mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 08:36:12 +07:00
dd11bc109d
And as usual a little bit of cascaded function prototype changes. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
5884 lines
162 KiB
C
5884 lines
162 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Keith Packard <keithp@keithp.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/reboot.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_crtc_helper.h>
|
|
#include <drm/drm_edid.h>
|
|
#include "intel_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
|
|
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
|
|
|
|
/* Compliance test status bits */
|
|
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
|
|
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
|
|
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
|
|
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
|
|
|
|
struct dp_link_dpll {
|
|
int clock;
|
|
struct dpll dpll;
|
|
};
|
|
|
|
static const struct dp_link_dpll gen4_dpll[] = {
|
|
{ 162000,
|
|
{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
|
|
{ 270000,
|
|
{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
|
|
};
|
|
|
|
static const struct dp_link_dpll pch_dpll[] = {
|
|
{ 162000,
|
|
{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
|
|
{ 270000,
|
|
{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
|
|
};
|
|
|
|
static const struct dp_link_dpll vlv_dpll[] = {
|
|
{ 162000,
|
|
{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
|
|
{ 270000,
|
|
{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
|
|
};
|
|
|
|
/*
|
|
* CHV supports eDP 1.4 that have more link rates.
|
|
* Below only provides the fixed rate but exclude variable rate.
|
|
*/
|
|
static const struct dp_link_dpll chv_dpll[] = {
|
|
/*
|
|
* CHV requires to program fractional division for m2.
|
|
* m2 is stored in fixed point format using formula below
|
|
* (m2_int << 22) | m2_fraction
|
|
*/
|
|
{ 162000, /* m2_int = 32, m2_fraction = 1677722 */
|
|
{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
|
|
{ 270000, /* m2_int = 27, m2_fraction = 0 */
|
|
{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
|
|
{ 540000, /* m2_int = 27, m2_fraction = 0 */
|
|
{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
|
|
};
|
|
|
|
static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
|
|
324000, 432000, 540000 };
|
|
static const int skl_rates[] = { 162000, 216000, 270000,
|
|
324000, 432000, 540000 };
|
|
static const int default_rates[] = { 162000, 270000, 540000 };
|
|
|
|
/**
|
|
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
|
|
* @intel_dp: DP struct
|
|
*
|
|
* If a CPU or PCH DP output is attached to an eDP panel, this function
|
|
* will return true, and false otherwise.
|
|
*/
|
|
static bool is_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
|
|
}
|
|
|
|
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
return intel_dig_port->base.base.dev;
|
|
}
|
|
|
|
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
|
|
{
|
|
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
|
|
}
|
|
|
|
static void intel_dp_link_down(struct intel_dp *intel_dp);
|
|
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
|
|
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
|
|
static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
|
|
static void vlv_steal_power_sequencer(struct drm_device *dev,
|
|
enum pipe pipe);
|
|
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
|
|
|
|
static int
|
|
intel_dp_max_link_bw(struct intel_dp *intel_dp)
|
|
{
|
|
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
|
|
|
|
switch (max_link_bw) {
|
|
case DP_LINK_BW_1_62:
|
|
case DP_LINK_BW_2_7:
|
|
case DP_LINK_BW_5_4:
|
|
break;
|
|
default:
|
|
WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
|
|
max_link_bw);
|
|
max_link_bw = DP_LINK_BW_1_62;
|
|
break;
|
|
}
|
|
return max_link_bw;
|
|
}
|
|
|
|
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
u8 source_max, sink_max;
|
|
|
|
source_max = intel_dig_port->max_lanes;
|
|
sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
|
|
|
|
return min(source_max, sink_max);
|
|
}
|
|
|
|
/*
|
|
* The units on the numbers in the next two are... bizarre. Examples will
|
|
* make it clearer; this one parallels an example in the eDP spec.
|
|
*
|
|
* intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
|
|
*
|
|
* 270000 * 1 * 8 / 10 == 216000
|
|
*
|
|
* The actual data capacity of that configuration is 2.16Gbit/s, so the
|
|
* units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
|
|
* or equivalently, kilopixels per second - so for 1680x1050R it'd be
|
|
* 119000. At 18bpp that's 2142000 kilobits per second.
|
|
*
|
|
* Thus the strange-looking division by 10 in intel_dp_link_required, to
|
|
* get the result in decakilobits instead of kilobits.
|
|
*/
|
|
|
|
static int
|
|
intel_dp_link_required(int pixel_clock, int bpp)
|
|
{
|
|
return (pixel_clock * bpp + 9) / 10;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
|
|
{
|
|
return (max_link_clock * max_lanes * 8) / 10;
|
|
}
|
|
|
|
static int
|
|
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &intel_dig_port->base;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
int max_dotclk = dev_priv->max_dotclk_freq;
|
|
int ds_max_dotclk;
|
|
|
|
int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
|
|
|
|
if (type != DP_DS_PORT_TYPE_VGA)
|
|
return max_dotclk;
|
|
|
|
ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
|
|
intel_dp->downstream_ports);
|
|
|
|
if (ds_max_dotclk != 0)
|
|
max_dotclk = min(max_dotclk, ds_max_dotclk);
|
|
|
|
return max_dotclk;
|
|
}
|
|
|
|
static int
|
|
intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
|
|
{
|
|
if (intel_dp->num_sink_rates) {
|
|
*sink_rates = intel_dp->sink_rates;
|
|
return intel_dp->num_sink_rates;
|
|
}
|
|
|
|
*sink_rates = default_rates;
|
|
|
|
return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
|
|
}
|
|
|
|
static int
|
|
intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
int size;
|
|
|
|
if (IS_BROXTON(dev_priv)) {
|
|
*source_rates = bxt_rates;
|
|
size = ARRAY_SIZE(bxt_rates);
|
|
} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
|
|
*source_rates = skl_rates;
|
|
size = ARRAY_SIZE(skl_rates);
|
|
} else {
|
|
*source_rates = default_rates;
|
|
size = ARRAY_SIZE(default_rates);
|
|
}
|
|
|
|
/* This depends on the fact that 5.4 is last value in the array */
|
|
if (!intel_dp_source_supports_hbr2(intel_dp))
|
|
size--;
|
|
|
|
return size;
|
|
}
|
|
|
|
static int intersect_rates(const int *source_rates, int source_len,
|
|
const int *sink_rates, int sink_len,
|
|
int *common_rates)
|
|
{
|
|
int i = 0, j = 0, k = 0;
|
|
|
|
while (i < source_len && j < sink_len) {
|
|
if (source_rates[i] == sink_rates[j]) {
|
|
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
|
|
return k;
|
|
common_rates[k] = source_rates[i];
|
|
++k;
|
|
++i;
|
|
++j;
|
|
} else if (source_rates[i] < sink_rates[j]) {
|
|
++i;
|
|
} else {
|
|
++j;
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
|
|
static int intel_dp_common_rates(struct intel_dp *intel_dp,
|
|
int *common_rates)
|
|
{
|
|
const int *source_rates, *sink_rates;
|
|
int source_len, sink_len;
|
|
|
|
sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
|
|
source_len = intel_dp_source_rates(intel_dp, &source_rates);
|
|
|
|
return intersect_rates(source_rates, source_len,
|
|
sink_rates, sink_len,
|
|
common_rates);
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
intel_dp_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
|
|
int target_clock = mode->clock;
|
|
int max_rate, mode_rate, max_lanes, max_link_clock;
|
|
int max_dotclk;
|
|
|
|
max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
|
|
|
|
if (is_edp(intel_dp) && fixed_mode) {
|
|
if (mode->hdisplay > fixed_mode->hdisplay)
|
|
return MODE_PANEL;
|
|
|
|
if (mode->vdisplay > fixed_mode->vdisplay)
|
|
return MODE_PANEL;
|
|
|
|
target_clock = fixed_mode->clock;
|
|
}
|
|
|
|
max_link_clock = intel_dp_max_link_rate(intel_dp);
|
|
max_lanes = intel_dp_max_lane_count(intel_dp);
|
|
|
|
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
|
|
mode_rate = intel_dp_link_required(target_clock, 18);
|
|
|
|
if (mode_rate > max_rate || target_clock > max_dotclk)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
if (mode->clock < 10000)
|
|
return MODE_CLOCK_LOW;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
return MODE_H_ILLEGAL;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
|
|
{
|
|
int i;
|
|
uint32_t v = 0;
|
|
|
|
if (src_bytes > 4)
|
|
src_bytes = 4;
|
|
for (i = 0; i < src_bytes; i++)
|
|
v |= ((uint32_t) src[i]) << ((3-i) * 8);
|
|
return v;
|
|
}
|
|
|
|
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
|
|
{
|
|
int i;
|
|
if (dst_bytes > 4)
|
|
dst_bytes = 4;
|
|
for (i = 0; i < dst_bytes; i++)
|
|
dst[i] = src >> ((3-i) * 8);
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
|
|
struct intel_dp *intel_dp);
|
|
static void
|
|
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
|
|
struct intel_dp *intel_dp);
|
|
static void
|
|
intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
|
|
|
|
static void pps_lock(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
|
|
/*
|
|
* See vlv_power_sequencer_reset() why we need
|
|
* a power domain reference here.
|
|
*/
|
|
power_domain = intel_display_port_aux_power_domain(encoder);
|
|
intel_display_power_get(dev_priv, power_domain);
|
|
|
|
mutex_lock(&dev_priv->pps_mutex);
|
|
}
|
|
|
|
static void pps_unlock(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
|
|
mutex_unlock(&dev_priv->pps_mutex);
|
|
|
|
power_domain = intel_display_port_aux_power_domain(encoder);
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
}
|
|
|
|
static void
|
|
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
enum pipe pipe = intel_dp->pps_pipe;
|
|
bool pll_enabled, release_cl_override = false;
|
|
enum dpio_phy phy = DPIO_PHY(pipe);
|
|
enum dpio_channel ch = vlv_pipe_to_channel(pipe);
|
|
uint32_t DP;
|
|
|
|
if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
|
|
"skipping pipe %c power seqeuncer kick due to port %c being active\n",
|
|
pipe_name(pipe), port_name(intel_dig_port->port)))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
|
|
pipe_name(pipe), port_name(intel_dig_port->port));
|
|
|
|
/* Preserve the BIOS-computed detected bit. This is
|
|
* supposed to be read-only.
|
|
*/
|
|
DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
|
|
DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
DP |= DP_PORT_WIDTH(1);
|
|
DP |= DP_LINK_TRAIN_PAT_1;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
DP |= DP_PIPE_SELECT_CHV(pipe);
|
|
else if (pipe == PIPE_B)
|
|
DP |= DP_PIPEB_SELECT;
|
|
|
|
pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
|
|
|
|
/*
|
|
* The DPLL for the pipe must be enabled for this to work.
|
|
* So enable temporarily it if it's not already enabled.
|
|
*/
|
|
if (!pll_enabled) {
|
|
release_cl_override = IS_CHERRYVIEW(dev_priv) &&
|
|
!chv_phy_powergate_ch(dev_priv, phy, ch, true);
|
|
|
|
if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
|
|
&chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
|
|
DRM_ERROR("Failed to force on pll for pipe %c!\n",
|
|
pipe_name(pipe));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Similar magic as in intel_dp_enable_port().
|
|
* We _must_ do this port enable + disable trick
|
|
* to make this power seqeuencer lock onto the port.
|
|
* Otherwise even VDD force bit won't work.
|
|
*/
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
if (!pll_enabled) {
|
|
vlv_force_pll_off(dev_priv, pipe);
|
|
|
|
if (release_cl_override)
|
|
chv_phy_powergate_ch(dev_priv, phy, ch, false);
|
|
}
|
|
}
|
|
|
|
static enum pipe
|
|
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_encoder *encoder;
|
|
unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
|
|
enum pipe pipe;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* We should never land here with regular DP ports */
|
|
WARN_ON(!is_edp(intel_dp));
|
|
|
|
if (intel_dp->pps_pipe != INVALID_PIPE)
|
|
return intel_dp->pps_pipe;
|
|
|
|
/*
|
|
* We don't have power sequencer currently.
|
|
* Pick one that's not used by other ports.
|
|
*/
|
|
for_each_intel_encoder(dev, encoder) {
|
|
struct intel_dp *tmp;
|
|
|
|
if (encoder->type != INTEL_OUTPUT_EDP)
|
|
continue;
|
|
|
|
tmp = enc_to_intel_dp(&encoder->base);
|
|
|
|
if (tmp->pps_pipe != INVALID_PIPE)
|
|
pipes &= ~(1 << tmp->pps_pipe);
|
|
}
|
|
|
|
/*
|
|
* Didn't find one. This should not happen since there
|
|
* are two power sequencers and up to two eDP ports.
|
|
*/
|
|
if (WARN_ON(pipes == 0))
|
|
pipe = PIPE_A;
|
|
else
|
|
pipe = ffs(pipes) - 1;
|
|
|
|
vlv_steal_power_sequencer(dev, pipe);
|
|
intel_dp->pps_pipe = pipe;
|
|
|
|
DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
|
|
pipe_name(intel_dp->pps_pipe),
|
|
port_name(intel_dig_port->port));
|
|
|
|
/* init power sequencer on this pipe and port */
|
|
intel_dp_init_panel_power_sequencer(dev, intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
|
|
|
|
/*
|
|
* Even vdd force doesn't work until we've made
|
|
* the power sequencer lock in on the port.
|
|
*/
|
|
vlv_power_sequencer_kick(intel_dp);
|
|
|
|
return intel_dp->pps_pipe;
|
|
}
|
|
|
|
static int
|
|
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* We should never land here with regular DP ports */
|
|
WARN_ON(!is_edp(intel_dp));
|
|
|
|
/*
|
|
* TODO: BXT has 2 PPS instances. The correct port->PPS instance
|
|
* mapping needs to be retrieved from VBT, for now just hard-code to
|
|
* use instance #0 always.
|
|
*/
|
|
if (!intel_dp->pps_reset)
|
|
return 0;
|
|
|
|
intel_dp->pps_reset = false;
|
|
|
|
/*
|
|
* Only the HW needs to be reprogrammed, the SW state is fixed and
|
|
* has been setup during connector init.
|
|
*/
|
|
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe);
|
|
|
|
static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
return I915_READ(PP_STATUS(pipe)) & PP_ON;
|
|
}
|
|
|
|
static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
|
|
}
|
|
|
|
static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static enum pipe
|
|
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
vlv_pipe_check pipe_check)
|
|
{
|
|
enum pipe pipe;
|
|
|
|
for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
|
|
u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
|
|
PANEL_PORT_SELECT_MASK;
|
|
|
|
if (port_sel != PANEL_PORT_SELECT_VLV(port))
|
|
continue;
|
|
|
|
if (!pipe_check(dev_priv, pipe))
|
|
continue;
|
|
|
|
return pipe;
|
|
}
|
|
|
|
return INVALID_PIPE;
|
|
}
|
|
|
|
static void
|
|
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum port port = intel_dig_port->port;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* try to find a pipe with this port selected */
|
|
/* first pick one where the panel is on */
|
|
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
|
|
vlv_pipe_has_pp_on);
|
|
/* didn't find one? pick one where vdd is on */
|
|
if (intel_dp->pps_pipe == INVALID_PIPE)
|
|
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
|
|
vlv_pipe_has_vdd_on);
|
|
/* didn't find one? pick one with just the correct port */
|
|
if (intel_dp->pps_pipe == INVALID_PIPE)
|
|
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
|
|
vlv_pipe_any);
|
|
|
|
/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
|
|
if (intel_dp->pps_pipe == INVALID_PIPE) {
|
|
DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
|
|
port_name(port));
|
|
return;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
|
|
port_name(port), pipe_name(intel_dp->pps_pipe));
|
|
|
|
intel_dp_init_panel_power_sequencer(dev, intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
|
|
}
|
|
|
|
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct intel_encoder *encoder;
|
|
|
|
if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
|
|
!IS_BROXTON(dev_priv)))
|
|
return;
|
|
|
|
/*
|
|
* We can't grab pps_mutex here due to deadlock with power_domain
|
|
* mutex when power_domain functions are called while holding pps_mutex.
|
|
* That also means that in order to use pps_pipe the code needs to
|
|
* hold both a power domain reference and pps_mutex, and the power domain
|
|
* reference get/put must be done while _not_ holding pps_mutex.
|
|
* pps_{lock,unlock}() do these steps in the correct order, so one
|
|
* should use them always.
