linux_dsm_epyc7002/drivers/gpu/drm/amd/amdgpu/kv_dpm.c
Alex Deucher fa022a9b65 drm/amdgpu: add pm sysfs files late
They were added relatively early in the driver init process
which meant that in some cases the driver was not finished
initializing before external tools tried to use them which
could result in a crash depending on the timing.

Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Cc: stable@vger.kernel.org
2015-10-02 16:09:47 -04:00

3347 lines
92 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "cikd.h"
#include "atom.h"
#include "amdgpu_atombios.h"
#include "amdgpu_dpm.h"
#include "kv_dpm.h"
#include "gfx_v7_0.h"
#include <linux/seq_file.h>
#include "smu/smu_7_0_0_d.h"
#include "smu/smu_7_0_0_sh_mask.h"
#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_sh_mask.h"
#define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
#define KV_MINIMUM_ENGINE_CLOCK 800
#define SMC_RAM_END 0x40000
static void kv_dpm_set_dpm_funcs(struct amdgpu_device *adev);
static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev);
static int kv_enable_nb_dpm(struct amdgpu_device *adev,
bool enable);
static void kv_init_graphics_levels(struct amdgpu_device *adev);
static int kv_calculate_ds_divider(struct amdgpu_device *adev);
static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev);
static int kv_calculate_dpm_settings(struct amdgpu_device *adev);
static void kv_enable_new_levels(struct amdgpu_device *adev);
static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps);
static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level);
static int kv_set_enabled_levels(struct amdgpu_device *adev);
static int kv_force_dpm_highest(struct amdgpu_device *adev);
static int kv_force_dpm_lowest(struct amdgpu_device *adev);
static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps,
struct amdgpu_ps *old_rps);
static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
int min_temp, int max_temp);
static int kv_init_fps_limits(struct amdgpu_device *adev);
static void kv_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate);
static void kv_dpm_powergate_vce(struct amdgpu_device *adev, bool gate);
static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate);
static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate);
static u32 kv_convert_vid2_to_vid7(struct amdgpu_device *adev,
struct sumo_vid_mapping_table *vid_mapping_table,
u32 vid_2bit)
{
struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 i;
if (vddc_sclk_table && vddc_sclk_table->count) {
if (vid_2bit < vddc_sclk_table->count)
return vddc_sclk_table->entries[vid_2bit].v;
else
return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
} else {
for (i = 0; i < vid_mapping_table->num_entries; i++) {
if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
return vid_mapping_table->entries[i].vid_7bit;
}
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
}
}
static u32 kv_convert_vid7_to_vid2(struct amdgpu_device *adev,
struct sumo_vid_mapping_table *vid_mapping_table,
u32 vid_7bit)
{
struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 i;
if (vddc_sclk_table && vddc_sclk_table->count) {
for (i = 0; i < vddc_sclk_table->count; i++) {
if (vddc_sclk_table->entries[i].v == vid_7bit)
return i;
}
return vddc_sclk_table->count - 1;
} else {
for (i = 0; i < vid_mapping_table->num_entries; i++) {
if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
return vid_mapping_table->entries[i].vid_2bit;
}
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
}
}
static void sumo_take_smu_control(struct amdgpu_device *adev, bool enable)
{
/* This bit selects who handles display phy powergating.
* Clear the bit to let atom handle it.
* Set it to let the driver handle it.
* For now we just let atom handle it.
*/
#if 0
u32 v = RREG32(mmDOUT_SCRATCH3);
if (enable)
v |= 0x4;
else
v &= 0xFFFFFFFB;
WREG32(mmDOUT_SCRATCH3, v);
#endif
}
static u32 sumo_get_sleep_divider_from_id(u32 id)
{
return 1 << id;
}
static void sumo_construct_sclk_voltage_mapping_table(struct amdgpu_device *adev,
struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table,
ATOM_AVAILABLE_SCLK_LIST *table)
{
u32 i;
u32 n = 0;
u32 prev_sclk = 0;
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
if (table[i].ulSupportedSCLK > prev_sclk) {
sclk_voltage_mapping_table->entries[n].sclk_frequency =
table[i].ulSupportedSCLK;
sclk_voltage_mapping_table->entries[n].vid_2bit =
table[i].usVoltageIndex;
prev_sclk = table[i].ulSupportedSCLK;
n++;
}
}
sclk_voltage_mapping_table->num_max_dpm_entries = n;
}
static void sumo_construct_vid_mapping_table(struct amdgpu_device *adev,
struct sumo_vid_mapping_table *vid_mapping_table,
ATOM_AVAILABLE_SCLK_LIST *table)
{
u32 i, j;
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
if (table[i].ulSupportedSCLK != 0) {
vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit =
table[i].usVoltageID;
vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit =
table[i].usVoltageIndex;
}
}
for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
if (vid_mapping_table->entries[i].vid_7bit == 0) {
for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) {
if (vid_mapping_table->entries[j].vid_7bit != 0) {
vid_mapping_table->entries[i] =
vid_mapping_table->entries[j];
vid_mapping_table->entries[j].vid_7bit = 0;
break;
}
}
if (j == SUMO_MAX_NUMBER_VOLTAGES)
break;
}
}
vid_mapping_table->num_entries = i;
}
static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 1, 4, 1 },
{ 2, 5, 1 },
{ 3, 4, 2 },
{ 4, 1, 1 },
{ 5, 5, 2 },
{ 6, 6, 1 },
{ 7, 9, 2 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 1, 4, 1 },
{ 2, 5, 1 },
{ 3, 4, 1 },
{ 4, 1, 1 },
{ 5, 5, 1 },
{ 6, 6, 1 },
{ 7, 9, 1 },
{ 8, 4, 1 },
{ 9, 2, 1 },
{ 10, 3, 1 },
{ 11, 6, 1 },
{ 12, 8, 2 },
{ 13, 1, 1 },
{ 14, 2, 1 },
{ 15, 3, 1 },
{ 16, 1, 1 },
{ 17, 4, 1 },
{ 18, 3, 1 },
{ 19, 1, 1 },
{ 20, 8, 1 },
{ 21, 5, 1 },
{ 22, 1, 1 },
{ 23, 1, 1 },
{ 24, 4, 1 },
{ 27, 6, 1 },
{ 28, 1, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
{
{ 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
{
{ 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
{
{ 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
{
{ 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
{
{ 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
{
{ 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_pt_config_reg didt_config_kv[] =
{
{ 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0xFFFFFFFF }
};
static struct kv_ps *kv_get_ps(struct amdgpu_ps *rps)
{
struct kv_ps *ps = rps->ps_priv;
return ps;
}
static struct kv_power_info *kv_get_pi(struct amdgpu_device *adev)
{
struct kv_power_info *pi = adev->pm.dpm.priv;
return pi;
}
#if 0
static void kv_program_local_cac_table(struct amdgpu_device *adev,
const struct kv_lcac_config_values *local_cac_table,
const struct kv_lcac_config_reg *local_cac_reg)
{
u32 i, count, data;
const struct kv_lcac_config_values *values = local_cac_table;
while (values->block_id != 0xffffffff) {
count = values->signal_id;
for (i = 0; i < count; i++) {
data = ((values->block_id << local_cac_reg->block_shift) &
local_cac_reg->block_mask);
data |= ((i << local_cac_reg->signal_shift) &
local_cac_reg->signal_mask);
data |= ((values->t << local_cac_reg->t_shift) &
