence_nand_remove(&dt->cdns_ctrl);
return 0;
}
static struct platform_driver cadence_nand_dt_driver = {
.probe = cadence_nand_dt_probe,
.remove = cadence_nand_dt_remove,
.driver = {
.name = "cadence-nand-controller",
.of_match_table = cadence_nand_dt_ids,
},
};
module_platform_driver(cadence_nand_dt_driver);
MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");