|
|
*/
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
struct intel_dp *intel_dp;
|
|
|
|
if (encoder->type != INTEL_OUTPUT_EDP)
|
|
continue;
|
|
|
|
intel_dp = enc_to_intel_dp(&encoder->base);
|
|
if (IS_BROXTON(dev_priv))
|
|
intel_dp->pps_reset = true;
|
|
else
|
|
intel_dp->pps_pipe = INVALID_PIPE;
|
|
}
|
|
}
|
|
|
|
struct pps_registers {
|
|
i915_reg_t pp_ctrl;
|
|
i915_reg_t pp_stat;
|
|
i915_reg_t pp_on;
|
|
i915_reg_t pp_off;
|
|
i915_reg_t pp_div;
|
|
};
|
|
|
|
static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
|
|
struct intel_dp *intel_dp,
|
|
struct pps_registers *regs)
|
|
{
|
|
int pps_idx = 0;
|
|
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
if (IS_BROXTON(dev_priv))
|
|
pps_idx = bxt_power_sequencer_idx(intel_dp);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
pps_idx = vlv_power_sequencer_pipe(intel_dp);
|
|
|
|
regs->pp_ctrl = PP_CONTROL(pps_idx);
|
|
regs->pp_stat = PP_STATUS(pps_idx);
|
|
regs->pp_on = PP_ON_DELAYS(pps_idx);
|
|
regs->pp_off = PP_OFF_DELAYS(pps_idx);
|
|
if (!IS_BROXTON(dev_priv))
|
|
regs->pp_div = PP_DIVISOR(pps_idx);
|
|
}
|
|
|
|
static i915_reg_t
|
|
_pp_ctrl_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct pps_registers regs;
|
|
|
|
intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
|
|
®s);
|
|
|
|
return regs.pp_ctrl;
|
|
}
|
|
|
|
static i915_reg_t
|
|
_pp_stat_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct pps_registers regs;
|
|
|
|
intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
|
|
®s);
|
|
|
|
return regs.pp_stat;
|
|
}
|
|
|
|
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
|
|
This function only applicable when panel PM state is not to be tracked */
|
|
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
|
|
void *unused)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
|
|
edp_notifier);
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!is_edp(intel_dp) || code != SYS_RESTART)
|
|
return 0;
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
|
|
i915_reg_t pp_ctrl_reg, pp_div_reg;
|
|
u32 pp_div;
|
|
|
|
pp_ctrl_reg = PP_CONTROL(pipe);
|
|
pp_div_reg = PP_DIVISOR(pipe);
|
|
pp_div = I915_READ(pp_div_reg);
|
|
pp_div &= PP_REFERENCE_DIVIDER_MASK;
|
|
|
|
/* 0x1F write to PP_DIV_REG sets max cycle delay */
|
|
I915_WRITE(pp_div_reg, pp_div | 0x1F);
|
|
I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
|
|
msleep(intel_dp->panel_power_cycle_delay);
|
|
}
|
|
|
|
pps_unlock(intel_dp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool edp_have_panel_power(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
intel_dp->pps_pipe == INVALID_PIPE)
|
|
return false;
|
|
|
|
return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
|
|
}
|
|
|
|
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
intel_dp->pps_pipe == INVALID_PIPE)
|
|
return false;
|
|
|
|
return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
|
|
}
|
|
|
|
static void
|
|
intel_dp_check_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
|
|
WARN(1, "eDP powered off while attempting aux channel communication.\n");
|
|
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
|
|
I915_READ(_pp_stat_reg(intel_dp)),
|
|
I915_READ(_pp_ctrl_reg(intel_dp)));
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
|
|
uint32_t status;
|
|
bool done;
|
|
|
|
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
if (has_aux_irq)
|
|
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
|
|
msecs_to_jiffies_timeout(10));
|
|
else
|
|
done = wait_for(C, 10) == 0;
|
|
if (!done)
|
|
DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
|
|
has_aux_irq);
|
|
#undef C
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
|
|
if (index)
|
|
return 0;
|
|
|
|
/*
|
|
* The clock divider is based off the hrawclk, and would like to run at
|
|
* 2MHz. So, take the hrawclk value and divide by 2000 and use that
|
|
*/
|
|
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
|
|
}
|
|
|
|
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
|
|
if (index)
|
|
return 0;
|
|
|
|
/*
|
|
* The clock divider is based off the cdclk or PCH rawclk, and would
|
|
* like to run at 2MHz. So, take the cdclk or PCH rawclk value and
|
|
* divide by 2000 and use that
|
|
*/
|
|
if (intel_dig_port->port == PORT_A)
|
|
return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
|
|
else
|
|
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
|
|
}
|
|
|
|
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
|
|
if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
|
|
/* Workaround for non-ULT HSW */
|
|
switch (index) {
|
|
case 0: return 63;
|
|
case 1: return 72;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
return ilk_get_aux_clock_divider(intel_dp, index);
|
|
}
|
|
|
|
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
/*
|
|
* SKL doesn't need us to program the AUX clock divider (Hardware will
|
|
* derive the clock from CDCLK automatically). We still implement the
|
|
* get_aux_clock_divider vfunc to plug-in into the existing code.
|
|
*/
|
|
return index ? 0 : 1;
|
|
}
|
|
|
|
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
|
|
bool has_aux_irq,
|
|
int send_bytes,
|
|
uint32_t aux_clock_divider)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(intel_dig_port->base.base.dev);
|
|
uint32_t precharge, timeout;
|
|
|
|
if (IS_GEN6(dev_priv))
|
|
precharge = 3;
|
|
else
|
|
precharge = 5;
|
|
|
|
if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
|
|
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
|
|
else
|
|
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
|
|
|
|
return DP_AUX_CH_CTL_SEND_BUSY |
|
|
DP_AUX_CH_CTL_DONE |
|
|
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
timeout |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
|
|
}
|
|
|
|
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
|
|
bool has_aux_irq,
|
|
int send_bytes,
|
|
uint32_t unused)
|
|
{
|
|
return DP_AUX_CH_CTL_SEND_BUSY |
|
|
DP_AUX_CH_CTL_DONE |
|
|
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_TIME_OUT_1600us |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
|
|
DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
|
|
}
|
|
|
|
static int
|
|
intel_dp_aux_ch(struct intel_dp *intel_dp,
|
|
const uint8_t *send, int send_bytes,
|
|
uint8_t *recv, int recv_size)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(intel_dig_port->base.base.dev);
|
|
i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
|
|
uint32_t aux_clock_divider;
|
|
int i, ret, recv_bytes;
|
|
uint32_t status;
|
|
int try, clock = 0;
|
|
bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
|
|
bool vdd;
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
/*
|
|
* We will be called with VDD already enabled for dpcd/edid/oui reads.
|
|
* In such cases we want to leave VDD enabled and it's up to upper layers
|
|
* to turn it off. But for eg. i2c-dev access we need to turn it on/off
|
|
* ourselves.
|
|
*/
|
|
vdd = edp_panel_vdd_on(intel_dp);
|
|
|
|
/* dp aux is extremely sensitive to irq latency, hence request the
|
|
* lowest possible wakeup latency and so prevent the cpu from going into
|
|
* deep sleep states.
|
|
*/
|
|
pm_qos_update_request(&dev_priv->pm_qos, 0);
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
|
|
/* Try to wait for any previous AUX channel activity */
|
|
for (try = 0; try < 3; try++) {
|
|
status = I915_READ_NOTRACE(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (try == 3) {
|
|
static u32 last_status = -1;
|
|
const u32 status = I915_READ(ch_ctl);
|
|
|
|
if (status != last_status) {
|
|
WARN(1, "dp_aux_ch not started status 0x%08x\n",
|
|
status);
|
|
last_status = status;
|
|
}
|
|
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/* Only 5 data registers! */
|
|
if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
|
|
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
|
|
has_aux_irq,
|
|
send_bytes,
|
|
aux_clock_divider);
|
|
|
|
/* Must try at least 3 times according to DP spec */
|
|
for (try = 0; try < 5; try++) {
|
|
/* Load the send data into the aux channel data registers */
|
|
for (i = 0; i < send_bytes; i += 4)
|
|
I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
|
|
intel_dp_pack_aux(send + i,
|
|
send_bytes - i));
|
|
|
|
/* Send the command and wait for it to complete */
|
|
I915_WRITE(ch_ctl, send_ctl);
|
|
|
|
status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
|
|
|
|
/* Clear done status and any errors */
|
|
I915_WRITE(ch_ctl,
|
|
status |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
|
|
continue;
|
|
|
|
/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
|
|
* 400us delay required for errors and timeouts
|
|
* Timeout errors from the HW already meet this
|
|
* requirement so skip to next iteration
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
usleep_range(400, 500);
|
|
continue;
|
|
}
|
|
if (status & DP_AUX_CH_CTL_DONE)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
|
|
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
done:
|
|
/* Check for timeout or receive error.
|
|
* Timeouts occur when the sink is not connected
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Timeouts occur when the device isn't connected, so they're
|
|
* "normal" -- don't fill the kernel log with these */
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
|
|
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
|
|
ret = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
/* Unload any bytes sent back from the other side */
|
|
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
|
|
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
|
|
|
|
/*
|
|
* By BSpec: "Message sizes of 0 or >20 are not allowed."
|
|
* We have no idea of what happened so we return -EBUSY so
|
|
* drm layer takes care for the necessary retries.
|
|
*/
|
|
if (recv_bytes == 0 || recv_bytes > 20) {
|
|
DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
|
|
recv_bytes);
|
|
/*
|
|
* FIXME: This patch was created on top of a series that
|
|
* organize the retries at drm level. There EBUSY should
|
|
* also take care for 1ms wait before retrying.
|
|
* That aux retries re-org is still needed and after that is
|
|
* merged we remove this sleep from here.
|
|
*/
|
|
usleep_range(1000, 1500);
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (recv_bytes > recv_size)
|
|
recv_bytes = recv_size;
|
|
|
|
for (i = 0; i < recv_bytes; i += 4)
|
|
intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
|
|
recv + i, recv_bytes - i);
|
|
|
|
ret = recv_bytes;
|
|
out:
|
|
pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
|
|
|
|
if (vdd)
|
|
edp_panel_vdd_off(intel_dp, false);
|
|
|
|
pps_unlock(intel_dp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define BARE_ADDRESS_SIZE 3
|
|
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
|
|
static ssize_t
|
|
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
|
|
uint8_t txbuf[20], rxbuf[20];
|
|
size_t txsize, rxsize;
|
|
int ret;
|
|
|
|
txbuf[0] = (msg->request << 4) |
|
|
((msg->address >> 16) & 0xf);
|
|
txbuf[1] = (msg->address >> 8) & 0xff;
|
|
txbuf[2] = msg->address & 0xff;
|
|
txbuf[3] = msg->size - 1;
|
|
|
|
switch (msg->request & ~DP_AUX_I2C_MOT) {
|
|
case DP_AUX_NATIVE_WRITE:
|
|
case DP_AUX_I2C_WRITE:
|
|
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
|
|
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
|
|
rxsize = 2; /* 0 or 1 data bytes */
|
|
|
|
if (WARN_ON(txsize > 20))
|
|
return -E2BIG;
|
|
|
|
WARN_ON(!msg->buffer != !msg->size);
|
|
|
|
if (msg->buffer)
|
|
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
|
|
|
|
ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
|
|
if (ret > 0) {
|
|
msg->reply = rxbuf[0] >> 4;
|
|
|
|
if (ret > 1) {
|
|
/* Number of bytes written in a short write. */
|
|
ret = clamp_t(int, rxbuf[1], 0, msg->size);
|
|
} else {
|
|
/* Return payload size. */
|
|
ret = msg->size;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DP_AUX_NATIVE_READ:
|
|
case DP_AUX_I2C_READ:
|
|
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
|
|
rxsize = msg->size + 1;
|
|
|
|
if (WARN_ON(rxsize > 20))
|
|
return -E2BIG;
|
|
|
|
ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
|
|
if (ret > 0) {
|
|
msg->reply = rxbuf[0] >> 4;
|
|
/*
|
|
* Assume happy day, and copy the data. The caller is
|
|
* expected to check msg->reply before touching it.
|
|
*
|
|
* Return payload size.
|
|
*/
|
|
ret--;
|
|
memcpy(msg->buffer, rxbuf + 1, ret);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum port intel_aux_port(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
const struct ddi_vbt_port_info *info =
|
|
&dev_priv->vbt.ddi_port_info[port];
|
|
enum port aux_port;
|
|
|
|
if (!info->alternate_aux_channel) {
|
|
DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
|
|
port_name(port), port_name(port));
|
|
return port;
|
|
}
|
|
|
|
switch (info->alternate_aux_channel) {
|
|
case DP_AUX_A:
|
|
aux_port = PORT_A;
|
|
break;
|
|
case DP_AUX_B:
|
|
aux_port = PORT_B;
|
|
break;
|
|
case DP_AUX_C:
|
|
aux_port = PORT_C;
|
|
break;
|
|
case DP_AUX_D:
|
|
aux_port = PORT_D;
|
|
break;
|
|
default:
|
|
MISSING_CASE(info->alternate_aux_channel);
|
|
aux_port = PORT_A;
|
|
break;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
|
|
port_name(aux_port), port_name(port));
|
|
|
|
return aux_port;
|
|
}
|
|
|
|
static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
switch (port) {
|
|
case PORT_B:
|
|
case PORT_C:
|
|
case PORT_D:
|
|
return DP_AUX_CH_CTL(port);
|
|
default:
|
|
MISSING_CASE(port);
|
|
return DP_AUX_CH_CTL(PORT_B);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
|
|
enum port port, int index)
|
|
{
|
|
switch (port) {
|
|
case PORT_B:
|
|
case PORT_C:
|
|
case PORT_D:
|
|
return DP_AUX_CH_DATA(port, index);
|
|
default:
|
|
MISSING_CASE(port);
|
|
return DP_AUX_CH_DATA(PORT_B, index);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
return DP_AUX_CH_CTL(port);
|
|
case PORT_B:
|
|
case PORT_C:
|
|
case PORT_D:
|
|
return PCH_DP_AUX_CH_CTL(port);
|
|
default:
|
|
MISSING_CASE(port);
|
|
return DP_AUX_CH_CTL(PORT_A);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
|
|
enum port port, int index)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
return DP_AUX_CH_DATA(port, index);
|
|
case PORT_B:
|
|
case PORT_C:
|
|
case PORT_D:
|
|
return PCH_DP_AUX_CH_DATA(port, index);
|
|
default:
|
|
MISSING_CASE(port);
|
|
return DP_AUX_CH_DATA(PORT_A, index);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
case PORT_B:
|
|
case PORT_C:
|
|
case PORT_D:
|
|
return DP_AUX_CH_CTL(port);
|
|
default:
|
|
MISSING_CASE(port);
|
|
return DP_AUX_CH_CTL(PORT_A);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
|
|
enum port port, int index)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
case PORT_B:
|
|
case PORT_C:
|
|
case PORT_D:
|
|
return DP_AUX_CH_DATA(port, index);
|
|
default:
|
|
MISSING_CASE(port);
|
|
return DP_AUX_CH_DATA(PORT_A, index);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
if (INTEL_INFO(dev_priv)->gen >= 9)
|
|
return skl_aux_ctl_reg(dev_priv, port);
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
return ilk_aux_ctl_reg(dev_priv, port);
|
|
else
|
|
return g4x_aux_ctl_reg(dev_priv, port);
|
|
}
|
|
|
|
static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
|
|
enum port port, int index)
|
|
{
|
|
if (INTEL_INFO(dev_priv)->gen >= 9)
|
|
return skl_aux_data_reg(dev_priv, port, index);
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
return ilk_aux_data_reg(dev_priv, port, index);
|
|
else
|
|
return g4x_aux_data_reg(dev_priv, port, index);
|
|
}
|
|
|
|
static void intel_aux_reg_init(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
|
|
enum port port = intel_aux_port(dev_priv,
|
|
dp_to_dig_port(intel_dp)->port);
|
|
int i;
|
|
|
|
intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
|
|
for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
|
|
intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
|
|
}
|
|
|
|
static void
|
|
intel_dp_aux_fini(struct intel_dp *intel_dp)
|
|
{
|
|
kfree(intel_dp->aux.name);
|
|
}
|
|
|
|
static void
|
|
intel_dp_aux_init(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->port;
|
|
|
|
intel_aux_reg_init(intel_dp);
|
|
drm_dp_aux_init(&intel_dp->aux);
|
|
|
|
/* Failure to allocate our preferred name is not critical */
|
|
intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
|
|
intel_dp->aux.transfer = intel_dp_aux_transfer;
|
|
}
|
|
|
|
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
|
|
if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
|
|
IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
intel_dp_set_clock(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct dp_link_dpll *divisor = NULL;
|
|
int i, count = 0;
|
|
|
|
if (IS_G4X(dev_priv)) {
|
|
divisor = gen4_dpll;
|
|
count = ARRAY_SIZE(gen4_dpll);
|
|
} else if (HAS_PCH_SPLIT(dev_priv)) {
|
|
divisor = pch_dpll;
|
|
count = ARRAY_SIZE(pch_dpll);
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