local_cac_reg->t_mask);
data |= ((1 << local_cac_reg->enable_shift) &
local_cac_reg->enable_mask);
WREG32_SMC(local_cac_reg->cntl, data);
}
values++;
}
}
#endif
static int kv_program_pt_config_registers(struct amdgpu_device *adev,
const struct kv_pt_config_reg *cac_config_regs)
{
const struct kv_pt_config_reg *config_regs = cac_config_regs;
u32 data;
u32 cache = 0;
if (config_regs == NULL)
return -EINVAL;
while (config_regs->offset != 0xFFFFFFFF) {
if (config_regs->type == KV_CONFIGREG_CACHE) {
cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
} else {
switch (config_regs->type) {
case KV_CONFIGREG_SMC_IND:
data = RREG32_SMC(config_regs->offset);
break;
case KV_CONFIGREG_DIDT_IND:
data = RREG32_DIDT(config_regs->offset);
break;
default:
data = RREG32(config_regs->offset);
break;
}
data &= ~config_regs->mask;
data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
data |= cache;
cache = 0;
switch (config_regs->type) {
case KV_CONFIGREG_SMC_IND:
WREG32_SMC(config_regs->offset, data);
break;
case KV_CONFIGREG_DIDT_IND:
WREG32_DIDT(config_regs->offset, data);
break;
default:
WREG32(config_regs->offset, data);
break;
}
}
config_regs++;
}
return 0;
}
static void kv_do_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 data;
if (pi->caps_sq_ramping) {
data = RREG32_DIDT(ixDIDT_SQ_CTRL0);
if (enable)
data |= DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_SQ_CTRL0, data);
}
if (pi->caps_db_ramping) {
data = RREG32_DIDT(ixDIDT_DB_CTRL0);
if (enable)
data |= DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_DB_CTRL0, data);
}
if (pi->caps_td_ramping) {
data = RREG32_DIDT(ixDIDT_TD_CTRL0);
if (enable)
data |= DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_TD_CTRL0, data);
}
if (pi->caps_tcp_ramping) {
data = RREG32_DIDT(ixDIDT_TCP_CTRL0);
if (enable)
data |= DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_TCP_CTRL0, data);
}
}
static int kv_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
if (pi->caps_sq_ramping ||
pi->caps_db_ramping ||
pi->caps_td_ramping ||
pi->caps_tcp_ramping) {
gfx_v7_0_enter_rlc_safe_mode(adev);
if (enable) {
ret = kv_program_pt_config_registers(adev, didt_config_kv);
if (ret) {
gfx_v7_0_exit_rlc_safe_mode(adev);
return ret;
}
}
kv_do_enable_didt(adev, enable);
gfx_v7_0_exit_rlc_safe_mode(adev);
}
return 0;
}
#if 0
static void kv_initialize_hardware_cac_manager(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
if (pi->caps_cac) {
WREG32_SMC(ixLCAC_SX0_OVR_SEL, 0);
WREG32_SMC(ixLCAC_SX0_OVR_VAL, 0);
kv_program_local_cac_table(adev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
WREG32_SMC(ixLCAC_MC0_OVR_SEL, 0);
WREG32_SMC(ixLCAC_MC0_OVR_VAL, 0);
kv_program_local_cac_table(adev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
WREG32_SMC(ixLCAC_MC1_OVR_SEL, 0);
WREG32_SMC(ixLCAC_MC1_OVR_VAL, 0);
kv_program_local_cac_table(adev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
WREG32_SMC(ixLCAC_MC2_OVR_SEL, 0);
WREG32_SMC(ixLCAC_MC2_OVR_VAL, 0);
kv_program_local_cac_table(adev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
WREG32_SMC(ixLCAC_MC3_OVR_SEL, 0);
WREG32_SMC(ixLCAC_MC3_OVR_VAL, 0);
kv_program_local_cac_table(adev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
WREG32_SMC(ixLCAC_CPL_OVR_SEL, 0);
WREG32_SMC(ixLCAC_CPL_OVR_VAL, 0);
kv_program_local_cac_table(adev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
}
}
#endif
static int kv_enable_smc_cac(struct amdgpu_device *adev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret = 0;
if (pi->caps_cac) {
if (enable) {
ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_EnableCac);
if (ret)
pi->cac_enabled = false;
else
pi->cac_enabled = true;
} else if (pi->cac_enabled) {
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DisableCac);
pi->cac_enabled = false;
}
}
return ret;
}
static int kv_process_firmware_header(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 tmp;
int ret;
ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, DpmTable),
&tmp, pi->sram_end);
if (ret == 0)
pi->dpm_table_start = tmp;
ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, SoftRegisters),
&tmp, pi->sram_end);
if (ret == 0)
pi->soft_regs_start = tmp;
return ret;
}
static int kv_enable_dpm_voltage_scaling(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
pi->graphics_voltage_change_enable = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
&pi->graphics_voltage_change_enable,
sizeof(u8), pi->sram_end);
return ret;
}
static int kv_set_dpm_interval(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
pi->graphics_interval = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
&pi->graphics_interval,
sizeof(u8), pi->sram_end);
return ret;
}
static int kv_set_dpm_boot_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
&pi->graphics_boot_level,
sizeof(u8), pi->sram_end);
return ret;
}
static void kv_program_vc(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0x3FFFC100);
}
static void kv_clear_vc(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
}
static int kv_set_divider_value(struct amdgpu_device *adev,
u32 index, u32 sclk)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct atom_clock_dividers dividers;
int ret;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
sclk, false, &dividers);
if (ret)
return ret;
pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
return 0;
}
static u16 kv_convert_8bit_index_to_voltage(struct amdgpu_device *adev,
u16 voltage)
{
return 6200 - (voltage * 25);
}
static u16 kv_convert_2bit_index_to_voltage(struct amdgpu_device *adev,
u32 vid_2bit)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 vid_8bit = kv_convert_vid2_to_vid7(adev,
&pi->sys_info.vid_mapping_table,
vid_2bit);
return kv_convert_8bit_index_to_voltage(adev, (u16)vid_8bit);
}
static int kv_set_vid(struct amdgpu_device *adev, u32 index, u32 vid)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
pi->graphics_level[index].MinVddNb =
cpu_to_be32(kv_convert_2bit_index_to_voltage(adev, vid));
return 0;
}
static int kv_set_at(struct amdgpu_device *adev, u32 index, u32 at)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->graphics_level[index].AT = cpu_to_be16((u16)at);
return 0;
}
static void kv_dpm_power_level_enable(struct amdgpu_device *adev,
u32 index, bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
}
static void kv_start_dpm(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp |= GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
amdgpu_kv_smc_dpm_enable(adev, true);
}
static void kv_stop_dpm(struct amdgpu_device *adev)
{
amdgpu_kv_smc_dpm_enable(adev, false);
}
static void kv_start_am(struct amdgpu_device *adev)
{
u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
sclk_pwrmgt_cntl &= ~(SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
sclk_pwrmgt_cntl |= SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK;
WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
}
static void kv_reset_am(struct amdgpu_device *adev)
{
u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
sclk_pwrmgt_cntl |= (SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
}
static int kv_freeze_sclk_dpm(struct amdgpu_device *adev, bool freeze)
{
return amdgpu_kv_notify_message_to_smu(adev, freeze ?
PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
}
static int kv_force_lowest_valid(struct amdgpu_device *adev)
{
return kv_force_dpm_lowest(adev);
}
static int kv_unforce_levels(struct amdgpu_device *adev)
{
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NoForcedLevel);
else
return kv_set_enabled_levels(adev);
}
static int kv_update_sclk_t(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 low_sclk_interrupt_t = 0;
int ret = 0;
if (pi->caps_sclk_throttle_low_notification) {
low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
(u8 *)&low_sclk_interrupt_t,
sizeof(u32), pi->sram_end);
}
return ret;
}
static int kv_program_bootup_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].clk == pi->boot_pl.sclk)
break;
}
pi->graphics_boot_level = (u8)i;
kv_dpm_power_level_enable(adev, i, true);
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
if (table->num_max_dpm_entries == 0)
return -EINVAL;
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
break;
}
pi->graphics_boot_level = (u8)i;
kv_dpm_power_level_enable(adev, i, true);
}
return 0;
}
static int kv_enable_auto_thermal_throttling(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
pi->graphics_therm_throttle_enable = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
&pi->graphics_therm_throttle_enable,
sizeof(u8), pi->sram_end);
return ret;
}
static int kv_upload_dpm_settings(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
(u8 *)&pi->graphics_level,
sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
pi->sram_end);
if (ret)
return ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
&pi->graphics_dpm_level_count,
sizeof(u8), pi->sram_end);
return ret;
}
static u32 kv_get_clock_difference(u32 a, u32 b)
{
return (a >= b) ? a - b : b - a;
}
static u32 kv_get_clk_bypass(struct amdgpu_device *adev, u32 clk)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 value;
if (pi->caps_enable_dfs_bypass) {
if (kv_get_clock_difference(clk, 40000) < 200)
value = 3;
else if (kv_get_clock_difference(clk, 30000) < 200)
value = 2;
else if (kv_get_clock_difference(clk, 20000) < 200)
value = 7;
else if (kv_get_clock_difference(clk, 15000) < 200)
value = 6;
else if (kv_get_clock_difference(clk, 10000) < 200)
value = 8;
else
value = 0;
} else {
value = 0;
}
return value;
}
static int kv_populate_uvd_table(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_uvd_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
int ret;
u32 i;
if (table == NULL || table->count == 0)
return 0;
pi->uvd_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t < table->entries[i].v))
break;
pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
pi->uvd_level[i].VClkBypassCntl =
(u8)kv_get_clk_bypass(adev, table->entries[i].vclk);
pi->uvd_level[i].DClkBypassCntl =
(u8)kv_get_clk_bypass(adev, table->entries[i].dclk);
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].vclk, false, &dividers);
if (ret)
return ret;
pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].dclk, false, &dividers);
if (ret)
return ret;
pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
pi->uvd_level_count++;
}
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
(u8 *)&pi->uvd_level_count,
sizeof(u8), pi->sram_end);
if (ret)
return ret;
pi->uvd_interval = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UVDInterval),
&pi->uvd_interval,
sizeof(u8), pi->sram_end);
if (ret)
return ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UvdLevel),
(u8 *)&pi->uvd_level,
sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
pi->sram_end);
return ret;
}
static int kv_populate_vce_table(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
u32 i;
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
if (table == NULL || table->count == 0)
return 0;
pi->vce_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
pi->high_voltage_t < table->entries[i].v)
break;
pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
pi->vce_level[i].ClkBypassCntl =
(u8)kv_get_clk_bypass(adev, table->entries[i].evclk);
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].evclk, false, &dividers);
if (ret)
return ret;
pi->vce_level[i].Divider = (u8)dividers.post_div;
pi->vce_level_count++;
}
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
(u8 *)&pi->vce_level_count,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
pi->vce_interval = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VCEInterval),
(u8 *)&pi->vce_interval,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VceLevel),
(u8 *)&pi->vce_level,
sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
pi->sram_end);
return ret;
}
static int kv_populate_samu_table(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
int ret;
u32 i;
if (table == NULL || table->count == 0)
return 0;
pi->samu_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
pi->high_voltage_t < table->entries[i].v)
break;
pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
pi->samu_level[i].ClkBypassCntl =
(u8)kv_get_clk_bypass(adev, table->entries[i].clk);
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].clk, false, &dividers);
if (ret)
return ret;
pi->samu_level[i].Divider = (u8)dividers.post_div;
pi->samu_level_count++;
}
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
(u8 *)&pi->samu_level_count,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
pi->samu_interval = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
(u8 *)&pi->samu_interval,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SamuLevel),
(u8 *)&pi->samu_level,
sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
pi->sram_end);
if (ret)
return ret;
return ret;
}
static int kv_populate_acp_table(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
int ret;
u32 i;
if (table == NULL || table->count == 0)
return 0;
pi->acp_level_count = 0;
for (i = 0; i < table->count; i++) {
pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].clk, false, &dividers);
if (ret)
return ret;
pi->acp_level[i].Divider = (u8)dividers.post_div;
pi->acp_level_count++;
}
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
(u8 *)&pi->acp_level_count,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
pi->acp_interval = 1;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, ACPInterval),
(u8 *)&pi->acp_interval,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, AcpLevel),
(u8 *)&pi->acp_level,
sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
pi->sram_end);
if (ret)
return ret;
return ret;
}
static void kv_calculate_dfs_bypass_settings(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
for (i = 0; i < pi->graphics_dpm_level_count; i++) {
if (pi->caps_enable_dfs_bypass) {
if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
pi->graphics_level[i].ClkBypassCntl = 3;
else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
pi->graphics_level[i].ClkBypassCntl = 2;
else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
pi->graphics_level[i].ClkBypassCntl = 7;
else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
pi->graphics_level[i].ClkBypassCntl = 6;
else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
pi->graphics_level[i].ClkBypassCntl = 8;
else
pi->graphics_level[i].ClkBypassCntl = 0;
} else {
pi->graphics_level[i].ClkBypassCntl = 0;
}
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = 0; i < pi->graphics_dpm_level_count; i++) {
if (pi->caps_enable_dfs_bypass) {
if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
pi->graphics_level[i].ClkBypassCntl = 3;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
pi->graphics_level[i].ClkBypassCntl = 2;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
pi->graphics_level[i].ClkBypassCntl = 7;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
pi->graphics_level[i].ClkBypassCntl = 6;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
pi->graphics_level[i].ClkBypassCntl = 8;
else
pi->graphics_level[i].ClkBypassCntl = 0;
} else {
pi->graphics_level[i].ClkBypassCntl = 0;
}
}
}
}
static int kv_enable_ulv(struct amdgpu_device *adev, bool enable)
{
return amdgpu_kv_notify_message_to_smu(adev, enable ?
PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
}
static void kv_reset_acp_boot_level(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->acp_boot_level = 0xff;
}
static void kv_update_current_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct kv_ps *new_ps = kv_get_ps(rps);
struct kv_power_info *pi = kv_get_pi(adev);
pi->current_rps = *rps;
pi->current_ps = *new_ps;
pi->current_rps.ps_priv = &pi->current_ps;
}
static void kv_update_requested_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct kv_ps *new_ps = kv_get_ps(rps);
struct kv_power_info *pi = kv_get_pi(adev);
pi->requested_rps = *rps;
pi->requested_ps = *new_ps;
pi->requested_rps.ps_priv = &pi->requested_ps;
}
static void kv_dpm_enable_bapm(struct amdgpu_device *adev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
if (pi->bapm_enable) {
ret = amdgpu_kv_smc_bapm_enable(adev, enable);
if (ret)
DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
}
}
static int kv_dpm_enable(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
ret = kv_process_firmware_header(adev);
if (ret) {
DRM_ERROR("kv_process_firmware_header failed\n");
return ret;
}
kv_init_fps_limits(adev);
kv_init_graphics_levels(adev);
ret = kv_program_bootup_state(adev);
if (ret) {
DRM_ERROR("kv_program_bootup_state failed\n");
return ret;
}
kv_calculate_dfs_bypass_settings(adev);
ret = kv_upload_dpm_settings(adev);
if (ret) {
DRM_ERROR("kv_upload_dpm_settings failed\n");
return ret;
}
ret = kv_populate_uvd_table(adev);
if (ret) {
DRM_ERROR("kv_populate_uvd_table failed\n");
return ret;
}
ret = kv_populate_vce_table(adev);
if (ret) {
DRM_ERROR("kv_populate_vce_table failed\n");
return ret;
}
ret = kv_populate_samu_table(adev);
if (ret) {
DRM_ERROR("kv_populate_samu_table failed\n");
return ret;
}
ret = kv_populate_acp_table(adev);
if (ret) {
DRM_ERROR("kv_populate_acp_table failed\n");
return ret;
}
kv_program_vc(adev);
#if 0
kv_initialize_hardware_cac_manager(adev);
#endif
kv_start_am(adev);
if (pi->enable_auto_thermal_throttling) {
ret = kv_enable_auto_thermal_throttling(adev);
if (ret) {
DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
return ret;
}
}
ret = kv_enable_dpm_voltage_scaling(adev);
if (ret) {
DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
return ret;
}
ret = kv_set_dpm_interval(adev);
if (ret) {
DRM_ERROR("kv_set_dpm_interval failed\n");
return ret;
}
ret = kv_set_dpm_boot_state(adev);
if (ret) {
DRM_ERROR("kv_set_dpm_boot_state failed\n");
return ret;
}
ret = kv_enable_ulv(adev, true);
if (ret) {
DRM_ERROR("kv_enable_ulv failed\n");
return ret;
}
kv_start_dpm(adev);
ret = kv_enable_didt(adev, true);
if (ret) {
DRM_ERROR("kv_enable_didt failed\n");
return ret;
}
ret = kv_enable_smc_cac(adev, true);
if (ret) {
DRM_ERROR("kv_enable_smc_cac failed\n");
return ret;
}
kv_reset_acp_boot_level(adev);
ret = amdgpu_kv_smc_bapm_enable(adev, false);
if (ret) {
DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
return ret;
}
kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
if (adev->irq.installed &&
amdgpu_is_internal_thermal_sensor(adev->pm.int_thermal_type)) {
ret = kv_set_thermal_temperature_range(adev, KV_TEMP_RANGE_MIN, KV_TEMP_RANGE_MAX);
if (ret) {
DRM_ERROR("kv_set_thermal_temperature_range failed\n");
return ret;
}
amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
}
return ret;
}
static void kv_dpm_disable(struct amdgpu_device *adev)
{
amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
amdgpu_kv_smc_bapm_enable(adev, false);
if (adev->asic_type == CHIP_MULLINS)
kv_enable_nb_dpm(adev, false);
/* powerup blocks */
kv_dpm_powergate_acp(adev, false);
kv_dpm_powergate_samu(adev, false);
kv_dpm_powergate_vce(adev, false);
kv_dpm_powergate_uvd(adev, false);
kv_enable_smc_cac(adev, false);
kv_enable_didt(adev, false);
kv_clear_vc(adev);
kv_stop_dpm(adev);
kv_enable_ulv(adev, false);
kv_reset_am(adev);
kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
}
#if 0
static int kv_write_smc_soft_register(struct amdgpu_device *adev,
u16 reg_offset, u32 value)
{
struct kv_power_info *pi = kv_get_pi(adev);
return amdgpu_kv_copy_bytes_to_smc(adev, pi->soft_regs_start + reg_offset,
(u8 *)&value, sizeof(u16), pi->sram_end);
}
static int kv_read_smc_soft_register(struct amdgpu_device *adev,
u16 reg_offset, u32 *value)
{
struct kv_power_info *pi = kv_get_pi(adev);
return amdgpu_kv_read_smc_sram_dword(adev, pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
#endif
static void kv_init_sclk_t(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->low_sclk_interrupt_t = 0;
}
static int kv_init_fps_limits(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret = 0;
if (pi->caps_fps) {
u16 tmp;
tmp = 45;
pi->fps_high_t = cpu_to_be16(tmp);
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, FpsHighT),
(u8 *)&pi->fps_high_t,
sizeof(u16), pi->sram_end);
tmp = 30;
pi->fps_low_t = cpu_to_be16(tmp);
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, FpsLowT),
(u8 *)&pi->fps_low_t,
sizeof(u16), pi->sram_end);
}
return ret;
}
static void kv_init_powergate_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->uvd_power_gated = false;
pi->vce_power_gated = false;
pi->samu_power_gated = false;
pi->acp_power_gated = false;
}
static int kv_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
{
return amdgpu_kv_notify_message_to_smu(adev, enable ?
PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
}
static int kv_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
{
return amdgpu_kv_notify_message_to_smu(adev, enable ?
PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
}
static int kv_enable_samu_dpm(struct amdgpu_device *adev, bool enable)
{
return amdgpu_kv_notify_message_to_smu(adev, enable ?
PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
}
static int kv_enable_acp_dpm(struct amdgpu_device *adev, bool enable)
{
return amdgpu_kv_notify_message_to_smu(adev, enable ?
PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
}
static int kv_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_uvd_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
int ret;
u32 mask;
if (!gate) {
if (table->count)
pi->uvd_boot_level = table->count - 1;
else
pi->uvd_boot_level = 0;
if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
mask = 1 << pi->uvd_boot_level;
} else {
mask = 0x1f;
}
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
(uint8_t *)&pi->uvd_boot_level,
sizeof(u8), pi->sram_end);
if (ret)
return ret;
amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_UVDDPM_SetEnabledMask,
mask);
}
return kv_enable_uvd_dpm(adev, !gate);
}
static u8 kv_get_vce_boot_level(struct amdgpu_device *adev, u32 evclk)
{
u8 i;
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].evclk >= evclk)
break;
}
return i;
}
static int kv_update_vce_dpm(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_new_state,
struct amdgpu_ps *amdgpu_current_state)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
int ret;
if (amdgpu_new_state->evclk > 0 && amdgpu_current_state->evclk == 0) {
kv_dpm_powergate_vce(adev, false);
/* turn the clocks on when encoding */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_UNGATE);
if (ret)
return ret;
if (pi->caps_stable_p_state)
pi->vce_boot_level = table->count - 1;
else
pi->vce_boot_level = kv_get_vce_boot_level(adev, amdgpu_new_state->evclk);
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
(u8 *)&pi->vce_boot_level,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
if (pi->caps_stable_p_state)
amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(1 << pi->vce_boot_level));
kv_enable_vce_dpm(adev, true);
} else if (amdgpu_new_state->evclk == 0 && amdgpu_current_state->evclk > 0) {
kv_enable_vce_dpm(adev, false);
/* turn the clocks off when not encoding */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
if (ret)
return ret;
kv_dpm_powergate_vce(adev, true);
}
return 0;
}
static int kv_update_samu_dpm(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
int ret;
if (!gate) {
if (pi->caps_stable_p_state)
pi->samu_boot_level = table->count - 1;
else
pi->samu_boot_level = 0;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
(u8 *)&pi->samu_boot_level,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
if (pi->caps_stable_p_state)
amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(1 << pi->samu_boot_level));
}
return kv_enable_samu_dpm(adev, !gate);
}
static u8 kv_get_acp_boot_level(struct amdgpu_device *adev)
{
u8 i;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].clk >= 0) /* XXX */
break;
}
if (i >= table->count)
i = table->count - 1;
return i;
}
static void kv_update_acp_boot_level(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u8 acp_boot_level;
if (!pi->caps_stable_p_state) {
acp_boot_level = kv_get_acp_boot_level(adev);
if (acp_boot_level != pi->acp_boot_level) {
pi->acp_boot_level = acp_boot_level;
amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
(1 << pi->acp_boot_level));
}
}
}
static int kv_update_acp_dpm(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
int ret;
if (!gate) {
if (pi->caps_stable_p_state)
pi->acp_boot_level = table->count - 1;
else
pi->acp_boot_level = kv_get_acp_boot_level(adev);
ret = amdgpu_kv_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
(u8 *)&pi->acp_boot_level,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
if (pi->caps_stable_p_state)
amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
(1 << pi->acp_boot_level));
}
return kv_enable_acp_dpm(adev, !gate);
}
static void kv_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
if (gate) {
if (pi->caps_uvd_pg) {
/* disable clockgating so we can properly shut down the block */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_UNGATE);
/* shutdown the UVD block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_GATE);
/* XXX: check for errors */
}
kv_update_uvd_dpm(adev, gate);
if (pi->caps_uvd_pg)
/* power off the UVD block */
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerOFF);
} else {
if (pi->caps_uvd_pg) {
/* power on the UVD block */
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON);
/* re-init the UVD block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_UNGATE);
/* enable clockgating. hw will dynamically gate/ungate clocks on the fly */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_GATE);
/* XXX: check for errors */
}
kv_update_uvd_dpm(adev, gate);
}
}
static void kv_dpm_powergate_vce(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret;
if (pi->vce_power_gated == gate)
return;
pi->vce_power_gated = gate;
if (gate) {
if (pi->caps_vce_pg) {
/* shutdown the VCE block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
/* XXX: check for errors */
/* power off the VCE block */
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerOFF);
}
} else {
if (pi->caps_vce_pg) {
/* power on the VCE block */
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON);
/* re-init the VCE block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_UNGATE);
/* XXX: check for errors */
}
}
}
static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
if (pi->samu_power_gated == gate)
return;
pi->samu_power_gated = gate;
if (gate) {
kv_update_samu_dpm(adev, true);
if (pi->caps_samu_pg)
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerOFF);
} else {
if (pi->caps_samu_pg)
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerON);
kv_update_samu_dpm(adev, false);
}
}
static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(adev);
if (pi->acp_power_gated == gate)
return;
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
return;
pi->acp_power_gated = gate;
if (gate) {
kv_update_acp_dpm(adev, true);
if (pi->caps_acp_pg)
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerOFF);
} else {
if (pi->caps_acp_pg)
amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerON);
kv_update_acp_dpm(adev, false);
}
}
static void kv_set_valid_clock_range(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps)
{
struct kv_ps *new_ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
for (i = 0; i < pi->graphics_dpm_level_count; i++) {
if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
(i == (pi->graphics_dpm_level_count - 1))) {
pi->lowest_valid = i;
break;
}
}
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
break;
}
pi->highest_valid = i;
if (pi->lowest_valid > pi->highest_valid) {
if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
(table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
pi->highest_valid = pi->lowest_valid;
else
pi->lowest_valid = pi->highest_valid;
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
i == (int)(pi->graphics_dpm_level_count - 1)) {
pi->lowest_valid = i;
break;
}
}
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].sclk_frequency <=
new_ps->levels[new_ps->num_levels - 1].sclk)
break;
}
pi->highest_valid = i;
if (pi->lowest_valid > pi->highest_valid) {
if ((new_ps->levels[0].sclk -
table->entries[pi->highest_valid].sclk_frequency) >
(table->entries[pi->lowest_valid].sclk_frequency -
new_ps->levels[new_ps->num_levels -1].sclk))
pi->highest_valid = pi->lowest_valid;
else
pi->lowest_valid = pi->highest_valid;
}
}
}
static int kv_update_dfs_bypass_settings(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps)
{
struct kv_ps *new_ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(adev);
int ret = 0;
u8 clk_bypass_cntl;
if (pi->caps_enable_dfs_bypass) {
clk_bypass_cntl = new_ps->need_dfs_bypass ?
pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
ret = amdgpu_kv_copy_bytes_to_smc(adev,
(pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
(pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
&clk_bypass_cntl,
sizeof(u8), pi->sram_end);
}
return ret;
}
static int kv_enable_nb_dpm(struct amdgpu_device *adev,
bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
int ret = 0;
if (enable) {
if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Enable);
if (ret == 0)
pi->nb_dpm_enabled = true;
}
} else {
if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Disable);
if (ret == 0)
pi->nb_dpm_enabled = false;
}
}
return ret;
}
static int kv_dpm_force_performance_level(struct amdgpu_device *adev,
enum amdgpu_dpm_forced_level level)
{
int ret;
if (level == AMDGPU_DPM_FORCED_LEVEL_HIGH) {
ret = kv_force_dpm_highest(adev);
if (ret)
return ret;
} else if (level == AMDGPU_DPM_FORCED_LEVEL_LOW) {
ret = kv_force_dpm_lowest(adev);
if (ret)
return ret;
} else if (level == AMDGPU_DPM_FORCED_LEVEL_AUTO) {
ret = kv_unforce_levels(adev);
if (ret)
return ret;
}
adev->pm.dpm.forced_level = level;
return 0;
}
static int kv_dpm_pre_set_power_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
struct amdgpu_ps *new_ps = &requested_ps;
kv_update_requested_ps(adev, new_ps);
kv_apply_state_adjust_rules(adev,
&pi->requested_rps,
&pi->current_rps);
return 0;
}
static int kv_dpm_set_power_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_ps *new_ps = &pi->requested_rps;
struct amdgpu_ps *old_ps = &pi->current_rps;
int ret;
if (pi->bapm_enable) {
ret = amdgpu_kv_smc_bapm_enable(adev, adev->pm.dpm.ac_power);
if (ret) {
DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
return ret;
}
}
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
if (pi->enable_dpm) {
kv_set_valid_clock_range(adev, new_ps);
kv_update_dfs_bypass_settings(adev, new_ps);
ret = kv_calculate_ds_divider(adev);
if (ret) {
DRM_ERROR("kv_calculate_ds_divider failed\n");
return ret;
}
kv_calculate_nbps_level_settings(adev);
kv_calculate_dpm_settings(adev);
kv_force_lowest_valid(adev);
kv_enable_new_levels(adev);
kv_upload_dpm_settings(adev);
kv_program_nbps_index_settings(adev, new_ps);
kv_unforce_levels(adev);
kv_set_enabled_levels(adev);
kv_force_lowest_valid(adev);
kv_unforce_levels(adev);
ret = kv_update_vce_dpm(adev, new_ps, old_ps);
if (ret) {
DRM_ERROR("kv_update_vce_dpm failed\n");
return ret;
}
kv_update_sclk_t(adev);
if (adev->asic_type == CHIP_MULLINS)
kv_enable_nb_dpm(adev, true);
}
} else {
if (pi->enable_dpm) {
kv_set_valid_clock_range(adev, new_ps);
kv_update_dfs_bypass_settings(adev, new_ps);
ret = kv_calculate_ds_divider(adev);
if (ret) {
DRM_ERROR("kv_calculate_ds_divider failed\n");
return ret;
}
kv_calculate_nbps_level_settings(adev);
kv_calculate_dpm_settings(adev);
kv_freeze_sclk_dpm(adev, true);
kv_upload_dpm_settings(adev);
kv_program_nbps_index_settings(adev, new_ps);
kv_freeze_sclk_dpm(adev, false);
kv_set_enabled_levels(adev);
ret = kv_update_vce_dpm(adev, new_ps, old_ps);
if (ret) {
DRM_ERROR("kv_update_vce_dpm failed\n");
return ret;
}
kv_update_acp_boot_level(adev);
kv_update_sclk_t(adev);
kv_enable_nb_dpm(adev, true);
}
}
return 0;
}
static void kv_dpm_post_set_power_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_ps *new_ps = &pi->requested_rps;
kv_update_current_ps(adev, new_ps);
}
static void kv_dpm_setup_asic(struct amdgpu_device *adev)
{
sumo_take_smu_control(adev, true);
kv_init_powergate_state(adev);
kv_init_sclk_t(adev);
}
#if 0
static void kv_dpm_reset_asic(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
kv_force_lowest_valid(adev);
kv_init_graphics_levels(adev);
kv_program_bootup_state(adev);
kv_upload_dpm_settings(adev);
kv_force_lowest_valid(adev);
kv_unforce_levels(adev);
} else {
kv_init_graphics_levels(adev);
kv_program_bootup_state(adev);
kv_freeze_sclk_dpm(adev, true);
kv_upload_dpm_settings(adev);
kv_freeze_sclk_dpm(adev, false);
kv_set_enabled_level(adev, pi->graphics_boot_level);
}
}
#endif
static void kv_construct_max_power_limits_table(struct amdgpu_device *adev,
struct amdgpu_clock_and_voltage_limits *table)
{
struct kv_power_info *pi = kv_get_pi(adev);
if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
table->sclk =
pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
table->vddc =
kv_convert_2bit_index_to_voltage(adev,
pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
}
table->mclk = pi->sys_info.nbp_memory_clock[0];
}
static void kv_patch_voltage_values(struct amdgpu_device *adev)
{
int i;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct amdgpu_clock_voltage_dependency_table *samu_table =
&adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
struct amdgpu_clock_voltage_dependency_table *acp_table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
if (uvd_table->count) {
for (i = 0; i < uvd_table->count; i++)
uvd_table->entries[i].v =
kv_convert_8bit_index_to_voltage(adev,
uvd_table->entries[i].v);
}
if (vce_table->count) {
for (i = 0; i < vce_table->count; i++)
vce_table->entries[i].v =
kv_convert_8bit_index_to_voltage(adev,
vce_table->entries[i].v);
}
if (samu_table->count) {
for (i = 0; i < samu_table->count; i++)
samu_table->entries[i].v =
kv_convert_8bit_index_to_voltage(adev,
samu_table->entries[i].v);
}
if (acp_table->count) {
for (i = 0; i < acp_table->count; i++)
acp_table->entries[i].v =
kv_convert_8bit_index_to_voltage(adev,
acp_table->entries[i].v);
}
}
static void kv_construct_boot_state(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
pi->boot_pl.ds_divider_index = 0;
pi->boot_pl.ss_divider_index = 0;
pi->boot_pl.allow_gnb_slow = 1;
pi->boot_pl.force_nbp_state = 0;
pi->boot_pl.display_wm = 0;
pi->boot_pl.vce_wm = 0;
}
static int kv_force_dpm_highest(struct amdgpu_device *adev)
{
int ret;
u32 enable_mask, i;
ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
if (ret)
return ret;
for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
if (enable_mask & (1 << i))
break;
}
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
else
return kv_set_enabled_level(adev, i);
}
static int kv_force_dpm_lowest(struct amdgpu_device *adev)
{
int ret;
u32 enable_mask, i;
ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
if (ret)
return ret;
for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
if (enable_mask & (1 << i))
break;
}
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
else
return kv_set_enabled_level(adev, i);
}
static u8 kv_get_sleep_divider_id_from_clock(struct amdgpu_device *adev,
u32 sclk, u32 min_sclk_in_sr)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
u32 temp;
u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
if (sclk < min)
return 0;
if (!pi->caps_sclk_ds)
return 0;
for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
temp = sclk / sumo_get_sleep_divider_from_id(i);
if (temp >= min)
break;
}
return (u8)i;
}
static int kv_get_high_voltage_limit(struct amdgpu_device *adev, int *limit)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
int i;
if (table && table->count) {
for (i = table->count - 1; i >= 0; i--) {
if (pi->high_voltage_t &&
(kv_convert_8bit_index_to_voltage(adev, table->entries[i].v) <=
pi->high_voltage_t)) {
*limit = i;
return 0;
}
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
if (pi->high_voltage_t &&
(kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit) <=
pi->high_voltage_t)) {
*limit = i;
return 0;
}
}
}
*limit = 0;
return 0;
}
static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps,
struct amdgpu_ps *old_rps)
{
struct kv_ps *ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(adev);
u32 min_sclk = 10000; /* ??? */
u32 sclk, mclk = 0;