divisor = chv_dpll;
|
|
count = ARRAY_SIZE(chv_dpll);
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
divisor = vlv_dpll;
|
|
count = ARRAY_SIZE(vlv_dpll);
|
|
}
|
|
|
|
if (divisor && count) {
|
|
for (i = 0; i < count; i++) {
|
|
if (pipe_config->port_clock == divisor[i].clock) {
|
|
pipe_config->dpll = divisor[i].dpll;
|
|
pipe_config->clock_set = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void snprintf_int_array(char *str, size_t len,
|
|
const int *array, int nelem)
|
|
{
|
|
int i;
|
|
|
|
str[0] = '\0';
|
|
|
|
for (i = 0; i < nelem; i++) {
|
|
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
|
|
if (r >= len)
|
|
return;
|
|
str += r;
|
|
len -= r;
|
|
}
|
|
}
|
|
|
|
static void intel_dp_print_rates(struct intel_dp *intel_dp)
|
|
{
|
|
const int *source_rates, *sink_rates;
|
|
int source_len, sink_len, common_len;
|
|
int common_rates[DP_MAX_SUPPORTED_RATES];
|
|
char str[128]; /* FIXME: too big for stack? */
|
|
|
|
if ((drm_debug & DRM_UT_KMS) == 0)
|
|
return;
|
|
|
|
source_len = intel_dp_source_rates(intel_dp, &source_rates);
|
|
snprintf_int_array(str, sizeof(str), source_rates, source_len);
|
|
DRM_DEBUG_KMS("source rates: %s\n", str);
|
|
|
|
sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
|
|
snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
|
|
DRM_DEBUG_KMS("sink rates: %s\n", str);
|
|
|
|
common_len = intel_dp_common_rates(intel_dp, common_rates);
|
|
snprintf_int_array(str, sizeof(str), common_rates, common_len);
|
|
DRM_DEBUG_KMS("common rates: %s\n", str);
|
|
}
|
|
|
|
bool
|
|
__intel_dp_read_desc(struct intel_dp *intel_dp, struct intel_dp_desc *desc)
|
|
{
|
|
u32 base = drm_dp_is_branch(intel_dp->dpcd) ? DP_BRANCH_OUI :
|
|
DP_SINK_OUI;
|
|
|
|
return drm_dp_dpcd_read(&intel_dp->aux, base, desc, sizeof(*desc)) ==
|
|
sizeof(*desc);
|
|
}
|
|
|
|
bool intel_dp_read_desc(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_dp_desc *desc = &intel_dp->desc;
|
|
bool oui_sup = intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] &
|
|
DP_OUI_SUPPORT;
|
|
int dev_id_len;
|
|
|
|
if (!__intel_dp_read_desc(intel_dp, desc))
|
|
return false;
|
|
|
|
dev_id_len = strnlen(desc->device_id, sizeof(desc->device_id));
|
|
DRM_DEBUG_KMS("DP %s: OUI %*phD%s dev-ID %*pE HW-rev %d.%d SW-rev %d.%d\n",
|
|
drm_dp_is_branch(intel_dp->dpcd) ? "branch" : "sink",
|
|
(int)sizeof(desc->oui), desc->oui, oui_sup ? "" : "(NS)",
|
|
dev_id_len, desc->device_id,
|
|
desc->hw_rev >> 4, desc->hw_rev & 0xf,
|
|
desc->sw_major_rev, desc->sw_minor_rev);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int rate_to_index(int find, const int *rates)
|
|
{
|
|
int i = 0;
|
|
|
|
for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
|
|
if (find == rates[i])
|
|
break;
|
|
|
|
return i;
|
|
}
|
|
|
|
int
|
|
intel_dp_max_link_rate(struct intel_dp *intel_dp)
|
|
{
|
|
int rates[DP_MAX_SUPPORTED_RATES] = {};
|
|
int len;
|
|
|
|
len = intel_dp_common_rates(intel_dp, rates);
|
|
if (WARN_ON(len <= 0))
|
|
return 162000;
|
|
|
|
return rates[len - 1];
|
|
}
|
|
|
|
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
|
|
{
|
|
return rate_to_index(rate, intel_dp->sink_rates);
|
|
}
|
|
|
|
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
|
|
uint8_t *link_bw, uint8_t *rate_select)
|
|
{
|
|
if (intel_dp->num_sink_rates) {
|
|
*link_bw = 0;
|
|
*rate_select =
|
|
intel_dp_rate_select(intel_dp, port_clock);
|
|
} else {
|
|
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
|
|
*rate_select = 0;
|
|
}
|
|
}
|
|
|
|
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
int bpp, bpc;
|
|
|
|
bpp = pipe_config->pipe_bpp;
|
|
bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
|
|
|
|
if (bpc > 0)
|
|
bpp = min(bpp, 3*bpc);
|
|
|
|
return bpp;
|
|
}
|
|
|
|
bool
|
|
intel_dp_compute_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
int lane_count, clock;
|
|
int min_lane_count = 1;
|
|
int max_lane_count = intel_dp_max_lane_count(intel_dp);
|
|
/* Conveniently, the link BW constants become indices with a shift...*/
|
|
int min_clock = 0;
|
|
int max_clock;
|
|
int bpp, mode_rate;
|
|
int link_avail, link_clock;
|
|
int common_rates[DP_MAX_SUPPORTED_RATES] = {};
|
|
int common_len;
|
|
uint8_t link_bw, rate_select;
|
|
|
|
common_len = intel_dp_common_rates(intel_dp, common_rates);
|
|
|
|
/* No common link rates between source and sink */
|
|
WARN_ON(common_len <= 0);
|
|
|
|
max_clock = common_len - 1;
|
|
|
|
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
pipe_config->has_drrs = false;
|
|
pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
|
|
|
|
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
|
|
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
|
|
adjusted_mode);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
int ret;
|
|
ret = skl_update_scaler_crtc(pipe_config);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (HAS_GMCH_DISPLAY(dev_priv))
|
|
intel_gmch_panel_fitting(intel_crtc, pipe_config,
|
|
intel_connector->panel.fitting_mode);
|
|
else
|
|
intel_pch_panel_fitting(intel_crtc, pipe_config,
|
|
intel_connector->panel.fitting_mode);
|
|
}
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
return false;
|
|
|
|
DRM_DEBUG_KMS("DP link computation with max lane count %i "
|
|
"max bw %d pixel clock %iKHz\n",
|
|
max_lane_count, common_rates[max_clock],
|
|
adjusted_mode->crtc_clock);
|
|
|
|
/* Walk through all bpp values. Luckily they're all nicely spaced with 2
|
|
* bpc in between. */
|
|
bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
|
|
if (is_edp(intel_dp)) {
|
|
|
|
/* Get bpp from vbt only for panels that dont have bpp in edid */
|
|
if (intel_connector->base.display_info.bpc == 0 &&
|
|
(dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
|
|
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
|
|
dev_priv->vbt.edp.bpp);
|
|
bpp = dev_priv->vbt.edp.bpp;
|
|
}
|
|
|
|
/*
|
|
* Use the maximum clock and number of lanes the eDP panel
|
|
* advertizes being capable of. The panels are generally
|
|
* designed to support only a single clock and lane
|
|
* configuration, and typically these values correspond to the
|
|
* native resolution of the panel.
|
|
*/
|
|
min_lane_count = max_lane_count;
|
|
min_clock = max_clock;
|
|
}
|
|
|
|
for (; bpp >= 6*3; bpp -= 2*3) {
|
|
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
|
|
bpp);
|
|
|
|
for (clock = min_clock; clock <= max_clock; clock++) {
|
|
for (lane_count = min_lane_count;
|
|
lane_count <= max_lane_count;
|
|
lane_count <<= 1) {
|
|
|
|
link_clock = common_rates[clock];
|
|
link_avail = intel_dp_max_data_rate(link_clock,
|
|
lane_count);
|
|
|
|
if (mode_rate <= link_avail) {
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
found:
|
|
if (intel_dp->color_range_auto) {
|
|
/*
|
|
* See:
|
|
* CEA-861-E - 5.1 Default Encoding Parameters
|
|
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
|
|
*/
|
|
pipe_config->limited_color_range =
|
|
bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
|
|
} else {
|
|
pipe_config->limited_color_range =
|
|
intel_dp->limited_color_range;
|
|
}
|
|
|
|
pipe_config->lane_count = lane_count;
|
|
|
|
pipe_config->pipe_bpp = bpp;
|
|
pipe_config->port_clock = common_rates[clock];
|
|
|
|
intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
|
|
&link_bw, &rate_select);
|
|
|
|
DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
|
|
link_bw, rate_select, pipe_config->lane_count,
|
|
pipe_config->port_clock, bpp);
|
|
DRM_DEBUG_KMS("DP link bw required %i available %i\n",
|
|
mode_rate, link_avail);
|
|
|
|
intel_link_compute_m_n(bpp, lane_count,
|
|
adjusted_mode->crtc_clock,
|
|
pipe_config->port_clock,
|
|
&pipe_config->dp_m_n);
|
|
|
|
if (intel_connector->panel.downclock_mode != NULL &&
|
|
dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
|
|
pipe_config->has_drrs = true;
|
|
intel_link_compute_m_n(bpp, lane_count,
|
|
intel_connector->panel.downclock_mode->clock,
|
|
pipe_config->port_clock,
|
|
&pipe_config->dp_m2_n2);
|
|
}
|
|
|
|
/*
|
|
* DPLL0 VCO may need to be adjusted to get the correct
|
|
* clock for eDP. This will affect cdclk as well.
|
|
*/
|
|
if (is_edp(intel_dp) &&
|
|
(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
|
|
int vco;
|
|
|
|
switch (pipe_config->port_clock / 2) {
|
|
case 108000:
|
|
case 216000:
|
|
vco = 8640000;
|
|
break;
|
|
default:
|
|
vco = 8100000;
|
|
break;
|
|
}
|
|
|
|
to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
|
|
}
|
|
|
|
if (!HAS_DDI(dev_priv))
|
|
intel_dp_set_clock(encoder, pipe_config);
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_dp_set_link_params(struct intel_dp *intel_dp,
|
|
int link_rate, uint8_t lane_count,
|
|
bool link_mst)
|
|
{
|
|
intel_dp->link_rate = link_rate;
|
|
intel_dp->lane_count = lane_count;
|
|
intel_dp->link_mst = link_mst;
|
|
}
|
|
|
|
static void intel_dp_prepare(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
|
|
intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
|
|
pipe_config->lane_count,
|
|
intel_crtc_has_type(pipe_config,
|
|
INTEL_OUTPUT_DP_MST));
|
|
|
|
/*
|
|
* There are four kinds of DP registers:
|
|
*
|
|
* IBX PCH
|
|
* SNB CPU
|
|
* IVB CPU
|
|
* CPT PCH
|
|
*
|
|
* IBX PCH and CPU are the same for almost everything,
|
|
* except that the CPU DP PLL is configured in this
|
|
* register
|
|
*
|
|
* CPT PCH is quite different, having many bits moved
|
|
* to the TRANS_DP_CTL register instead. That
|
|
* configuration happens (oddly) in ironlake_pch_enable
|
|
*/
|
|
|
|
/* Preserve the BIOS-computed detected bit. This is
|
|
* supposed to be read-only.
|
|
*/
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
|
|
|
|
/* Handle DP bits in common between all three register formats */
|
|
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
|
|
|
|
/* Split out the IBX/CPU vs CPT settings */
|
|
|
|
if (IS_GEN7(dev_priv) && port == PORT_A) {
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
intel_dp->DP |= crtc->pipe << 29;
|
|
} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
|
|
u32 trans_dp;
|
|
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
|
|
trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
trans_dp |= TRANS_DP_ENH_FRAMING;
|
|
else
|
|
trans_dp &= ~TRANS_DP_ENH_FRAMING;
|
|
I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
|
|
} else {
|
|
if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
|
|
intel_dp->DP |= DP_COLOR_RANGE_16_235;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF;
|
|
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
|
|
else if (crtc->pipe == PIPE_B)
|
|
intel_dp->DP |= DP_PIPEB_SELECT;
|
|
}
|
|
}
|
|
|
|
#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
|
|
|
|
#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
|
|
#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
|
|
|
|
#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
|
|
|
|
static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
|
|
struct intel_dp *intel_dp);
|
|
|
|
static void wait_panel_status(struct intel_dp *intel_dp,
|
|
u32 mask,
|
|
u32 value)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
i915_reg_t pp_stat_reg, pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
intel_pps_verify_state(dev_priv, intel_dp);
|
|
|
|
pp_stat_reg = _pp_stat_reg(intel_dp);
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
|
|
mask, value,
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
|
|
if (intel_wait_for_register(dev_priv,
|
|
pp_stat_reg, mask, value,
|
|
5000))
|
|
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
|
|
DRM_DEBUG_KMS("Wait complete\n");
|
|
}
|
|
|
|
static void wait_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power on\n");
|
|
wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
|
|
}
|
|
|
|
static void wait_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power off time\n");
|
|
wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
|
|
}
|
|
|
|
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
|
|
{
|
|
ktime_t panel_power_on_time;
|
|
s64 panel_power_off_duration;
|
|
|
|
DRM_DEBUG_KMS("Wait for panel power cycle\n");
|
|
|
|
/* take the difference of currrent time and panel power off time
|
|
* and then make panel wait for t11_t12 if needed. */
|
|
panel_power_on_time = ktime_get_boottime();
|
|
panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
|
|
|
|
/* When we disable the VDD override bit last we have to do the manual
|
|
* wait. */
|
|
if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
|
|
wait_remaining_ms_from_jiffies(jiffies,
|
|
intel_dp->panel_power_cycle_delay - panel_power_off_duration);
|
|
|
|
wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
|
|
}
|
|
|
|
static void wait_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
|
|
intel_dp->backlight_on_delay);
|
|
}
|
|
|
|
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
|
|
intel_dp->backlight_off_delay);
|
|
}
|
|
|
|
/* Read the current pp_control value, unlocking the register if it
|
|
* is locked
|
|
*/
|
|
|
|
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 control;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
control = I915_READ(_pp_ctrl_reg(intel_dp));
|
|
if (WARN_ON(!HAS_DDI(dev_priv) &&
|
|
(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
|
|
control &= ~PANEL_UNLOCK_MASK;
|
|
control |= PANEL_UNLOCK_REGS;
|
|
}
|
|
return control;
|
|
}
|
|
|
|
/*
|
|
* Must be paired with edp_panel_vdd_off().
|
|
* Must hold pps_mutex around the whole on/off sequence.
|
|
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
|
|
*/
|
|
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
u32 pp;
|
|
i915_reg_t pp_stat_reg, pp_ctrl_reg;
|
|
bool need_to_disable = !intel_dp->want_panel_vdd;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return false;
|
|
|
|
cancel_delayed_work(&intel_dp->panel_vdd_work);
|
|
intel_dp->want_panel_vdd = true;
|
|
|
|
if (edp_have_panel_vdd(intel_dp))
|
|
return need_to_disable;
|
|
|
|
power_domain = intel_display_port_aux_power_domain(intel_encoder);
|
|
intel_display_power_get(dev_priv, power_domain);
|
|
|
|
DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
|
|
port_name(intel_dig_port->port));
|
|
|
|
if (!edp_have_panel_power(intel_dp))
|
|
wait_panel_power_cycle(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp |= EDP_FORCE_VDD;
|
|
|
|
pp_stat_reg = _pp_stat_reg(intel_dp);
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
|
|
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
|
|
/*
|
|
* If the panel wasn't on, delay before accessing aux channel
|
|
*/
|
|
if (!edp_have_panel_power(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
|
|
port_name(intel_dig_port->port));
|
|
msleep(intel_dp->panel_power_up_delay);
|
|
}
|
|
|
|
return need_to_disable;
|
|
}
|
|
|
|
/*
|
|
* Must be paired with intel_edp_panel_vdd_off() or
|
|
* intel_edp_panel_off().
|
|
* Nested calls to these functions are not allowed since
|
|
* we drop the lock. Caller must use some higher level
|
|
* locking to prevent nested calls from other threads.
|
|
*/
|
|
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
|
|
{
|
|
bool vdd;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
pps_lock(intel_dp);
|
|
vdd = edp_panel_vdd_on(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
|
|
I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
|
|
port_name(dp_to_dig_port(intel_dp)->port));
|
|
}
|
|
|
|
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_digital_port *intel_dig_port =
|
|
dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
enum intel_display_power_domain power_domain;
|
|
u32 pp;
|
|
i915_reg_t pp_stat_reg, pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
WARN_ON(intel_dp->want_panel_vdd);
|
|
|
|
if (!edp_have_panel_vdd(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
|
|
port_name(intel_dig_port->port));
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp &= ~EDP_FORCE_VDD;
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
pp_stat_reg = _pp_stat_reg(intel_dp);
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
/* Make sure sequencer is idle before allowing subsequent activity */
|
|
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
|
|
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
|
|
|
|
if ((pp & PANEL_POWER_ON) == 0)
|
|
intel_dp->panel_power_off_time = ktime_get_boottime();
|
|
|
|
power_domain = intel_display_port_aux_power_domain(intel_encoder);
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
}
|
|
|
|
static void edp_panel_vdd_work(struct work_struct *__work)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
|
|
struct intel_dp, panel_vdd_work);
|
|
|
|
pps_lock(intel_dp);
|
|
if (!intel_dp->want_panel_vdd)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
}
|
|
|
|
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
|
|
{
|
|
unsigned long delay;
|
|
|
|
/*
|
|
* Queue the timer to fire a long time from now (relative to the power
|
|
* down delay) to keep the panel power up across a sequence of
|
|
* operations.
|
|
*/
|
|
delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
|
|
schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
|
|
}
|
|
|
|
/*
|
|
* Must be paired with edp_panel_vdd_on().
|
|
* Must hold pps_mutex around the whole on/off sequence.
|
|
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
|
|
*/
|
|
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
|
|
port_name(dp_to_dig_port(intel_dp)->port));
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
if (sync)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
else
|
|
edp_panel_vdd_schedule_off(intel_dp);
|
|
}
|
|
|
|
static void edp_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 pp;
|
|
i915_reg_t pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
|
|
port_name(dp_to_dig_port(intel_dp)->port));
|
|
|
|
if (WARN(edp_have_panel_power(intel_dp),
|
|
"eDP port %c panel power already on\n",
|
|
port_name(dp_to_dig_port(intel_dp)->port)))
|
|
return;
|
|
|
|
wait_panel_power_cycle(intel_dp);
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
if (IS_GEN5(dev_priv)) {
|
|
/* ILK workaround: disable reset around power sequence */
|
|
pp &= ~PANEL_POWER_RESET;
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
}
|
|
|
|
pp |= PANEL_POWER_ON;
|
|
if (!IS_GEN5(dev_priv))
|
|
pp |= PANEL_POWER_RESET;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
wait_panel_on(intel_dp);
|
|
intel_dp->last_power_on = jiffies;
|
|
|
|
if (IS_GEN5(dev_priv)) {
|
|
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
}
|
|
}
|
|
|
|
void intel_edp_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
pps_lock(intel_dp);
|
|
edp_panel_on(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
}
|
|
|
|
|
|
static void edp_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
u32 pp;
|
|
i915_reg_t pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
|
|
port_name(dp_to_dig_port(intel_dp)->port));
|
|
|
|
WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
|
|
port_name(dp_to_dig_port(intel_dp)->port));
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
/* We need to switch off panel power _and_ force vdd, for otherwise some
|
|
* panels get very unhappy and cease to work. */
|
|
pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
|
|
EDP_BLC_ENABLE);
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
intel_dp->panel_power_off_time = ktime_get_boottime();
|
|
wait_panel_off(intel_dp);
|
|
|
|
/* We got a reference when we enabled the VDD. */
|
|
power_domain = intel_display_port_aux_power_domain(intel_encoder);
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
}
|
|
|
|
void intel_edp_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
pps_lock(intel_dp);
|
|
edp_panel_off(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
}
|
|
|
|
/* Enable backlight in the panel power control. */
|
|
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 pp;
|
|
i915_reg_t pp_ctrl_reg;
|
|
|
|
/*
|
|
* If we enable the backlight right away following a panel power
|
|
* on, we may see slight flicker as the panel syncs with the eDP
|
|
* link. So delay a bit to make sure the image is solid before
|
|
* allowing it to appear.
|
|
*/
|
|
wait_backlight_on(intel_dp);
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp |= EDP_BLC_ENABLE;
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
pps_unlock(intel_dp);
|
|
}
|
|
|
|
/* Enable backlight PWM and backlight PP control. */
|
|
void intel_edp_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
intel_panel_enable_backlight(intel_dp->attached_connector);
|
|
_intel_edp_backlight_on(intel_dp);
|
|
}
|
|
|
|
/* Disable backlight in the panel power control. */
|
|
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 pp;
|
|
i915_reg_t pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp &= ~EDP_BLC_ENABLE;
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
pps_unlock(intel_dp);
|
|
|
|
intel_dp->last_backlight_off = jiffies;
|
|
edp_wait_backlight_off(intel_dp);
|
|
}
|
|
|
|
/* Disable backlight PP control and backlight PWM. */
|
|
void intel_edp_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
_intel_edp_backlight_off(intel_dp);
|
|
intel_panel_disable_backlight(intel_dp->attached_connector);
|
|
}
|
|
|
|
/*
|
|
* Hook for controlling the panel power control backlight through the bl_power
|
|
* sysfs attribute. Take care to handle multiple calls.
|
|
*/
|
|
static void intel_edp_backlight_power(struct intel_connector *connector,
|
|
bool enable)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
|
|
bool is_enabled;
|
|
|
|
pps_lock(intel_dp);
|
|
is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
|
|
pps_unlock(intel_dp);
|
|
|
|
if (is_enabled == enable)
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("panel power control backlight %s\n",
|
|
enable ? "enable" : "disable");
|
|
|
|
if (enable)
|
|
_intel_edp_backlight_on(intel_dp);
|
|
else
|
|
_intel_edp_backlight_off(intel_dp);
|
|
}
|
|
|
|
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
|
|
|
|
I915_STATE_WARN(cur_state != state,
|
|
"DP port %c state assertion failure (expected %s, current %s)\n",
|
|
port_name(dig_port->port),
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_dp_port_disabled(d) assert_dp_port((d), false)
|
|
|
|
static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
|
|
{
|
|
bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
|
|
|
|
I915_STATE_WARN(cur_state != state,
|
|
"eDP PLL state assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
|
|
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
|
|
|
|
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
assert_dp_port_disabled(intel_dp);
|
|
assert_edp_pll_disabled(dev_priv);
|
|
|
|
DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
|
|
pipe_config->port_clock);
|
|
|
|
intel_dp->DP &= ~DP_PLL_FREQ_MASK;
|
|
|
|
if (pipe_config->port_clock == 162000)
|
|
intel_dp->DP |= DP_PLL_FREQ_162MHZ;
|
|
else
|
|
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
|
|
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(500);
|
|
|
|
/*
|
|
* [DevILK] Work around required when enabling DP PLL
|
|
* while a pipe is enabled going to FDI:
|
|
* 1. Wait for the start of vertical blank on the enabled pipe going to FDI
|
|
* 2. Program DP PLL enable
|
|
*/
|
|
if (IS_GEN5(dev_priv))
|
|
intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
|
|
|
|
intel_dp->DP |= DP_PLL_ENABLE;
|
|
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
assert_dp_port_disabled(intel_dp);
|
|
assert_edp_pll_enabled(dev_priv);
|
|
|
|
DRM_DEBUG_KMS("disabling eDP PLL\n");
|
|
|
|
intel_dp->DP &= ~DP_PLL_ENABLE;
|
|
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
/* If the sink supports it, try to set the power state appropriately */
|
|
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
|
|
{
|
|
int ret, i;
|
|
|
|
/* Should have a valid DPCD by this point */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
|
|
return;
|
|
|
|
if (mode != DRM_MODE_DPMS_ON) {
|
|
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
|
|
DP_SET_POWER_D3);
|
|
} else {
|
|
/*
|
|
* When turning on, we need to retry for 1ms to give the sink
|
|
* time to wake up.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
|
|
DP_SET_POWER_D0);
|
|
if (ret == 1)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
}
|
|
|
|
if (ret != 1)
|
|
DRM_DEBUG_KMS("failed to %s sink power state\n",
|
|
mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
|
|
}
|
|
|
|
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
|
|
enum pipe *pipe)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
u32 tmp;
|
|
bool ret;
|
|
|
|
power_domain = intel_display_port_power_domain(encoder);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
return false;
|
|
|
|
ret = false;
|
|
|
|
tmp = I915_READ(intel_dp->output_reg);
|
|
|
|
if (!(tmp & DP_PORT_EN))
|
|
goto out;
|
|
|
|
if (IS_GEN7(dev_priv) && port == PORT_A) {
|
|
*pipe = PORT_TO_PIPE_CPT(tmp);
|
|
} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
|
|
enum pipe p;
|
|
|
|
for_each_pipe(dev_priv, p) {
|
|
u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
|
|
if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
|
|
*pipe = p;
|
|
ret = true;
|
|
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
|
|
i915_mmio_reg_offset(intel_dp->output_reg));
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
*pipe = DP_PORT_TO_PIPE_CHV(tmp);
|
|
} else {
|
|
*pipe = PORT_TO_PIPE(tmp);
|
|
}
|
|
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_dp_get_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
u32 tmp, flags = 0;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
tmp = I915_READ(intel_dp->output_reg);
|
|
|
|
pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
|
|
|
|
if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
|
|
u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
|
|
|
|
if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
} else {
|
|
if (tmp & DP_SYNC_HS_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (tmp & DP_SYNC_VS_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
}
|
|
|
|
pipe_config->base.adjusted_mode.flags |= flags;
|
|
|
|
if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
|
|
pipe_config->limited_color_range = true;
|
|
|
|
pipe_config->lane_count =
|
|
((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
|
|
|
|
intel_dp_get_m_n(crtc, pipe_config);
|
|
|
|
if (port == PORT_A) {
|
|
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
|
|
pipe_config->port_clock = 162000;
|
|
else
|
|
pipe_config->port_clock = 270000;
|
|
}
|
|
|
|
pipe_config->base.adjusted_mode.crtc_clock =
|
|
intel_dotclock_calculate(pipe_config->port_clock,
|
|
&pipe_config->dp_m_n);
|
|
|
|
if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
|
|
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
|
|
/*
|
|
* This is a big fat ugly hack.
|
|
*
|
|
* Some machines in UEFI boot mode provide us a VBT that has 18
|
|
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
|
|
* unknown we fail to light up. Yet the same BIOS boots up with
|
|
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
|
|
* max, not what it tells us to use.
|
|
*
|
|
* Note: This will still be broken if the eDP panel is not lit
|
|
* up by the BIOS, and thus we can't get the mode at module
|
|
* load.
|
|
*/
|
|
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
|
|
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
|
|
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
|
|
}
|
|
}
|
|
|
|
static void intel_disable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *old_crtc_state,
|
|
struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (old_crtc_state->has_audio)
|
|
intel_audio_codec_disable(encoder);
|
|
|
|
if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
|
|
intel_psr_disable(intel_dp);
|
|
|
|
/* Make sure the panel is off before trying to change the mode. But also
|
|
* ensure that we have vdd while we switch off the panel. */
|
|
intel_edp_panel_vdd_on(intel_dp);
|
|
intel_edp_backlight_off(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
|
|
intel_edp_panel_off(intel_dp);
|
|
|
|
/* disable the port before the pipe on g4x */
|
|
if (INTEL_GEN(dev_priv) < 5)
|
|
intel_dp_link_down(intel_dp);
|
|
}
|
|
|
|
static void ilk_post_disable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *old_crtc_state,
|
|
struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
intel_dp_link_down(intel_dp);
|
|
|
|
/* Only ilk+ has port A */
|
|
if (port == PORT_A)
|
|
ironlake_edp_pll_off(intel_dp);
|
|
}
|
|
|
|
static void vlv_post_disable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *old_crtc_state,
|
|
struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
intel_dp_link_down(intel_dp);
|
|
}
|
|
|
|
static void chv_post_disable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *old_crtc_state,
|
|
struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
intel_dp_link_down(intel_dp);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Assert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, true);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void
|
|
_intel_dp_set_link_train(struct intel_dp *intel_dp,
|
|
uint32_t *DP,
|
|
uint8_t dp_train_pat)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum port port = intel_dig_port->port;
|
|
|
|
if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
|
|
DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
|
|
dp_train_pat & DP_TRAINING_PATTERN_MASK);
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
uint32_t temp = I915_READ(DP_TP_CTL(port));
|
|
|
|
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
|
|
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
else
|
|
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
|
|
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
|
|
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
|
|
break;
|
|
}
|
|
I915_WRITE(DP_TP_CTL(port), temp);
|
|
|
|
} else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
|
|
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
|
|
*DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
*DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
*DP |= DP_LINK_TRAIN_PAT_1_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
|
|
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
*DP &= ~DP_LINK_TRAIN_MASK_CHV;
|
|
else
|
|
*DP &= ~DP_LINK_TRAIN_MASK;
|
|
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
*DP |= DP_LINK_TRAIN_OFF;
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
*DP |= DP_LINK_TRAIN_PAT_1;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
*DP |= DP_LINK_TRAIN_PAT_2;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
*DP |= DP_LINK_TRAIN_PAT_3_CHV;
|
|
} else {
|
|
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
|
|
*DP |= DP_LINK_TRAIN_PAT_2;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_dp_enable_port(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
/* enable with pattern 1 (as per spec) */
|
|
|
|
intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
|
|
|
|
/*
|
|
* Magic for VLV/CHV. We _must_ first set up the register
|
|
* without actually enabling the port, and then do another
|
|
* write to enable the port. Otherwise link training will
|
|
* fail when the power sequencer is freshly used for this port.
|
|
*/
|
|
intel_dp->DP |= DP_PORT_EN;
|
|
if (old_crtc_state->has_audio)
|
|
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
|
|
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
}
|
|
|
|
static void intel_enable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
if (WARN_ON(dp_reg & DP_PORT_EN))
|
|
return;
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
vlv_init_panel_power_sequencer(intel_dp);
|
|
|
|
intel_dp_enable_port(intel_dp, pipe_config);
|
|
|
|
edp_panel_vdd_on(intel_dp);
|
|
edp_panel_on(intel_dp);
|
|
edp_panel_vdd_off(intel_dp, true);
|
|
|
|
pps_unlock(intel_dp);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
unsigned int lane_mask = 0x0;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
|
|
|
|
vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
|
|
lane_mask);
|
|
}
|
|
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
|
|
if (pipe_config->has_audio) {
|
|
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
|
|
pipe_name(pipe));
|
|
intel_audio_codec_enable(encoder, pipe_config, conn_state);
|
|
}
|
|
}
|
|
|
|
static void g4x_enable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
intel_enable_dp(encoder, pipe_config, conn_state);
|
|
intel_edp_backlight_on(intel_dp);
|
|
}
|
|
|
|
static void vlv_enable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
intel_edp_backlight_on(intel_dp);
|
|
intel_psr_enable(intel_dp);
|
|
}
|
|
|
|
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
intel_dp_prepare(encoder, pipe_config);
|
|
|
|
/* Only ilk+ has port A */
|
|
if (port == PORT_A)
|
|
ironlake_edp_pll_on(intel_dp, pipe_config);
|
|
}
|
|
|
|
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
enum pipe pipe = intel_dp->pps_pipe;
|
|
i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
|
|
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
|
|
/*
|
|
* VLV seems to get confused when multiple power seqeuencers
|
|
* have the same port selected (even if only one has power/vdd
|
|
* enabled). The failure manifests as vlv_wait_port_ready() failing
|
|
* CHV on the other hand doesn't seem to mind having the same port
|
|
* selected in multiple power seqeuencers, but let's clear the
|
|
* port select always when logically disconnecting a power sequencer
|
|
* from a port.
|
|
*/
|
|
DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
|
|
pipe_name(pipe), port_name(intel_dig_port->port));
|
|
I915_WRITE(pp_on_reg, 0);
|
|
POSTING_READ(pp_on_reg);
|
|
|
|
intel_dp->pps_pipe = INVALID_PIPE;
|
|
}
|
|
|
|
static void vlv_steal_power_sequencer(struct drm_device *dev,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_encoder *encoder;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
|
|
return;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
struct intel_dp *intel_dp;
|
|
enum port port;
|
|
|
|
if (encoder->type != INTEL_OUTPUT_EDP)
|
|
continue;
|
|
|
|
intel_dp = enc_to_intel_dp(&encoder->base);
|
|
port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
if (intel_dp->pps_pipe != pipe)
|
|
continue;
|
|
|
|
DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
|
|
pipe_name(pipe), port_name(port));
|
|
|
|
WARN(encoder->base.crtc,
|
|
"stealing pipe %c power sequencer from active eDP port %c\n",
|
|
pipe_name(pipe), port_name(port));
|
|
|
|
/* make sure vdd is off before we steal it */
|
|
vlv_detach_power_sequencer(intel_dp);
|
|
}
|
|
}
|
|
|
|
static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
if (intel_dp->pps_pipe == crtc->pipe)
|
|
return;
|
|
|
|
/*
|
|
* If another power sequencer was being used on this
|
|
* port previously make sure to turn off vdd there while
|
|
* we still have control of it.
|
|
*/
|
|
if (intel_dp->pps_pipe != INVALID_PIPE)
|
|
vlv_detach_power_sequencer(intel_dp);
|
|
|
|
/*
|
|
* We may be stealing the power
|
|
* sequencer from another port.