int i, limit;
bool force_high;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 stable_p_state_sclk = 0;
struct amdgpu_clock_and_voltage_limits *max_limits =
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
if (new_rps->vce_active) {
new_rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk;
new_rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk;
} else {
new_rps->evclk = 0;
new_rps->ecclk = 0;
}
mclk = max_limits->mclk;
sclk = min_sclk;
if (pi->caps_stable_p_state) {
stable_p_state_sclk = (max_limits->sclk * 75) / 100;
for (i = table->count - 1; i >= 0; i++) {
if (stable_p_state_sclk >= table->entries[i].clk) {
stable_p_state_sclk = table->entries[i].clk;
break;
}
}
if (i > 0)
stable_p_state_sclk = table->entries[0].clk;
sclk = stable_p_state_sclk;
}
if (new_rps->vce_active) {
if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk)
sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk;
}
ps->need_dfs_bypass = true;
for (i = 0; i < ps->num_levels; i++) {
if (ps->levels[i].sclk < sclk)
ps->levels[i].sclk = sclk;
}
if (table && table->count) {
for (i = 0; i < ps->num_levels; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t <
kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
kv_get_high_voltage_limit(adev, &limit);
ps->levels[i].sclk = table->entries[limit].clk;
}
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = 0; i < ps->num_levels; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t <
kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
kv_get_high_voltage_limit(adev, &limit);
ps->levels[i].sclk = table->entries[limit].sclk_frequency;
}
}
}
if (pi->caps_stable_p_state) {
for (i = 0; i < ps->num_levels; i++) {
ps->levels[i].sclk = stable_p_state_sclk;
}
}
pi->video_start = new_rps->dclk || new_rps->vclk ||
new_rps->evclk || new_rps->ecclk;
if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
ps->dpm0_pg_nb_ps_lo = 0x1;
ps->dpm0_pg_nb_ps_hi = 0x0;
ps->dpmx_nb_ps_lo = 0x1;
ps->dpmx_nb_ps_hi = 0x0;
} else {
ps->dpm0_pg_nb_ps_lo = 0x3;
ps->dpm0_pg_nb_ps_hi = 0x0;
ps->dpmx_nb_ps_lo = 0x3;
ps->dpmx_nb_ps_hi = 0x0;
if (pi->sys_info.nb_dpm_enable) {
force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
pi->video_start || (adev->pm.dpm.new_active_crtc_count >= 3) ||
pi->disable_nb_ps3_in_battery;
ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
ps->dpm0_pg_nb_ps_hi = 0x2;
ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
ps->dpmx_nb_ps_hi = 0x2;
}
}
}
static void kv_dpm_power_level_enabled_for_throttle(struct amdgpu_device *adev,
u32 index, bool enable)
{
struct kv_power_info *pi = kv_get_pi(adev);
pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
}
static int kv_calculate_ds_divider(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 sclk_in_sr = 10000; /* ??? */
u32 i;
if (pi->lowest_valid > pi->highest_valid)
return -EINVAL;
for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
pi->graphics_level[i].DeepSleepDivId =
kv_get_sleep_divider_id_from_clock(adev,
be32_to_cpu(pi->graphics_level[i].SclkFrequency),
sclk_in_sr);
}
return 0;
}
static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
bool force_high;
struct amdgpu_clock_and_voltage_limits *max_limits =
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
u32 mclk = max_limits->mclk;
if (pi->lowest_valid > pi->highest_valid)
return -EINVAL;
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
pi->graphics_level[i].GnbSlow = 1;
pi->graphics_level[i].ForceNbPs1 = 0;
pi->graphics_level[i].UpH = 0;
}
if (!pi->sys_info.nb_dpm_enable)
return 0;
force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
(adev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
if (force_high) {
for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
pi->graphics_level[i].GnbSlow = 0;
} else {
if (pi->battery_state)
pi->graphics_level[0].ForceNbPs1 = 1;
pi->graphics_level[1].GnbSlow = 0;
pi->graphics_level[2].GnbSlow = 0;
pi->graphics_level[3].GnbSlow = 0;
pi->graphics_level[4].GnbSlow = 0;
}
} else {
for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
pi->graphics_level[i].GnbSlow = 1;
pi->graphics_level[i].ForceNbPs1 = 0;
pi->graphics_level[i].UpH = 0;
}
if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
pi->graphics_level[pi->lowest_valid].UpH = 0x28;
pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
if (pi->lowest_valid != pi->highest_valid)
pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
}
}
return 0;
}
static int kv_calculate_dpm_settings(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
if (pi->lowest_valid > pi->highest_valid)
return -EINVAL;
for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
return 0;
}
static void kv_init_graphics_levels(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
u32 vid_2bit;
pi->graphics_dpm_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t <
kv_convert_8bit_index_to_voltage(adev, table->entries[i].v)))
break;
kv_set_divider_value(adev, i, table->entries[i].clk);
vid_2bit = kv_convert_vid7_to_vid2(adev,
&pi->sys_info.vid_mapping_table,
table->entries[i].v);
kv_set_vid(adev, i, vid_2bit);
kv_set_at(adev, i, pi->at[i]);
kv_dpm_power_level_enabled_for_throttle(adev, i, true);
pi->graphics_dpm_level_count++;
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
pi->graphics_dpm_level_count = 0;
for (i = 0; i < table->num_max_dpm_entries; i++) {
if (pi->high_voltage_t &&
pi->high_voltage_t <
kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit))
break;
kv_set_divider_value(adev, i, table->entries[i].sclk_frequency);
kv_set_vid(adev, i, table->entries[i].vid_2bit);
kv_set_at(adev, i, pi->at[i]);
kv_dpm_power_level_enabled_for_throttle(adev, i, true);
pi->graphics_dpm_level_count++;
}
}
for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
kv_dpm_power_level_enable(adev, i, false);
}
static void kv_enable_new_levels(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i;
for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
if (i >= pi->lowest_valid && i <= pi->highest_valid)
kv_dpm_power_level_enable(adev, i, true);
}
}
static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level)
{
u32 new_mask = (1 << level);
return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
new_mask);
}
static int kv_set_enabled_levels(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 i, new_mask = 0;
for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
new_mask |= (1 << i);
return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
new_mask);
}
static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps)
{
struct kv_ps *new_ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(adev);
u32 nbdpmconfig1;
if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
return;
if (pi->sys_info.nb_dpm_enable) {
nbdpmconfig1 = RREG32_SMC(ixNB_DPM_CONFIG_1);
nbdpmconfig1 &= ~(NB_DPM_CONFIG_1__Dpm0PgNbPsLo_MASK |
NB_DPM_CONFIG_1__Dpm0PgNbPsHi_MASK |
NB_DPM_CONFIG_1__DpmXNbPsLo_MASK |
NB_DPM_CONFIG_1__DpmXNbPsHi_MASK);
nbdpmconfig1 |= (new_ps->dpm0_pg_nb_ps_lo << NB_DPM_CONFIG_1__Dpm0PgNbPsLo__SHIFT) |
(new_ps->dpm0_pg_nb_ps_hi << NB_DPM_CONFIG_1__Dpm0PgNbPsHi__SHIFT) |
(new_ps->dpmx_nb_ps_lo << NB_DPM_CONFIG_1__DpmXNbPsLo__SHIFT) |
(new_ps->dpmx_nb_ps_hi << NB_DPM_CONFIG_1__DpmXNbPsHi__SHIFT);
WREG32_SMC(ixNB_DPM_CONFIG_1, nbdpmconfig1);
}
}
static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
u32 tmp;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
tmp = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
tmp &= ~(CG_THERMAL_INT_CTRL__DIG_THERM_INTH_MASK |
CG_THERMAL_INT_CTRL__DIG_THERM_INTL_MASK);
tmp |= ((49 + (high_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTH__SHIFT) |