|
|
*/
|
|
vlv_steal_power_sequencer(dev, crtc->pipe);
|
|
|
|
/* now it's all ours */
|
|
intel_dp->pps_pipe = crtc->pipe;
|
|
|
|
DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
|
|
pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
|
|
|
|
/* init power sequencer on this pipe and port */
|
|
intel_dp_init_panel_power_sequencer(dev, intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
|
|
}
|
|
|
|
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
vlv_phy_pre_encoder_enable(encoder);
|
|
|
|
intel_enable_dp(encoder, pipe_config, conn_state);
|
|
}
|
|
|
|
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
intel_dp_prepare(encoder, pipe_config);
|
|
|
|
vlv_phy_pre_pll_enable(encoder);
|
|
}
|
|
|
|
static void chv_pre_enable_dp(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
chv_phy_pre_encoder_enable(encoder);
|
|
|
|
intel_enable_dp(encoder, pipe_config, conn_state);
|
|
|
|
/* Second common lane will stay alive on its own now */
|
|
chv_phy_release_cl2_override(encoder);
|
|
}
|
|
|
|
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
intel_dp_prepare(encoder, pipe_config);
|
|
|
|
chv_phy_pre_pll_enable(encoder);
|
|
}
|
|
|
|
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
chv_phy_post_pll_disable(encoder);
|
|
}
|
|
|
|
/*
|
|
* Fetch AUX CH registers 0x202 - 0x207 which contain
|
|
* link status information
|
|
*/
|
|
bool
|
|
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
|
|
DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
|
|
}
|
|
|
|
/* These are source-specific values. */
|
|
uint8_t
|
|
intel_dp_voltage_max(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
if (IS_BROXTON(dev_priv))
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
|
|
else if (INTEL_GEN(dev_priv) >= 9) {
|
|
if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
|
|
else if (IS_GEN7(dev_priv) && port == PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
|
|
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
|
|
else
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
|
|
}
|
|
|
|
uint8_t
|
|
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_3;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_3;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_3;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
} else if (IS_GEN7(dev_priv) && port == PORT_A) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
} else {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
unsigned long demph_reg_value, preemph_reg_value,
|
|
uniqtranscale_reg_value;
|
|
uint8_t train_set = intel_dp->train_set[0];
|
|
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
preemph_reg_value = 0x0004000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x2B405555;
|
|
uniqtranscale_reg_value = 0x552AB83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x5548B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
demph_reg_value = 0x2B245555;
|
|
uniqtranscale_reg_value = 0x5560B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
demph_reg_value = 0x2B405555;
|
|
uniqtranscale_reg_value = 0x5598DA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
preemph_reg_value = 0x0002000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x5552B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
demph_reg_value = 0x2B404848;
|
|
uniqtranscale_reg_value = 0x5580B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
preemph_reg_value = 0x0000000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x2B305555;
|
|
uniqtranscale_reg_value = 0x5570B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
demph_reg_value = 0x2B2B4040;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
preemph_reg_value = 0x0006000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x1B405555;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
|
|
uniqtranscale_reg_value, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
u32 deemph_reg_value, margin_reg_value;
|
|
bool uniq_trans_scale = false;
|
|
uint8_t train_set = intel_dp->train_set[0];
|
|
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 52;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 77;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 102;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 154;
|
|
uniq_trans_scale = true;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 85;
|
|
margin_reg_value = 78;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
deemph_reg_value = 85;
|
|
margin_reg_value = 116;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
deemph_reg_value = 85;
|
|
margin_reg_value = 154;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 64;
|
|
margin_reg_value = 104;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
deemph_reg_value = 64;
|
|
margin_reg_value = 154;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 43;
|
|
margin_reg_value = 154;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
chv_set_phy_signal_level(encoder, deemph_reg_value,
|
|
margin_reg_value, uniq_trans_scale);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
gen4_signal_levels(uint8_t train_set)
|
|
{
|
|
uint32_t signal_levels = 0;
|
|
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
default:
|
|
signal_levels |= DP_VOLTAGE_0_4;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
signal_levels |= DP_VOLTAGE_0_6;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
signal_levels |= DP_VOLTAGE_0_8;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
signal_levels |= DP_VOLTAGE_1_2;
|
|
break;
|
|
}
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
default:
|
|
signal_levels |= DP_PRE_EMPHASIS_0;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
signal_levels |= DP_PRE_EMPHASIS_3_5;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
signal_levels |= DP_PRE_EMPHASIS_6;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
signal_levels |= DP_PRE_EMPHASIS_9_5;
|
|
break;
|
|
}
|
|
return signal_levels;
|
|
}
|
|
|
|
/* Gen6's DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
gen6_edp_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
}
|
|
}
|
|
|
|
/* Gen7's DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
gen7_edp_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_400MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
return EDP_LINK_TRAIN_400MV_6DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_600MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_800MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
|
|
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_500MV_0DB_IVB;
|
|
}
|
|
}
|
|
|
|
void
|
|
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->port;
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t signal_levels, mask = 0;
|
|
uint8_t train_set = intel_dp->train_set[0];
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
signal_levels = ddi_signal_levels(intel_dp);
|
|
|
|
if (IS_BROXTON(dev_priv))
|
|
signal_levels = 0;
|
|
else
|
|
mask = DDI_BUF_EMP_MASK;
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
signal_levels = chv_signal_levels(intel_dp);
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
signal_levels = vlv_signal_levels(intel_dp);
|
|
} else if (IS_GEN7(dev_priv) && port == PORT_A) {
|
|
signal_levels = gen7_edp_signal_levels(train_set);
|
|
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
|
|
} else if (IS_GEN6(dev_priv) && port == PORT_A) {
|
|
signal_levels = gen6_edp_signal_levels(train_set);
|
|
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
|
|
} else {
|
|
signal_levels = gen4_signal_levels(train_set);
|
|
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
|
|
}
|
|
|
|
if (mask)
|
|
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
|
|
|
|
DRM_DEBUG_KMS("Using vswing level %d\n",
|
|
train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
|
|
DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
|
|
(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
|
|
DP_TRAIN_PRE_EMPHASIS_SHIFT);
|
|
|
|
intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
|
|
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
}
|
|
|
|
void
|
|
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
|
|
uint8_t dp_train_pat)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(intel_dig_port->base.base.dev);
|
|
|
|
_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
|
|
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
}
|
|
|
|
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum port port = intel_dig_port->port;
|
|
uint32_t val;
|
|
|
|
if (!HAS_DDI(dev_priv))
|
|
return;
|
|
|
|
val = I915_READ(DP_TP_CTL(port));
|
|
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
|
|
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
|
|
I915_WRITE(DP_TP_CTL(port), val);
|
|
|
|
/*
|
|
* On PORT_A we can have only eDP in SST mode. There the only reason
|
|
* we need to set idle transmission mode is to work around a HW issue
|
|
* where we enable the pipe while not in idle link-training mode.
|
|
* In this case there is requirement to wait for a minimum number of
|
|
* idle patterns to be sent.
|
|
*/
|
|
if (port == PORT_A)
|
|
return;
|
|
|
|
if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
|
|
DP_TP_STATUS_IDLE_DONE,
|
|
DP_TP_STATUS_IDLE_DONE,
|
|
1))
|
|
DRM_ERROR("Timed out waiting for DP idle patterns\n");
|
|
}
|
|
|
|
static void
|
|
intel_dp_link_down(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
|
|
enum port port = intel_dig_port->port;
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
if (WARN_ON(HAS_DDI(dev_priv)))
|
|
return;
|
|
|
|
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
if ((IS_GEN7(dev_priv) && port == PORT_A) ||
|
|
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
|
|
DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
|
|
} else {
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
DP &= ~DP_LINK_TRAIN_MASK_CHV;
|
|
else
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
DP |= DP_LINK_TRAIN_PAT_IDLE;
|
|
}
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
/*
|
|
* HW workaround for IBX, we need to move the port
|
|
* to transcoder A after disabling it to allow the
|
|
* matching HDMI port to be enabled on transcoder A.
|
|
*/
|
|
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
|
|
/*
|
|
* We get CPU/PCH FIFO underruns on the other pipe when
|
|
* doing the workaround. Sweep them under the rug.
|
|
*/
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
|
|
|
|
/* always enable with pattern 1 (as per spec) */
|
|
DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
|
|
DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
DP &= ~DP_PORT_EN;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
|
|
}
|
|
|
|
msleep(intel_dp->panel_power_down_delay);
|
|
|
|
intel_dp->DP = DP;
|
|
}
|
|
|
|
bool
|
|
intel_dp_read_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
|
|
sizeof(intel_dp->dpcd)) < 0)
|
|
return false; /* aux transfer failed */
|
|
|
|
DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
|
|
|
|
return intel_dp->dpcd[DP_DPCD_REV] != 0;
|
|
}
|
|
|
|
static bool
|
|
intel_edp_init_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
|
|
|
|
/* this function is meant to be called only once */
|
|
WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
|
|
|
|
if (!intel_dp_read_dpcd(intel_dp))
|
|
return false;
|
|
|
|
intel_dp_read_desc(intel_dp);
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
|
|
dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
|
|
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
|
|
|
|
/* Check if the panel supports PSR */
|
|
drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
|
|
intel_dp->psr_dpcd,
|
|
sizeof(intel_dp->psr_dpcd));
|
|
if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
|
|
dev_priv->psr.sink_support = true;
|
|
DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9 &&
|
|
(intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
|
|
uint8_t frame_sync_cap;
|
|
|
|
dev_priv->psr.sink_support = true;
|
|
drm_dp_dpcd_read(&intel_dp->aux,
|
|
DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
|
|
&frame_sync_cap, 1);
|
|
dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
|
|
/* PSR2 needs frame sync as well */
|
|
dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
|
|
DRM_DEBUG_KMS("PSR2 %s on sink",
|
|
dev_priv->psr.psr2_support ? "supported" : "not supported");
|
|
}
|
|
|
|
/* Read the eDP Display control capabilities registers */
|
|
if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
|
|
drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
|
|
intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
|
|
sizeof(intel_dp->edp_dpcd))
|
|
DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
|
|
intel_dp->edp_dpcd);
|
|
|
|
/* Intermediate frequency support */
|
|
if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
|
|
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
|
|
int i;
|
|
|
|
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
|
|
sink_rates, sizeof(sink_rates));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
|
|
int val = le16_to_cpu(sink_rates[i]);
|
|
|
|
if (val == 0)
|
|
break;
|
|
|
|
/* Value read is in kHz while drm clock is saved in deca-kHz */
|
|
intel_dp->sink_rates[i] = (val * 200) / 10;
|
|
}
|
|
intel_dp->num_sink_rates = i;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool
|
|
intel_dp_get_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
if (!intel_dp_read_dpcd(intel_dp))
|
|
return false;
|
|
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
|
|
&intel_dp->sink_count, 1) < 0)
|
|
return false;
|
|
|
|
/*
|
|
* Sink count can change between short pulse hpd hence
|
|
* a member variable in intel_dp will track any changes
|
|
* between short pulse interrupts.
|
|
*/
|
|
intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
|
|
|
|
/*
|
|
* SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
|
|
* a dongle is present but no display. Unless we require to know
|
|
* if a dongle is present or not, we don't need to update
|
|
* downstream port information. So, an early return here saves
|
|
* time from performing other operations which are not required.
|
|
*/
|
|
if (!is_edp(intel_dp) && !intel_dp->sink_count)
|
|
return false;
|
|
|
|
if (!drm_dp_is_branch(intel_dp->dpcd))
|
|
return true; /* native DP sink */
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
|
|
return true; /* no per-port downstream info */
|
|
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
|
|
intel_dp->downstream_ports,
|
|
DP_MAX_DOWNSTREAM_PORTS) < 0)
|
|
return false; /* downstream port status fetch failed */
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_can_mst(struct intel_dp *intel_dp)
|
|
{
|
|
u8 buf[1];
|
|
|
|
if (!i915.enable_dp_mst)
|
|
return false;
|
|
|
|
if (!intel_dp->can_mst)
|
|
return false;
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
|
|
return false;
|
|
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
|
|
return false;
|
|
|
|
return buf[0] & DP_MST_CAP;
|
|
}
|
|
|
|
static void
|
|
intel_dp_configure_mst(struct intel_dp *intel_dp)
|
|
{
|
|
if (!i915.enable_dp_mst)
|
|
return;
|
|
|
|
if (!intel_dp->can_mst)
|
|
return;
|
|
|
|
intel_dp->is_mst = intel_dp_can_mst(intel_dp);
|
|
|
|
if (intel_dp->is_mst)
|
|
DRM_DEBUG_KMS("Sink is MST capable\n");
|
|
else
|
|
DRM_DEBUG_KMS("Sink is not MST capable\n");
|
|
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
}
|
|
|
|
static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
|
|
u8 buf;
|
|
int ret = 0;
|
|
int count = 0;
|
|
int attempts = 10;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
|
|
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
|
|
buf & ~DP_TEST_SINK_START) < 0) {
|
|
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
do {
|
|
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux,
|
|
DP_TEST_SINK_MISC, &buf) < 0) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
count = buf & DP_TEST_COUNT_MASK;
|
|
} while (--attempts && count);
|
|
|
|
if (attempts == 0) {
|
|
DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
out:
|
|
hsw_enable_ips(intel_crtc);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
|
|
u8 buf;
|
|
int ret;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
|
|
return -EIO;
|
|
|
|
if (!(buf & DP_TEST_CRC_SUPPORTED))
|
|
return -ENOTTY;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
|
|
return -EIO;
|
|
|
|
if (buf & DP_TEST_SINK_START) {
|
|
ret = intel_dp_sink_crc_stop(intel_dp);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
hsw_disable_ips(intel_crtc);
|
|
|
|
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
|
|
buf | DP_TEST_SINK_START) < 0) {
|
|
hsw_enable_ips(intel_crtc);
|
|
return -EIO;
|
|
}
|
|
|
|
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
|
|
return 0;
|
|
}
|
|
|
|
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
|
|
u8 buf;
|
|
int count, ret;
|
|
int attempts = 6;
|
|
|
|
ret = intel_dp_sink_crc_start(intel_dp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
do {
|
|
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux,
|
|
DP_TEST_SINK_MISC, &buf) < 0) {
|
|
ret = -EIO;
|
|
goto stop;
|
|
}
|
|
count = buf & DP_TEST_COUNT_MASK;
|
|
|
|
} while (--attempts && count == 0);
|
|
|
|
if (attempts == 0) {
|
|
DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
|
|
ret = -ETIMEDOUT;
|
|
goto stop;
|
|
}
|
|
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
|
|
ret = -EIO;
|
|
goto stop;
|
|
}
|
|
|
|
stop:
|
|
intel_dp_sink_crc_stop(intel_dp);
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
|
|
{
|
|
return drm_dp_dpcd_read(&intel_dp->aux,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector, 1) == 1;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
|
|
{
|
|
int ret;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dp->aux,
|
|
DP_SINK_COUNT_ESI,
|
|
sink_irq_vector, 14);
|
|
if (ret != 14)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t test_result = DP_TEST_ACK;
|
|
return test_result;
|
|
}
|
|
|
|
static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t test_result = DP_TEST_NAK;
|
|
return test_result;
|
|
}
|
|
|
|
static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t test_result = DP_TEST_NAK;
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
|
|
if (intel_connector->detect_edid == NULL ||
|
|
connector->edid_corrupt ||
|
|
intel_dp->aux.i2c_defer_count > 6) {
|
|
/* Check EDID read for NACKs, DEFERs and corruption
|
|
* (DP CTS 1.2 Core r1.1)
|
|
* 4.2.2.4 : Failed EDID read, I2C_NAK
|
|
* 4.2.2.5 : Failed EDID read, I2C_DEFER
|
|
* 4.2.2.6 : EDID corruption detected
|
|
* Use failsafe mode for all cases
|
|
*/
|
|
if (intel_dp->aux.i2c_nack_count > 0 ||
|
|
intel_dp->aux.i2c_defer_count > 0)
|
|
DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
|
|
intel_dp->aux.i2c_nack_count,
|
|
intel_dp->aux.i2c_defer_count);
|
|
intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
|
|
} else {
|
|
struct edid *block = intel_connector->detect_edid;
|
|
|
|
/* We have to write the checksum
|
|
* of the last block read
|
|
*/
|
|
block += intel_connector->detect_edid->extensions;
|
|
|
|
if (!drm_dp_dpcd_write(&intel_dp->aux,
|
|
DP_TEST_EDID_CHECKSUM,
|
|
&block->checksum,
|
|
1))
|
|
DRM_DEBUG_KMS("Failed to write EDID checksum\n");
|
|
|
|
test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
|
|
intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
|
|
}
|
|
|
|
/* Set test active flag here so userspace doesn't interrupt things */
|
|
intel_dp->compliance_test_active = 1;
|
|
|
|
return test_result;
|
|
}
|
|
|
|
static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t test_result = DP_TEST_NAK;
|
|
return test_result;
|
|
}
|
|
|
|
static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t response = DP_TEST_NAK;
|
|
uint8_t rxdata = 0;
|
|
int status = 0;
|
|
|
|
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("Could not read test request from sink\n");
|
|
goto update_status;
|
|
}
|
|
|
|
switch (rxdata) {
|
|
case DP_TEST_LINK_TRAINING:
|
|
DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
|
|
intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
|
|
response = intel_dp_autotest_link_training(intel_dp);
|
|
break;
|
|
case DP_TEST_LINK_VIDEO_PATTERN:
|
|
DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
|
|
intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
|
|
response = intel_dp_autotest_video_pattern(intel_dp);
|
|
break;
|
|
case DP_TEST_LINK_EDID_READ:
|
|
DRM_DEBUG_KMS("EDID test requested\n");
|
|
intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
|
|
response = intel_dp_autotest_edid(intel_dp);
|
|
break;
|
|
case DP_TEST_LINK_PHY_TEST_PATTERN:
|
|
DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
|
|
intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
|
|
response = intel_dp_autotest_phy_pattern(intel_dp);
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
|
|
break;
|
|
}
|
|
|
|
update_status:
|
|
status = drm_dp_dpcd_write(&intel_dp->aux,
|
|
DP_TEST_RESPONSE,
|
|
&response, 1);
|
|
if (status <= 0)
|
|
DRM_DEBUG_KMS("Could not write test response to sink\n");
|
|
}
|
|
|
|
static int
|
|
intel_dp_check_mst_status(struct intel_dp *intel_dp)
|
|
{
|
|
bool bret;
|
|
|
|
if (intel_dp->is_mst) {
|
|
u8 esi[16] = { 0 };
|
|
int ret = 0;
|
|
int retry;
|
|
bool handled;
|
|
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
|
|
go_again:
|
|
if (bret == true) {
|
|
|
|
/* check link status - esi[10] = 0x200c */
|
|
if (intel_dp->active_mst_links &&
|
|
!drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
|
|
DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("got esi %3ph\n", esi);
|
|
ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
|
|
|
|
if (handled) {
|
|
for (retry = 0; retry < 3; retry++) {
|
|
int wret;
|
|
wret = drm_dp_dpcd_write(&intel_dp->aux,
|
|
DP_SINK_COUNT_ESI+1,
|
|
&esi[1], 3);
|
|
if (wret == 3) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
|
|
if (bret == true) {
|
|
DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
|
|
goto go_again;
|
|
}
|
|
} else
|
|
ret = 0;
|
|
|
|
return ret;
|
|
} else {
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
|
|
/* send a hotplug event */
|
|
drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void
|
|
intel_dp_retrain_link(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
/* Suppress underruns caused by re-training */
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
|
|
if (crtc->config->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv,
|
|
intel_crtc_pch_transcoder(crtc), false);
|
|
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
|
|
/* Keep underrun reporting disabled until things are stable */
|
|
intel_wait_for_vblank(dev_priv, crtc->pipe);
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
|
|
if (crtc->config->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv,
|
|
intel_crtc_pch_transcoder(crtc), true);
|
|
}
|
|
|
|
static void
|
|
intel_dp_check_link_status(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
u8 link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
|
|
|
|
if (!intel_dp_get_link_status(intel_dp, link_status)) {
|
|
DRM_ERROR("Failed to get link status\n");
|
|
return;
|
|
}
|
|
|
|
if (!intel_encoder->base.crtc)
|
|
return;
|
|
|
|
if (!to_intel_crtc(intel_encoder->base.crtc)->active)
|
|
return;
|
|
|
|
/* FIXME: we need to synchronize this sort of stuff with hardware
|
|
* readout */
|
|
if (WARN_ON_ONCE(!intel_dp->lane_count))
|
|
return;
|
|
|
|
/* if link training is requested we should perform it always */
|
|
if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
|
|
(!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
|
|
DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
|
|
intel_encoder->base.name);
|
|
|
|
intel_dp_retrain_link(intel_dp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* According to DP spec
|
|
* 5.1.2:
|
|
* 1. Read DPCD
|
|
* 2. Configure link according to Receiver Capabilities
|
|
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
|
|
* 4. Check link status on receipt of hot-plug interrupt
|
|
*
|
|
* intel_dp_short_pulse - handles short pulse interrupts
|
|
* when full detection is not required.
|
|
* Returns %true if short pulse is handled and full detection
|
|
* is NOT required and %false otherwise.
|
|
*/
|
|
static bool
|
|
intel_dp_short_pulse(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
u8 sink_irq_vector = 0;
|
|
u8 old_sink_count = intel_dp->sink_count;
|
|
bool ret;
|
|
|
|
/*
|
|
* Clearing compliance test variables to allow capturing
|
|
* of values for next automated test request.
|
|
*/
|
|
intel_dp->compliance_test_active = 0;
|
|
intel_dp->compliance_test_type = 0;
|
|
intel_dp->compliance_test_data = 0;
|
|
|
|
/*
|
|
* Now read the DPCD to see if it's actually running
|
|
* If the current value of sink count doesn't match with
|
|
* the value that was stored earlier or dpcd read failed
|
|
* we need to do full detection
|
|
*/
|
|
ret = intel_dp_get_dpcd(intel_dp);
|
|
|
|
if ((old_sink_count != intel_dp->sink_count) || !ret) {
|
|
/* No need to proceed if we are going to do full detect */
|
|
return false;
|
|
}
|
|
|
|
/* Try to read the source of the interrupt */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
|
|
sink_irq_vector != 0) {
|
|
/* Clear interrupt source */
|
|
drm_dp_dpcd_writeb(&intel_dp->aux,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector);
|
|
|
|
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
|
|
DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
|
|
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
|
|
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
|
|
}
|
|
|
|
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
|
|
intel_dp_check_link_status(intel_dp);
|
|
drm_modeset_unlock(&dev->mode_config.connection_mutex);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* XXX this is probably wrong for multiple downstream ports */
|
|
static enum drm_connector_status
|
|
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t *dpcd = intel_dp->dpcd;
|
|
uint8_t type;
|
|
|
|
if (!intel_dp_get_dpcd(intel_dp))
|
|
return connector_status_disconnected;
|
|
|
|
if (is_edp(intel_dp))
|
|
return connector_status_connected;
|
|
|
|
/* if there's no downstream port, we're done */
|
|
if (!drm_dp_is_branch(dpcd))
|
|
return connector_status_connected;
|
|
|
|
/* If we're HPD-aware, SINK_COUNT changes dynamically */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
|
|
|
|
return intel_dp->sink_count ?
|
|
connector_status_connected : connector_status_disconnected;
|
|
}
|
|
|
|
if (intel_dp_can_mst(intel_dp))
|
|
return connector_status_connected;
|
|
|
|
/* If no HPD, poke DDC gently */
|
|
if (drm_probe_ddc(&intel_dp->aux.ddc))
|
|
return connector_status_connected;
|
|
|
|
/* Well we tried, say unknown for unreliable port types */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
|
|
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
|
|
if (type == DP_DS_PORT_TYPE_VGA ||
|
|
type == DP_DS_PORT_TYPE_NON_EDID)
|
|
return connector_status_unknown;
|
|
} else {
|
|
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
|
|
DP_DWN_STRM_PORT_TYPE_MASK;
|
|
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
|
|
type == DP_DWN_STRM_PORT_TYPE_OTHER)
|
|
return connector_status_unknown;
|
|
}
|
|
|
|
/* Anything else is out of spec, warn and ignore */
|
|
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
|
|
return connector_status_disconnected;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
edp_detect(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
enum drm_connector_status status;
|
|
|
|
status = intel_panel_detect(dev);
|
|
if (status == connector_status_unknown)
|
|
status = connector_status_connected;
|
|
|
|
return status;
|
|
}
|
|
|
|
static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
u32 bit;
|
|
|
|
switch (port->port) {
|
|
case PORT_A:
|
|
return true;
|
|
case PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG;
|
|
break;
|
|
case PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG;
|
|
break;
|
|
case PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port->port);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
u32 bit;
|
|
|
|
switch (port->port) {
|
|
case PORT_A:
|
|
return true;
|
|
case PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_E:
|
|
bit = SDE_PORTE_HOTPLUG_SPT;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port->port);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
u32 bit;
|
|
|
|
switch (port->port) {
|
|
case PORT_B:
|
|
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
|
|
break;
|
|
case PORT_C:
|
|
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
|
|
break;
|
|
case PORT_D:
|
|
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port->port);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(PORT_HOTPLUG_STAT) & bit;
|
|
}
|
|
|
|
static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
u32 bit;
|
|
|
|
switch (port->port) {
|
|
case PORT_B:
|
|
bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
|
|
break;
|
|
case PORT_C:
|
|
bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
|
|
break;
|
|
case PORT_D:
|
|
bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port->port);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(PORT_HOTPLUG_STAT) & bit;
|
|
}
|
|
|
|
static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *intel_dig_port)
|
|
{
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
enum port port;
|
|
u32 bit;
|
|
|
|
intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
|
|
switch (port) {
|
|
case PORT_A:
|
|
bit = BXT_DE_PORT_HP_DDIA;
|
|
break;
|
|
case PORT_B:
|
|
bit = BXT_DE_PORT_HP_DDIB;
|
|
break;
|
|
case PORT_C:
|
|
bit = BXT_DE_PORT_HP_DDIC;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(GEN8_DE_PORT_ISR) & bit;
|
|
}
|
|
|
|
/*
|
|
* intel_digital_port_connected - is the specified port connected?
|
|
* @dev_priv: i915 private structure
|
|
* @port: the port to test
|
|
*
|
|
* Return %true if @port is connected, %false otherwise.
|
|
*/
|
|
static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
if (HAS_PCH_IBX(dev_priv))
|
|
return ibx_digital_port_connected(dev_priv, port);
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
return cpt_digital_port_connected(dev_priv, port);
|
|
else if (IS_BROXTON(dev_priv))
|
|
return bxt_digital_port_connected(dev_priv, port);
|
|
else if (IS_GM45(dev_priv))
|
|
return gm45_digital_port_connected(dev_priv, port);
|
|
else
|
|
return g4x_digital_port_connected(dev_priv, port);
|
|
}
|
|
|
|
static struct edid *
|
|
intel_dp_get_edid(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
|
|
/* use cached edid if we have one */
|
|
if (intel_connector->edid) {
|
|
/* invalid edid */
|
|
if (IS_ERR(intel_connector->edid))
|
|
return NULL;
|
|
|
|
return drm_edid_duplicate(intel_connector->edid);
|
|
} else
|
|
return drm_get_edid(&intel_connector->base,
|
|
&intel_dp->aux.ddc);
|
|
}
|
|
|
|
static void
|
|
intel_dp_set_edid(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
struct edid *edid;
|
|
|
|
intel_dp_unset_edid(intel_dp);
|
|
edid = intel_dp_get_edid(intel_dp);
|
|
intel_connector->detect_edid = edid;
|
|
|
|
if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
|
|
intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
|
|
else
|
|
intel_dp->has_audio = drm_detect_monitor_audio(edid);
|
|
}
|
|
|
|
static void
|
|
intel_dp_unset_edid(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
|
|
kfree(intel_connector->detect_edid);
|
|
intel_connector->detect_edid = NULL;
|
|
|
|
intel_dp->has_audio = false;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
intel_dp_long_pulse(struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = connector->dev;
|
|
enum drm_connector_status status;
|
|
enum intel_display_power_domain power_domain;
|
|
u8 sink_irq_vector = 0;
|
|
|
|
power_domain = intel_display_port_aux_power_domain(intel_encoder);
|
|
intel_display_power_get(to_i915(dev), power_domain);
|
|
|
|
/* Can't disconnect eDP, but you can close the lid... */
|
|
if (is_edp(intel_dp))
|
|
status = edp_detect(intel_dp);
|
|
else if (intel_digital_port_connected(to_i915(dev),
|
|
dp_to_dig_port(intel_dp)))
|
|
status = intel_dp_detect_dpcd(intel_dp);
|
|
else
|
|
status = connector_status_disconnected;
|
|
|
|
if (status == connector_status_disconnected) {
|
|
intel_dp->compliance_test_active = 0;
|
|
intel_dp->compliance_test_type = 0;
|
|
intel_dp->compliance_test_data = 0;
|
|
|
|
if (intel_dp->is_mst) {
|
|
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
|
|
intel_dp->is_mst,
|
|
intel_dp->mst_mgr.mst_state);
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (intel_encoder->type != INTEL_OUTPUT_EDP)
|
|
intel_encoder->type = INTEL_OUTPUT_DP;
|
|
|
|
DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
|
|
yesno(intel_dp_source_supports_hbr2(intel_dp)),
|
|
yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
|
|
|
|
intel_dp_print_rates(intel_dp);
|
|
|
|
intel_dp_read_desc(intel_dp);
|
|
|
|
intel_dp_configure_mst(intel_dp);
|
|
|
|
if (intel_dp->is_mst) {
|
|
/*
|
|
* If we are in MST mode then this connector
|
|
* won't appear connected or have anything
|
|
* with EDID on it
|
|
*/
|
|
status = connector_status_disconnected;
|
|
goto out;
|
|
} else if (connector->status == connector_status_connected) {
|
|
/*
|
|
* If display was connected already and is still connected
|
|
* check links status, there has been known issues of
|
|
* link loss triggerring long pulse!!!!
|
|
*/
|
|
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
|
|
intel_dp_check_link_status(intel_dp);
|
|
drm_modeset_unlock(&dev->mode_config.connection_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Clearing NACK and defer counts to get their exact values
|
|
* while reading EDID which are required by Compliance tests
|
|
* 4.2.2.4 and 4.2.2.5
|
|
*/
|
|
intel_dp->aux.i2c_nack_count = 0;
|
|
intel_dp->aux.i2c_defer_count = 0;
|
|
|
|
intel_dp_set_edid(intel_dp);
|
|
if (is_edp(intel_dp) || intel_connector->detect_edid)
|
|
status = connector_status_connected;
|
|
intel_dp->detect_done = true;
|
|
|
|
/* Try to read the source of the interrupt */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
|
|
sink_irq_vector != 0) {
|
|
/* Clear interrupt source */
|
|
drm_dp_dpcd_writeb(&intel_dp->aux,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector);
|
|
|
|
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
|
|
intel_dp_handle_test_request(intel_dp);
|
|
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
|
|
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
|
|
}
|
|
|
|
out:
|
|
if (status != connector_status_connected && !intel_dp->is_mst)
|
|
intel_dp_unset_edid(intel_dp);
|
|
|
|
intel_display_power_put(to_i915(dev), power_domain);
|
|
return status;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
intel_dp_detect(struct drm_connector *connector, bool force)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
enum drm_connector_status status = connector->status;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
|
|
/* If full detect is not performed yet, do a full detect */
|
|
if (!intel_dp->detect_done)
|
|
status = intel_dp_long_pulse(intel_dp->attached_connector);
|
|
|
|
intel_dp->detect_done = false;
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
intel_dp_force(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
|
|
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
|
|
enum intel_display_power_domain power_domain;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
intel_dp_unset_edid(intel_dp);
|
|
|
|
if (connector->status != connector_status_connected)
|
|
return;
|
|
|
|
power_domain = intel_display_port_aux_power_domain(intel_encoder);
|
|
intel_display_power_get(dev_priv, power_domain);
|
|
|
|
intel_dp_set_edid(intel_dp);
|
|
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
if (intel_encoder->type != INTEL_OUTPUT_EDP)
|
|
intel_encoder->type = INTEL_OUTPUT_DP;
|
|
}
|
|
|
|
static int intel_dp_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct edid *edid;
|
|
|
|
edid = intel_connector->detect_edid;
|
|
if (edid) {
|
|
int ret = intel_connector_update_modes(connector, edid);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* if eDP has no EDID, fall back to fixed mode */
|
|
if (is_edp(intel_attached_dp(connector)) &&
|
|
intel_connector->panel.fixed_mode) {
|
|
struct drm_display_mode *mode;
|
|
|
|
mode = drm_mode_duplicate(connector->dev,
|
|
intel_connector->panel.fixed_mode);
|
|
if (mode) {
|
|
drm_mode_probed_add(connector, mode);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_detect_audio(struct drm_connector *connector)
|
|
{
|
|
bool has_audio = false;
|
|
struct edid *edid;
|
|
|
|
edid = to_intel_connector(connector)->detect_edid;
|
|
if (edid)
|
|
has_audio = drm_detect_monitor_audio(edid);
|
|
|
|
return has_audio;
|
|
}
|
|
|
|
static int
|
|
intel_dp_set_property(struct drm_connector *connector,
|
|
struct drm_property *property,
|
|
uint64_t val)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
|
|
int ret;
|
|
|
|
ret = drm_object_property_set_value(&connector->base, property, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (property == dev_priv->force_audio_property) {
|
|
int i = val;
|
|
bool has_audio;
|
|
|
|
if (i == intel_dp->force_audio)
|
|
return 0;
|
|
|
|
intel_dp->force_audio = i;
|
|
|
|
if (i == HDMI_AUDIO_AUTO)
|
|
has_audio = intel_dp_detect_audio(connector);
|
|
else
|
|
has_audio = (i == HDMI_AUDIO_ON);
|
|
|
|
if (has_audio == intel_dp->has_audio)
|
|
return 0;
|
|
|
|
intel_dp->has_audio = has_audio;
|
|
goto done;
|
|
}
|
|
|
|
if (property == dev_priv->broadcast_rgb_property) {
|
|
bool old_auto = intel_dp->color_range_auto;
|
|
bool old_range = intel_dp->limited_color_range;
|
|
|
|
switch (val) {
|
|
case INTEL_BROADCAST_RGB_AUTO:
|
|
intel_dp->color_range_auto = true;
|
|
break;
|
|
case INTEL_BROADCAST_RGB_FULL:
|
|
intel_dp->color_range_auto = false;
|
|
intel_dp->limited_color_range = false;
|
|
break;
|
|
case INTEL_BROADCAST_RGB_LIMITED:
|
|
intel_dp->color_range_auto = false;
|
|
intel_dp->limited_color_range = true;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (old_auto == intel_dp->color_range_auto &&
|
|
old_range == intel_dp->limited_color_range)
|
|
return 0;
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (is_edp(intel_dp) &&
|
|
property == connector->dev->mode_config.scaling_mode_property) {
|
|
if (val == DRM_MODE_SCALE_NONE) {
|
|
DRM_DEBUG_KMS("no scaling not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
if (HAS_GMCH_DISPLAY(dev_priv) &&
|
|
val == DRM_MODE_SCALE_CENTER) {
|
|
DRM_DEBUG_KMS("centering not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (intel_connector->panel.fitting_mode == val) {
|
|
/* the eDP scaling property is not changed */
|
|
return 0;
|
|
}
|
|
intel_connector->panel.fitting_mode = val;
|
|
|
|
goto done;
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
done:
|
|
if (intel_encoder->base.crtc)
|
|
intel_crtc_restore_mode(intel_encoder->base.crtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
intel_dp_connector_register(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
int ret;
|
|
|
|
ret = intel_connector_register(connector);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_debugfs_connector_add(connector);
|
|
|
|
DRM_DEBUG_KMS("registering %s bus for %s\n",
|
|
intel_dp->aux.name, connector->kdev->kobj.name);
|
|
|
|
intel_dp->aux.dev = connector->kdev;
|
|
return drm_dp_aux_register(&intel_dp->aux);
|
|
}
|
|
|
|
static void
|
|
intel_dp_connector_unregister(struct drm_connector *connector)
|
|
{
|
|
drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
|
|
intel_connector_unregister(connector);
|
|
}
|
|
|
|
static void
|
|
intel_dp_connector_destroy(struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
kfree(intel_connector->detect_edid);
|
|
|
|
if (!IS_ERR_OR_NULL(intel_connector->edid))
|
|
kfree(intel_connector->edid);
|
|
|
|
/* Can't call is_edp() since the encoder may have been destroyed
|
|
* already. */
|
|
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
|
|
intel_panel_fini(&intel_connector->panel);
|
|
|
|
drm_connector_cleanup(connector);
|
|
kfree(connector);
|
|
}
|
|
|
|
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
|
|
intel_dp_mst_encoder_cleanup(intel_dig_port);
|
|
if (is_edp(intel_dp)) {
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
/*
|
|
* vdd might still be enabled do to the delayed vdd off.