((49 + (low_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTL__SHIFT);
WREG32_SMC(ixCG_THERMAL_INT_CTRL, tmp);
adev->pm.dpm.thermal.min_temp = low_temp;
adev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
};
static int kv_parse_sys_info_table(struct amdgpu_device *adev)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
union igp_info *igp_info;
u8 frev, crev;
u16 data_offset;
int i;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)(mode_info->atom_context->bios +
data_offset);
if (crev != 8) {
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
return -EINVAL;
}
pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
pi->sys_info.bootup_nb_voltage_index =
le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
if (igp_info->info_8.ucHtcTmpLmt == 0)
pi->sys_info.htc_tmp_lmt = 203;
else
pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
if (igp_info->info_8.ucHtcHystLmt == 0)
pi->sys_info.htc_hyst_lmt = 5;
else
pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
}
if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
pi->sys_info.nb_dpm_enable = true;
else
pi->sys_info.nb_dpm_enable = false;
for (i = 0; i < KV_NUM_NBPSTATES; i++) {
pi->sys_info.nbp_memory_clock[i] =
le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
pi->sys_info.nbp_n_clock[i] =
le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
}
if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
pi->caps_enable_dfs_bypass = true;
sumo_construct_sclk_voltage_mapping_table(adev,
&pi->sys_info.sclk_voltage_mapping_table,
igp_info->info_8.sAvail_SCLK);
sumo_construct_vid_mapping_table(adev,
&pi->sys_info.vid_mapping_table,
igp_info->info_8.sAvail_SCLK);
kv_construct_max_power_limits_table(adev,
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
}
return 0;
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void kv_patch_boot_state(struct amdgpu_device *adev,
struct kv_ps *ps)
{
struct kv_power_info *pi = kv_get_pi(adev);
ps->num_levels = 1;
ps->levels[0] = pi->boot_pl;
}
static void kv_parse_pplib_non_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
struct kv_ps *ps = kv_get_ps(rps);
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
adev->pm.dpm.boot_ps = rps;
kv_patch_boot_state(adev, ps);
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
adev->pm.dpm.uvd_ps = rps;
}
static void kv_parse_pplib_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct kv_ps *ps = kv_get_ps(rps);
struct kv_pl *pl = &ps->levels[index];
u32 sclk;
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
pl->sclk = sclk;
pl->vddc_index = clock_info->sumo.vddcIndex;
ps->num_levels = index + 1;
if (pi->caps_sclk_ds) {
pl->ds_divider_index = 5;
pl->ss_divider_index = 5;
}
}
static int kv_parse_power_table(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct kv_ps *ps;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
amdgpu_add_thermal_controller(adev);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
adev->pm.dpm.ps = kzalloc(sizeof(struct amdgpu_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!adev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
for (i = 0; i < state_array->ucNumEntries; i++) {
u8 *idx;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(adev->pm.dpm.ps);
return -ENOMEM;
}
adev->pm.dpm.ps[i].ps_priv = ps;
k = 0;
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = idx[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
((u8 *)&clock_info_array->clockInfo[0] +
(clock_array_index * clock_info_array->ucEntrySize));
kv_parse_pplib_clock_info(adev,
&adev->pm.dpm.ps[i], k,
clock_info);
k++;
}
kv_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
adev->pm.dpm.num_ps = state_array->ucNumEntries;
/* fill in the vce power states */
for (i = 0; i < AMDGPU_MAX_VCE_LEVELS; i++) {
u32 sclk;
clock_array_index = adev->pm.dpm.vce_states[i].clk_idx;
clock_info = (union pplib_clock_info *)
&clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
adev->pm.dpm.vce_states[i].sclk = sclk;
adev->pm.dpm.vce_states[i].mclk = 0;
}
return 0;
}
static int kv_dpm_init(struct amdgpu_device *adev)
{
struct kv_power_info *pi;
int ret, i;
pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
adev->pm.dpm.priv = pi;
ret = amdgpu_get_platform_caps(adev);
if (ret)
return ret;
ret = amdgpu_parse_extended_power_table(adev);
if (ret)
return ret;
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
pi->at[i] = TRINITY_AT_DFLT;
pi->sram_end = SMC_RAM_END;
pi->enable_nb_dpm = true;
pi->caps_power_containment = true;
pi->caps_cac = true;
pi->enable_didt = false;
if (pi->enable_didt) {
pi->caps_sq_ramping = true;
pi->caps_db_ramping = true;
pi->caps_td_ramping = true;
pi->caps_tcp_ramping = true;
}
pi->caps_sclk_ds = true;
pi->enable_auto_thermal_throttling = true;
pi->disable_nb_ps3_in_battery = false;
if (amdgpu_bapm == 0)
pi->bapm_enable = false;
else
pi->bapm_enable = true;
pi->voltage_drop_t = 0;
pi->caps_sclk_throttle_low_notification = false;
pi->caps_fps = false; /* true? */
pi->caps_uvd_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_UVD) ? true : false;
pi->caps_uvd_dpm = true;
pi->caps_vce_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_VCE) ? true : false;
pi->caps_samu_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_SAMU) ? true : false;
pi->caps_acp_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_ACP) ? true : false;
pi->caps_stable_p_state = false;
ret = kv_parse_sys_info_table(adev);
if (ret)
return ret;
kv_patch_voltage_values(adev);
kv_construct_boot_state(adev);
ret = kv_parse_power_table(adev);
if (ret)
return ret;
pi->enable_dpm = true;
return 0;
}
static void
kv_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev,
struct seq_file *m)
{
struct kv_power_info *pi = kv_get_pi(adev);
u32 current_index =
(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
u32 sclk, tmp;
u16 vddc;
if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
seq_printf(m, "invalid dpm profile %d\n", current_index);
} else {
sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
tmp = (RREG32_SMC(ixSMU_VOLTAGE_STATUS) &
SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL__SHIFT;
vddc = kv_convert_8bit_index_to_voltage(adev, (u16)tmp);
seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
seq_printf(m, "power level %d sclk: %u vddc: %u\n",
current_index, sclk, vddc);
}
}
static void
kv_dpm_print_power_state(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
int i;
struct kv_ps *ps = kv_get_ps(rps);
amdgpu_dpm_print_class_info(rps->class, rps->class2);
amdgpu_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->num_levels; i++) {
struct kv_pl *pl = &ps->levels[i];
printk("\t\tpower level %d sclk: %u vddc: %u\n",
i, pl->sclk,
kv_convert_8bit_index_to_voltage(adev, pl->vddc_index));
}
amdgpu_dpm_print_ps_status(adev, rps);
}
static void kv_dpm_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->pm.dpm.num_ps; i++) {
kfree(adev->pm.dpm.ps[i].ps_priv);
}
kfree(adev->pm.dpm.ps);
kfree(adev->pm.dpm.priv);
amdgpu_free_extended_power_table(adev);
}
static void kv_dpm_display_configuration_changed(struct amdgpu_device *adev)
{
}
static u32 kv_dpm_get_sclk(struct amdgpu_device *adev, bool low)
{
struct kv_power_info *pi = kv_get_pi(adev);
struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
if (low)
return requested_state->levels[0].sclk;
else
return requested_state->levels[requested_state->num_levels - 1].sclk;
}
static u32 kv_dpm_get_mclk(struct amdgpu_device *adev, bool low)
{
struct kv_power_info *pi = kv_get_pi(adev);
return pi->sys_info.bootup_uma_clk;
}
/* get temperature in millidegrees */
static int kv_dpm_get_temp(struct amdgpu_device *adev)
{
u32 temp;
int actual_temp = 0;