|
|
* Make sure vdd is actually turned off here.
|
|
*/
|
|
pps_lock(intel_dp);
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
|
|
if (intel_dp->edp_notifier.notifier_call) {
|
|
unregister_reboot_notifier(&intel_dp->edp_notifier);
|
|
intel_dp->edp_notifier.notifier_call = NULL;
|
|
}
|
|
}
|
|
|
|
intel_dp_aux_fini(intel_dp);
|
|
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(intel_dig_port);
|
|
}
|
|
|
|
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
/*
|
|
* vdd might still be enabled do to the delayed vdd off.
|
|
* Make sure vdd is actually turned off here.
|
|
*/
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
pps_lock(intel_dp);
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
}
|
|
|
|
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!edp_have_panel_vdd(intel_dp))
|
|
return;
|
|
|
|
/*
|
|
* The VDD bit needs a power domain reference, so if the bit is
|
|
* already enabled when we boot or resume, grab this reference and
|
|
* schedule a vdd off, so we don't hold on to the reference
|
|
* indefinitely.
|
|
*/
|
|
DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
|
|
power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
|
|
intel_display_power_get(dev_priv, power_domain);
|
|
|
|
edp_panel_vdd_schedule_off(intel_dp);
|
|
}
|
|
|
|
void intel_dp_encoder_reset(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_lspcon *lspcon = &intel_dig_port->lspcon;
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
|
|
if (!HAS_DDI(dev_priv))
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg);
|
|
|
|
if (IS_GEN9(dev_priv) && lspcon->active)
|
|
lspcon_resume(lspcon);
|
|
|
|
if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
|
|
return;
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
/* Reinit the power sequencer, in case BIOS did something with it. */
|
|
intel_dp_pps_init(encoder->dev, intel_dp);
|
|
intel_edp_panel_vdd_sanitize(intel_dp);
|
|
|
|
pps_unlock(intel_dp);
|
|
}
|
|
|
|
static const struct drm_connector_funcs intel_dp_connector_funcs = {
|
|
.dpms = drm_atomic_helper_connector_dpms,
|
|
.detect = intel_dp_detect,
|
|
.force = intel_dp_force,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.set_property = intel_dp_set_property,
|
|
.atomic_get_property = intel_connector_atomic_get_property,
|
|
.late_register = intel_dp_connector_register,
|
|
.early_unregister = intel_dp_connector_unregister,
|
|
.destroy = intel_dp_connector_destroy,
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
|
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
|
|
.get_modes = intel_dp_get_modes,
|
|
.mode_valid = intel_dp_mode_valid,
|
|
};
|
|
|
|
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
|
|
.reset = intel_dp_encoder_reset,
|
|
.destroy = intel_dp_encoder_destroy,
|
|
};
|
|
|
|
enum irqreturn
|
|
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
|
|
{
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum intel_display_power_domain power_domain;
|
|
enum irqreturn ret = IRQ_NONE;
|
|
|
|
if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
|
|
intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
|
|
intel_dig_port->base.type = INTEL_OUTPUT_DP;
|
|
|
|
if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
|
|
/*
|
|
* vdd off can generate a long pulse on eDP which
|
|
* would require vdd on to handle it, and thus we
|
|
* would end up in an endless cycle of
|
|
* "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
|
|
*/
|
|
DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
|
|
port_name(intel_dig_port->port));
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
|
|
port_name(intel_dig_port->port),
|
|
long_hpd ? "long" : "short");
|
|
|
|
if (long_hpd) {
|
|
intel_dp->detect_done = false;
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
power_domain = intel_display_port_aux_power_domain(intel_encoder);
|
|
intel_display_power_get(dev_priv, power_domain);
|
|
|
|
if (intel_dp->is_mst) {
|
|
if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
|
|
/*
|
|
* If we were in MST mode, and device is not
|
|
* there, get out of MST mode
|
|
*/
|
|
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
|
|
intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
intel_dp->detect_done = false;
|
|
goto put_power;
|
|
}
|
|
}
|
|
|
|
if (!intel_dp->is_mst) {
|
|
if (!intel_dp_short_pulse(intel_dp)) {
|
|
intel_dp->detect_done = false;
|
|
goto put_power;
|
|
}
|
|
}
|
|
|
|
ret = IRQ_HANDLED;
|
|
|
|
put_power:
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* check the VBT to see whether the eDP is on another port */
|
|
bool intel_dp_is_edp(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
/*
|
|
* eDP not supported on g4x. so bail out early just
|
|
* for a bit extra safety in case the VBT is bonkers.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) < 5)
|
|
return false;
|
|
|
|
if (port == PORT_A)
|
|
return true;
|
|
|
|
return intel_bios_is_port_edp(dev_priv, port);
|
|
}
|
|
|
|
void
|
|
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
intel_attach_force_audio_property(connector);
|
|
intel_attach_broadcast_rgb_property(connector);
|
|
intel_dp->color_range_auto = true;
|
|
|
|
if (is_edp(intel_dp)) {
|
|
drm_mode_create_scaling_mode_property(connector->dev);
|
|
drm_object_attach_property(
|
|
&connector->base,
|
|
connector->dev->mode_config.scaling_mode_property,
|
|
DRM_MODE_SCALE_ASPECT);
|
|
intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
|
|
}
|
|
}
|
|
|
|
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
|
|
{
|
|
intel_dp->panel_power_off_time = ktime_get_boottime();
|
|
intel_dp->last_power_on = jiffies;
|
|
intel_dp->last_backlight_off = jiffies;
|
|
}
|
|
|
|
static void
|
|
intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_dp *intel_dp, struct edp_power_seq *seq)
|
|
{
|
|
u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
|
|
struct pps_registers regs;
|
|
|
|
intel_pps_get_registers(dev_priv, intel_dp, ®s);
|
|
|
|
/* Workaround: Need to write PP_CONTROL with the unlock key as
|
|
* the very first thing. */
|
|
pp_ctl = ironlake_get_pp_control(intel_dp);
|
|
|
|
pp_on = I915_READ(regs.pp_on);
|
|
pp_off = I915_READ(regs.pp_off);
|
|
if (!IS_BROXTON(dev_priv)) {
|
|
I915_WRITE(regs.pp_ctrl, pp_ctl);
|
|
pp_div = I915_READ(regs.pp_div);
|
|
}
|
|
|
|
/* Pull timing values out of registers */
|
|
seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
|
|
PANEL_POWER_UP_DELAY_SHIFT;
|
|
|
|
seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
|
|
PANEL_LIGHT_ON_DELAY_SHIFT;
|
|
|
|
seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
|
|
PANEL_LIGHT_OFF_DELAY_SHIFT;
|
|
|
|
seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
|
|
PANEL_POWER_DOWN_DELAY_SHIFT;
|
|
|
|
if (IS_BROXTON(dev_priv)) {
|
|
u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
|
|
BXT_POWER_CYCLE_DELAY_SHIFT;
|
|
if (tmp > 0)
|
|
seq->t11_t12 = (tmp - 1) * 1000;
|
|
else
|
|
seq->t11_t12 = 0;
|
|
} else {
|
|
seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
|
|
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
|
|
{
|
|
DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
|
state_name,
|
|
seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
|
|
}
|
|
|
|
static void
|
|
intel_pps_verify_state(struct drm_i915_private *dev_priv,
|
|
struct intel_dp *intel_dp)
|
|
{
|
|
struct edp_power_seq hw;
|
|
struct edp_power_seq *sw = &intel_dp->pps_delays;
|
|
|
|
intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
|
|
|
|
if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
|
|
hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
|
|
DRM_ERROR("PPS state mismatch\n");
|
|
intel_pps_dump_state("sw", sw);
|
|
intel_pps_dump_state("hw", &hw);
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
|
|
struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct edp_power_seq cur, vbt, spec,
|
|
*final = &intel_dp->pps_delays;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* already initialized? */
|
|
if (final->t11_t12 != 0)
|
|
return;
|
|
|
|
intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
|
|
|
|
intel_pps_dump_state("cur", &cur);
|
|
|
|
vbt = dev_priv->vbt.edp.pps;
|
|
|
|
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
|
|
* our hw here, which are all in 100usec. */
|
|
spec.t1_t3 = 210 * 10;
|
|
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
|
|
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
|
|
spec.t10 = 500 * 10;
|
|
/* This one is special and actually in units of 100ms, but zero
|
|
* based in the hw (so we need to add 100 ms). But the sw vbt
|
|
* table multiplies it with 1000 to make it in units of 100usec,
|
|
* too. */
|
|
spec.t11_t12 = (510 + 100) * 10;
|
|
|
|
intel_pps_dump_state("vbt", &vbt);
|
|
|
|
/* Use the max of the register settings and vbt. If both are
|
|
* unset, fall back to the spec limits. */
|
|
#define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
|
|
spec.field : \
|
|
max(cur.field, vbt.field))
|
|
assign_final(t1_t3);
|
|
assign_final(t8);
|
|
assign_final(t9);
|
|
assign_final(t10);
|
|
assign_final(t11_t12);
|
|
#undef assign_final
|
|
|
|
#define get_delay(field) (DIV_ROUND_UP(final->field, 10))
|
|
intel_dp->panel_power_up_delay = get_delay(t1_t3);
|
|
intel_dp->backlight_on_delay = get_delay(t8);
|
|
intel_dp->backlight_off_delay = get_delay(t9);
|
|
intel_dp->panel_power_down_delay = get_delay(t10);
|
|
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
|
|
#undef get_delay
|
|
|
|
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
|
|
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
|
|
intel_dp->panel_power_cycle_delay);
|
|
|
|
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
|
|
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
|
|
|
|
/*
|
|
* We override the HW backlight delays to 1 because we do manual waits
|
|
* on them. For T8, even BSpec recommends doing it. For T9, if we
|
|
* don't do this, we'll end up waiting for the backlight off delay
|
|
* twice: once when we do the manual sleep, and once when we disable
|
|
* the panel and wait for the PP_STATUS bit to become zero.
|
|
*/
|
|
final->t8 = 1;
|
|
final->t9 = 1;
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
|
|
struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
u32 pp_on, pp_off, pp_div, port_sel = 0;
|
|
int div = dev_priv->rawclk_freq / 1000;
|
|
struct pps_registers regs;
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
const struct edp_power_seq *seq = &intel_dp->pps_delays;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
intel_pps_get_registers(dev_priv, intel_dp, ®s);
|
|
|
|
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
|
|
(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
|
|
pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
|
|
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
|
|
/* Compute the divisor for the pp clock, simply match the Bspec
|
|
* formula. */
|
|
if (IS_BROXTON(dev_priv)) {
|
|
pp_div = I915_READ(regs.pp_ctrl);
|
|
pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
|
|
pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
|
|
<< BXT_POWER_CYCLE_DELAY_SHIFT);
|
|
} else {
|
|
pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
|
|
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
|
|
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
|
|
}
|
|
|
|
/* Haswell doesn't have any port selection bits for the panel
|
|
* power sequencer any more. */
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
port_sel = PANEL_PORT_SELECT_VLV(port);
|
|
} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
|
|
if (port == PORT_A)
|
|
port_sel = PANEL_PORT_SELECT_DPA;
|
|
else
|
|
port_sel = PANEL_PORT_SELECT_DPD;
|
|
}
|
|
|
|
pp_on |= port_sel;
|
|
|
|
I915_WRITE(regs.pp_on, pp_on);
|
|
I915_WRITE(regs.pp_off, pp_off);
|
|
if (IS_BROXTON(dev_priv))
|
|
I915_WRITE(regs.pp_ctrl, pp_div);
|
|
else
|
|
I915_WRITE(regs.pp_div, pp_div);
|
|
|
|
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
|
|
I915_READ(regs.pp_on),
|
|
I915_READ(regs.pp_off),
|
|
IS_BROXTON(dev_priv) ?
|
|
(I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
|
|
I915_READ(regs.pp_div));
|
|
}
|
|
|
|
static void intel_dp_pps_init(struct drm_device *dev,
|
|
struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
vlv_initial_power_sequencer_setup(intel_dp);
|
|
} else {
|
|
intel_dp_init_panel_power_sequencer(dev, intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_dp_set_drrs_state - program registers for RR switch to take effect
|
|
* @dev_priv: i915 device
|
|
* @crtc_state: a pointer to the active intel_crtc_state
|
|
* @refresh_rate: RR to be programmed
|
|
*
|
|
* This function gets called when refresh rate (RR) has to be changed from
|
|
* one frequency to another. Switches can be between high and low RR
|
|
* supported by the panel or to any other RR based on media playback (in
|
|
* this case, RR value needs to be passed from user space).
|
|
*
|
|
* The caller of this function needs to take a lock on dev_priv->drrs.
|
|
*/
|
|
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
|
|
struct intel_crtc_state *crtc_state,
|
|
int refresh_rate)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_digital_port *dig_port = NULL;
|
|
struct intel_dp *intel_dp = dev_priv->drrs.dp;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
|
|
|
|
if (refresh_rate <= 0) {
|
|
DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
|
|
return;
|
|
}
|
|
|
|
if (intel_dp == NULL) {
|
|
DRM_DEBUG_KMS("DRRS not supported.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* FIXME: This needs proper synchronization with psr state for some
|
|
* platforms that cannot have PSR and DRRS enabled at the same time.
|
|
*/
|
|
|
|
dig_port = dp_to_dig_port(intel_dp);
|
|
encoder = &dig_port->base;
|
|
intel_crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
if (!intel_crtc) {
|
|
DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
|
|
return;
|
|
}
|
|
|
|
if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
|
|
DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
|
|
return;
|
|
}
|
|
|
|
if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
|
|
refresh_rate)
|
|
index = DRRS_LOW_RR;
|
|
|
|
if (index == dev_priv->drrs.refresh_rate_type) {
|
|
DRM_DEBUG_KMS(
|
|
"DRRS requested for previously set RR...ignoring\n");
|
|
return;
|
|
}
|
|
|
|
if (!crtc_state->base.active) {
|
|
DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
|
|
return;
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
|
|
switch (index) {
|
|
case DRRS_HIGH_RR:
|
|
intel_dp_set_m_n(intel_crtc, M1_N1);
|
|
break;
|
|
case DRRS_LOW_RR:
|
|
intel_dp_set_m_n(intel_crtc, M2_N2);
|
|
break;
|
|
case DRRS_MAX_RR:
|
|
default:
|
|
DRM_ERROR("Unsupported refreshrate type\n");
|
|
}
|
|
} else if (INTEL_GEN(dev_priv) > 6) {
|
|
i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
|
|
u32 val;
|
|
|
|
val = I915_READ(reg);
|
|
if (index > DRRS_HIGH_RR) {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
|
|
else
|
|
val |= PIPECONF_EDP_RR_MODE_SWITCH;
|
|
} else {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
|
|
else
|
|
val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
|
|
}
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
dev_priv->drrs.refresh_rate_type = index;
|
|
|
|
DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_enable - init drrs struct if supported
|
|
* @intel_dp: DP struct
|
|
* @crtc_state: A pointer to the active crtc state.