temp = RREG32_SMC(0xC0300E0C);
if (temp)
actual_temp = (temp / 8) - 49;
else
actual_temp = 0;
actual_temp = actual_temp * 1000;
return actual_temp;
}
static int kv_dpm_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
kv_dpm_set_dpm_funcs(adev);
kv_dpm_set_irq_funcs(adev);
return 0;
}
static int kv_dpm_late_init(void *handle)
{
/* powerdown unused blocks for now */
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret;
/* init the sysfs and debugfs files late */
ret = amdgpu_pm_sysfs_init(adev);
if (ret)
return ret;
kv_dpm_powergate_acp(adev, true);
kv_dpm_powergate_samu(adev, true);
kv_dpm_powergate_vce(adev, true);
kv_dpm_powergate_uvd(adev, true);
return 0;
}
static int kv_dpm_sw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
ret = amdgpu_irq_add_id(adev, 230, &adev->pm.dpm.thermal.irq);
if (ret)
return ret;
ret = amdgpu_irq_add_id(adev, 231, &adev->pm.dpm.thermal.irq);
if (ret)
return ret;
/* default to balanced state */
adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.forced_level = AMDGPU_DPM_FORCED_LEVEL_AUTO;
adev->pm.default_sclk = adev->clock.default_sclk;
adev->pm.default_mclk = adev->clock.default_mclk;
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
if (amdgpu_dpm == 0)
return 0;
INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler);
mutex_lock(&adev->pm.mutex);
ret = kv_dpm_init(adev);
if (ret)
goto dpm_failed;
adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
if (amdgpu_dpm == 1)
amdgpu_pm_print_power_states(adev);
mutex_unlock(&adev->pm.mutex);
DRM_INFO("amdgpu: dpm initialized\n");
return 0;
dpm_failed:
kv_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
DRM_ERROR("amdgpu: dpm initialization failed\n");
return ret;
}
static int kv_dpm_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
amdgpu_pm_sysfs_fini(adev);
kv_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
return 0;
}
static int kv_dpm_hw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
kv_dpm_setup_asic(adev);
ret = kv_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
return ret;
}
static int kv_dpm_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
kv_dpm_disable(adev);
mutex_unlock(&adev->pm.mutex);
}
return 0;
}
static int kv_dpm_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
/* disable dpm */
kv_dpm_disable(adev);
/* reset the power state */
adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
mutex_unlock(&adev->pm.mutex);
}
return 0;
}
static int kv_dpm_resume(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
/* asic init will reset to the boot state */
mutex_lock(&adev->pm.mutex);
kv_dpm_setup_asic(adev);
ret = kv_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
if (adev->pm.dpm_enabled)
amdgpu_pm_compute_clocks(adev);
}
return 0;
}
static bool kv_dpm_is_idle(void *handle)
{
return true;
}
static int kv_dpm_wait_for_idle(void *handle)
{
return 0;
}
static void kv_dpm_print_status(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dev_info(adev->dev, "KV/KB DPM registers\n");
dev_info(adev->dev, " DIDT_SQ_CTRL0=0x%08X\n",
RREG32_DIDT(ixDIDT_SQ_CTRL0));
dev_info(adev->dev, " DIDT_DB_CTRL0=0x%08X\n",
RREG32_DIDT(ixDIDT_DB_CTRL0));
dev_info(adev->dev, " DIDT_TD_CTRL0=0x%08X\n",
RREG32_DIDT(ixDIDT_TD_CTRL0));
dev_info(adev->dev, " DIDT_TCP_CTRL0=0x%08X\n",
RREG32_DIDT(ixDIDT_TCP_CTRL0));
dev_info(adev->dev, " LCAC_SX0_OVR_SEL=0x%08X\n",
RREG32_SMC(ixLCAC_SX0_OVR_SEL));
dev_info(adev->dev, " LCAC_SX0_OVR_VAL=0x%08X\n",
RREG32_SMC(ixLCAC_SX0_OVR_VAL));
dev_info(adev->dev, " LCAC_MC0_OVR_SEL=0x%08X\n",
RREG32_SMC(ixLCAC_MC0_OVR_SEL));
dev_info(adev->dev, " LCAC_MC0_OVR_VAL=0x%08X\n",
RREG32_SMC(ixLCAC_MC0_OVR_VAL));
dev_info(adev->dev, " LCAC_MC1_OVR_SEL=0x%08X\n",
RREG32_SMC(ixLCAC_MC1_OVR_SEL));
dev_info(adev->dev, " LCAC_MC1_OVR_VAL=0x%08X\n",
RREG32_SMC(ixLCAC_MC1_OVR_VAL));
dev_info(adev->dev, " LCAC_MC2_OVR_SEL=0x%08X\n",
RREG32_SMC(ixLCAC_MC2_OVR_SEL));
dev_info(adev->dev, " LCAC_MC2_OVR_VAL=0x%08X\n",
RREG32_SMC(ixLCAC_MC2_OVR_VAL));
dev_info(adev->dev, " LCAC_MC3_OVR_SEL=0x%08X\n",
RREG32_SMC(ixLCAC_MC3_OVR_SEL));
dev_info(adev->dev, " LCAC_MC3_OVR_VAL=0x%08X\n",
RREG32_SMC(ixLCAC_MC3_OVR_VAL));
dev_info(adev->dev, " LCAC_CPL_OVR_SEL=0x%08X\n",
RREG32_SMC(ixLCAC_CPL_OVR_SEL));
dev_info(adev->dev, " LCAC_CPL_OVR_VAL=0x%08X\n",
RREG32_SMC(ixLCAC_CPL_OVR_VAL));
dev_info(adev->dev, " CG_FREQ_TRAN_VOTING_0=0x%08X\n",
RREG32_SMC(ixCG_FREQ_TRAN_VOTING_0));
dev_info(adev->dev, " GENERAL_PWRMGT=0x%08X\n",
RREG32_SMC(ixGENERAL_PWRMGT));
dev_info(adev->dev, " SCLK_PWRMGT_CNTL=0x%08X\n",
RREG32_SMC(ixSCLK_PWRMGT_CNTL));
dev_info(adev->dev, " SMC_MESSAGE_0=0x%08X\n",
RREG32(mmSMC_MESSAGE_0));
dev_info(adev->dev, " SMC_RESP_0=0x%08X\n",
RREG32(mmSMC_RESP_0));
dev_info(adev->dev, " SMC_MSG_ARG_0=0x%08X\n",
RREG32(mmSMC_MSG_ARG_0));
dev_info(adev->dev, " SMC_IND_INDEX_0=0x%08X\n",
RREG32(mmSMC_IND_INDEX_0));
dev_info(adev->dev, " SMC_IND_DATA_0=0x%08X\n",
RREG32(mmSMC_IND_DATA_0));
dev_info(adev->dev, " SMC_IND_ACCESS_CNTL=0x%08X\n",
RREG32(mmSMC_IND_ACCESS_CNTL));
}
static int kv_dpm_soft_reset(void *handle)
{
return 0;
}
static int kv_dpm_set_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cg_thermal_int;
switch (type) {
case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
break;
default:
break;
}
break;
case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int kv_dpm_process_interrupt(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
bool queue_thermal = false;
if (entry == NULL)
return -EINVAL;
switch (entry->src_id) {
case 230: /* thermal low to high */
DRM_DEBUG("IH: thermal low to high\n");
adev->pm.dpm.thermal.high_to_low = false;
queue_thermal = true;
break;
case 231: /* thermal high to low */
DRM_DEBUG("IH: thermal high to low\n");
adev->pm.dpm.thermal.high_to_low = true;
queue_thermal = true;
break;
default:
break;
}
if (queue_thermal)
schedule_work(&adev->pm.dpm.thermal.work);
return 0;
}
static int kv_dpm_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int kv_dpm_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
const struct amd_ip_funcs kv_dpm_ip_funcs = {
.early_init = kv_dpm_early_init,
.late_init = kv_dpm_late_init,
.sw_init = kv_dpm_sw_init,
.sw_fini = kv_dpm_sw_fini,
.hw_init = kv_dpm_hw_init,
.hw_fini = kv_dpm_hw_fini,
.suspend = kv_dpm_suspend,
.resume = kv_dpm_resume,
.is_idle = kv_dpm_is_idle,
.wait_for_idle = kv_dpm_wait_for_idle,
.soft_reset = kv_dpm_soft_reset,
.print_status = kv_dpm_print_status,
.set_clockgating_state = kv_dpm_set_clockgating_state,
.set_powergating_state = kv_dpm_set_powergating_state,
};
static const struct amdgpu_dpm_funcs kv_dpm_funcs = {
.get_temperature = &kv_dpm_get_temp,
.pre_set_power_state = &kv_dpm_pre_set_power_state,
.set_power_state = &kv_dpm_set_power_state,
.post_set_power_state = &kv_dpm_post_set_power_state,
.display_configuration_changed = &kv_dpm_display_configuration_changed,
.get_sclk = &kv_dpm_get_sclk,
.get_mclk = &kv_dpm_get_mclk,
.print_power_state = &kv_dpm_print_power_state,
.debugfs_print_current_performance_level = &kv_dpm_debugfs_print_current_performance_level,
.force_performance_level = &kv_dpm_force_performance_level,
.powergate_uvd = &kv_dpm_powergate_uvd,
.enable_bapm = &kv_dpm_enable_bapm,
};
static void kv_dpm_set_dpm_funcs(struct amdgpu_device *adev)
{
if (adev->pm.funcs == NULL)
adev->pm.funcs = &kv_dpm_funcs;
}
static const struct amdgpu_irq_src_funcs kv_dpm_irq_funcs = {
.set = kv_dpm_set_interrupt_state,
.process = kv_dpm_process_interrupt,
};
static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev)
{
adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST;
adev->pm.dpm.thermal.irq.funcs = &kv_dpm_irq_funcs;
}