|
|
*
|
|
* Initializes frontbuffer_bits and drrs.dp
|
|
*/
|
|
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!crtc_state->has_drrs) {
|
|
DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (WARN_ON(dev_priv->drrs.dp)) {
|
|
DRM_ERROR("DRRS already enabled\n");
|
|
goto unlock;
|
|
}
|
|
|
|
dev_priv->drrs.busy_frontbuffer_bits = 0;
|
|
|
|
dev_priv->drrs.dp = intel_dp;
|
|
|
|
unlock:
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_disable - Disable DRRS
|
|
* @intel_dp: DP struct
|
|
* @old_crtc_state: Pointer to old crtc_state.
|
|
*
|
|
*/
|
|
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (!old_crtc_state->has_drrs)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (!dev_priv->drrs.dp) {
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
return;
|
|
}
|
|
|
|
if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
|
|
intel_dp_set_drrs_state(dev_priv, old_crtc_state,
|
|
intel_dp->attached_connector->panel.fixed_mode->vrefresh);
|
|
|
|
dev_priv->drrs.dp = NULL;
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->drrs.work);
|
|
}
|
|
|
|
static void intel_edp_drrs_downclock_work(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), drrs.work.work);
|
|
struct intel_dp *intel_dp;
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
|
|
intel_dp = dev_priv->drrs.dp;
|
|
|
|
if (!intel_dp)
|
|
goto unlock;
|
|
|
|
/*
|
|
* The delayed work can race with an invalidate hence we need to
|
|
* recheck.
|
|
*/
|
|
|
|
if (dev_priv->drrs.busy_frontbuffer_bits)
|
|
goto unlock;
|
|
|
|
if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
|
|
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
|
|
|
|
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
|
|
intel_dp->attached_connector->panel.downclock_mode->vrefresh);
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_invalidate - Disable Idleness DRRS
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
*
|
|
* This function gets called everytime rendering on the given planes start.
|
|
* Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
|
|
*
|
|
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
|
|
*/
|
|
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
|
|
unsigned int frontbuffer_bits)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
|
|
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
|
|
return;
|
|
|
|
cancel_delayed_work(&dev_priv->drrs.work);
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (!dev_priv->drrs.dp) {
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
|
dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
|
|
|
|
/* invalidate means busy screen hence upclock */
|
|
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
|
|
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
|
|
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
|
|
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_flush - Restart Idleness DRRS
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
*
|
|
* This function gets called every time rendering on the given planes has
|
|
* completed or flip on a crtc is completed. So DRRS should be upclocked
|
|
* (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
|
|
* if no other planes are dirty.
|
|
*
|
|
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
|
|
*/
|
|
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
|
|
unsigned int frontbuffer_bits)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
|
|
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
|
|
return;
|
|
|
|
cancel_delayed_work(&dev_priv->drrs.work);
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (!dev_priv->drrs.dp) {
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
|
dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
|
|
|
|
/* flush means busy screen hence upclock */
|
|
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
|
|
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
|
|
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
|
|
|
|
/*
|
|
* flush also means no more activity hence schedule downclock, if all
|
|
* other fbs are quiescent too
|
|
*/
|
|
if (!dev_priv->drrs.busy_frontbuffer_bits)
|
|
schedule_delayed_work(&dev_priv->drrs.work,
|
|
msecs_to_jiffies(1000));
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* DOC: Display Refresh Rate Switching (DRRS)
|
|
*
|
|
* Display Refresh Rate Switching (DRRS) is a power conservation feature
|
|
* which enables swtching between low and high refresh rates,
|
|
* dynamically, based on the usage scenario. This feature is applicable
|
|
* for internal panels.
|
|
*
|
|
* Indication that the panel supports DRRS is given by the panel EDID, which
|
|
* would list multiple refresh rates for one resolution.
|
|
*
|
|
* DRRS is of 2 types - static and seamless.
|
|
* Static DRRS involves changing refresh rate (RR) by doing a full modeset
|
|
* (may appear as a blink on screen) and is used in dock-undock scenario.
|
|
* Seamless DRRS involves changing RR without any visual effect to the user
|
|
* and can be used during normal system usage. This is done by programming
|
|
* certain registers.
|
|
*
|
|
* Support for static/seamless DRRS may be indicated in the VBT based on
|
|
* inputs from the panel spec.
|
|
*
|
|
* DRRS saves power by switching to low RR based on usage scenarios.
|
|
*
|
|
* The implementation is based on frontbuffer tracking implementation. When
|
|
* there is a disturbance on the screen triggered by user activity or a periodic
|
|
* system activity, DRRS is disabled (RR is changed to high RR). When there is
|
|
* no movement on screen, after a timeout of 1 second, a switch to low RR is
|
|
* made.
|
|
*
|
|
* For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
|
|
* and intel_edp_drrs_flush() are called.
|
|
*
|
|
* DRRS can be further extended to support other internal panels and also
|
|
* the scenario of video playback wherein RR is set based on the rate
|
|
* requested by userspace.
|
|
*/
|
|
|
|
/**
|
|
* intel_dp_drrs_init - Init basic DRRS work and mutex.
|
|
* @intel_connector: eDP connector
|
|
* @fixed_mode: preferred mode of panel
|
|
*
|
|
* This function is called only once at driver load to initialize basic
|
|
* DRRS stuff.
|
|
*
|
|
* Returns:
|
|
* Downclock mode if panel supports it, else return NULL.
|
|
* DRRS support is determined by the presence of downclock mode (apart
|
|
* from VBT setting).
|
|
*/
|
|
static struct drm_display_mode *
|
|
intel_dp_drrs_init(struct intel_connector *intel_connector,
|
|
struct drm_display_mode *fixed_mode)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct drm_device *dev = connector->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_display_mode *downclock_mode = NULL;
|
|
|
|
INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
|
|
mutex_init(&dev_priv->drrs.mutex);
|
|
|
|
if (INTEL_GEN(dev_priv) <= 6) {
|
|
DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
|
|
DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
|
|
return NULL;
|
|
}
|
|
|
|
downclock_mode = intel_find_panel_downclock
|
|
(dev, fixed_mode, connector);
|
|
|
|
if (!downclock_mode) {
|
|
DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
|
|
return NULL;
|
|
}
|
|
|
|
dev_priv->drrs.type = dev_priv->vbt.drrs_type;
|
|
|
|
dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
|
|
DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
|
|
return downclock_mode;
|
|
}
|
|
|
|
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_display_mode *fixed_mode = NULL;
|
|
struct drm_display_mode *downclock_mode = NULL;
|
|
bool has_dpcd;
|
|
struct drm_display_mode *scan;
|
|
struct edid *edid;
|
|
enum pipe pipe = INVALID_PIPE;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return true;
|
|
|
|
/*
|
|
* On IBX/CPT we may get here with LVDS already registered. Since the
|
|
* driver uses the only internal power sequencer available for both
|
|
* eDP and LVDS bail out early in this case to prevent interfering
|
|
* with an already powered-on LVDS power sequencer.
|
|
*/
|
|
if (intel_get_lvds_encoder(dev)) {
|
|
WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
|
|
DRM_INFO("LVDS was detected, not registering eDP\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
pps_lock(intel_dp);
|
|
|
|
intel_dp_init_panel_power_timestamps(intel_dp);
|
|
intel_dp_pps_init(dev, intel_dp);
|
|
intel_edp_panel_vdd_sanitize(intel_dp);
|
|
|
|
pps_unlock(intel_dp);
|
|
|
|
/* Cache DPCD and EDID for edp. */
|
|
has_dpcd = intel_edp_init_dpcd(intel_dp);
|
|
|
|
if (!has_dpcd) {
|
|
/* if this fails, presume the device is a ghost */
|
|
DRM_INFO("failed to retrieve link info, disabling eDP\n");
|
|
goto out_vdd_off;
|
|
}
|
|
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
edid = drm_get_edid(connector, &intel_dp->aux.ddc);
|
|
if (edid) {
|
|
if (drm_add_edid_modes(connector, edid)) {
|
|
drm_mode_connector_update_edid_property(connector,
|
|
edid);
|
|
drm_edid_to_eld(connector, edid);
|
|
} else {
|
|
kfree(edid);
|
|
edid = ERR_PTR(-EINVAL);
|
|
}
|
|
} else {
|
|
edid = ERR_PTR(-ENOENT);
|
|
}
|
|
intel_connector->edid = edid;
|
|
|
|
/* prefer fixed mode from EDID if available */
|
|
list_for_each_entry(scan, &connector->probed_modes, head) {
|
|
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
|
|
fixed_mode = drm_mode_duplicate(dev, scan);
|
|
downclock_mode = intel_dp_drrs_init(
|
|
intel_connector, fixed_mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* fallback to VBT if available for eDP */
|
|
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
|
|
fixed_mode = drm_mode_duplicate(dev,
|
|
dev_priv->vbt.lfp_lvds_vbt_mode);
|
|
if (fixed_mode) {
|
|
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
|
|
connector->display_info.width_mm = fixed_mode->width_mm;
|
|
connector->display_info.height_mm = fixed_mode->height_mm;
|
|
}
|
|
}
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
intel_dp->edp_notifier.notifier_call = edp_notify_handler;
|
|
register_reboot_notifier(&intel_dp->edp_notifier);
|
|
|
|
/*
|
|
* Figure out the current pipe for the initial backlight setup.
|
|
* If the current pipe isn't valid, try the PPS pipe, and if that
|
|
* fails just assume pipe A.
|
|
*/
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
|
|
else
|
|
pipe = PORT_TO_PIPE(intel_dp->DP);
|
|
|
|
if (pipe != PIPE_A && pipe != PIPE_B)
|
|
pipe = intel_dp->pps_pipe;
|
|
|
|
if (pipe != PIPE_A && pipe != PIPE_B)
|
|
pipe = PIPE_A;
|
|
|
|
DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
|
|
intel_connector->panel.backlight.power = intel_edp_backlight_power;
|
|
intel_panel_setup_backlight(connector, pipe);
|
|
|
|
return true;
|
|
|
|
out_vdd_off:
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
/*
|
|
* vdd might still be enabled do to the delayed vdd off.
|
|
* Make sure vdd is actually turned off here.
|
|
*/
|
|
pps_lock(intel_dp);
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
pps_unlock(intel_dp);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum port port = intel_dig_port->port;
|
|
int type;
|
|
|
|
if (WARN(intel_dig_port->max_lanes < 1,
|
|
"Not enough lanes (%d) for DP on port %c\n",
|
|
intel_dig_port->max_lanes, port_name(port)))
|
|
return false;
|
|
|
|
intel_dp->pps_pipe = INVALID_PIPE;
|
|
|
|
/* intel_dp vfuncs */
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
|
|
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
|
|
else
|
|
intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
|
|
else
|
|
intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
|
|
|
|
/* Preserve the current hw state. */
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg);
|
|
intel_dp->attached_connector = intel_connector;
|
|
|
|
if (intel_dp_is_edp(dev_priv, port))
|
|
type = DRM_MODE_CONNECTOR_eDP;
|
|
else
|
|
type = DRM_MODE_CONNECTOR_DisplayPort;
|
|
|
|
/*
|
|
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
|
|
* for DP the encoder type can be set by the caller to
|
|
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
|
|
*/
|
|
if (type == DRM_MODE_CONNECTOR_eDP)
|
|
intel_encoder->type = INTEL_OUTPUT_EDP;
|
|
|
|
/* eDP only on port B and/or C on vlv/chv */
|
|
if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
is_edp(intel_dp) && port != PORT_B && port != PORT_C))
|
|
return false;
|
|
|
|
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
|
|
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
|
|
port_name(port));
|
|
|
|
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
|
|
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
|
|
|
|
connector->interlace_allowed = true;
|
|
connector->doublescan_allowed = 0;
|
|
|
|
intel_dp_aux_init(intel_dp);
|
|
|
|
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
|
|
edp_panel_vdd_work);
|
|
|
|
intel_connector_attach_encoder(intel_connector, intel_encoder);
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
|
|
else
|
|
intel_connector->get_hw_state = intel_connector_get_hw_state;
|
|
|
|
/* Set up the hotplug pin. */
|
|
switch (port) {
|
|
case PORT_A:
|
|
intel_encoder->hpd_pin = HPD_PORT_A;
|
|
break;
|
|
case PORT_B:
|
|
intel_encoder->hpd_pin = HPD_PORT_B;
|
|
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
|
|
intel_encoder->hpd_pin = HPD_PORT_A;
|
|
break;
|
|
case PORT_C:
|
|
intel_encoder->hpd_pin = HPD_PORT_C;
|
|
break;
|
|
case PORT_D:
|
|
intel_encoder->hpd_pin = HPD_PORT_D;
|
|
break;
|
|
case PORT_E:
|
|
intel_encoder->hpd_pin = HPD_PORT_E;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/* init MST on ports that can support it */
|
|
if (HAS_DP_MST(dev_priv) && !is_edp(intel_dp) &&
|
|
(port == PORT_B || port == PORT_C || port == PORT_D))
|
|
intel_dp_mst_encoder_init(intel_dig_port,
|
|
intel_connector->base.base.id);
|
|
|
|
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
|
|
intel_dp_aux_fini(intel_dp);
|
|
intel_dp_mst_encoder_cleanup(intel_dig_port);
|
|
goto fail;
|
|
}
|
|
|
|
intel_dp_add_properties(intel_dp, connector);
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
|
|
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
|
|
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
|
|
}
|
|
|
|
return true;
|
|
|
|
fail:
|
|
drm_connector_cleanup(connector);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool intel_dp_init(struct drm_device *dev,
|
|
i915_reg_t output_reg,
|
|
enum port port)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_digital_port *intel_dig_port;
|
|
struct intel_encoder *intel_encoder;
|
|
struct drm_encoder *encoder;
|
|
struct intel_connector *intel_connector;
|
|
|
|
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
|
|
if (!intel_dig_port)
|
|
return false;
|
|
|
|
intel_connector = intel_connector_alloc();
|
|
if (!intel_connector)
|
|
goto err_connector_alloc;
|
|
|
|
intel_encoder = &intel_dig_port->base;
|
|
encoder = &intel_encoder->base;
|
|
|
|
if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
|
|
DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
|
|
goto err_encoder_init;
|
|
|
|
intel_encoder->compute_config = intel_dp_compute_config;
|
|
intel_encoder->disable = intel_disable_dp;
|
|
intel_encoder->get_hw_state = intel_dp_get_hw_state;
|
|
intel_encoder->get_config = intel_dp_get_config;
|
|
intel_encoder->suspend = intel_dp_encoder_suspend;
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
|
|
intel_encoder->pre_enable = chv_pre_enable_dp;
|
|
intel_encoder->enable = vlv_enable_dp;
|
|
intel_encoder->post_disable = chv_post_disable_dp;
|
|
intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
|
|
intel_encoder->pre_enable = vlv_pre_enable_dp;
|
|
intel_encoder->enable = vlv_enable_dp;
|
|
intel_encoder->post_disable = vlv_post_disable_dp;
|
|
} else {
|
|
intel_encoder->pre_enable = g4x_pre_enable_dp;
|
|
intel_encoder->enable = g4x_enable_dp;
|
|
if (INTEL_GEN(dev_priv) >= 5)
|
|
intel_encoder->post_disable = ilk_post_disable_dp;
|
|
}
|
|
|
|
intel_dig_port->port = port;
|
|
intel_dig_port->dp.output_reg = output_reg;
|
|
intel_dig_port->max_lanes = 4;
|
|
|
|
intel_encoder->type = INTEL_OUTPUT_DP;
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
if (port == PORT_D)
|
|
intel_encoder->crtc_mask = 1 << 2;
|
|
else
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
|
|
} else {
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
|
|
}
|
|
intel_encoder->cloneable = 0;
|
|
intel_encoder->port = port;
|
|
|
|
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
|
|
dev_priv->hotplug.irq_port[port] = intel_dig_port;
|
|
|
|
if (!intel_dp_init_connector(intel_dig_port, intel_connector))
|
|
goto err_init_connector;
|
|
|
|
return true;
|
|
|
|
err_init_connector:
|
|
drm_encoder_cleanup(encoder);
|
|
err_encoder_init:
|
|
kfree(intel_connector);
|
|
err_connector_alloc:
|
|
kfree(intel_dig_port);
|
|
return false;
|
|
}
|
|
|
|
void intel_dp_mst_suspend(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int i;
|
|
|
|
/* disable MST */
|
|
for (i = 0; i < I915_MAX_PORTS; i++) {
|
|
struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
|
|
|
|
if (!intel_dig_port || !intel_dig_port->dp.can_mst)
|
|
continue;
|
|
|
|
if (intel_dig_port->dp.is_mst)
|
|
drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
|
|
}
|
|
}
|
|
|
|
void intel_dp_mst_resume(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < I915_MAX_PORTS; i++) {
|
|
struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
|
|
int ret;
|
|
|
|
if (!intel_dig_port || !intel_dig_port->dp.can_mst)
|
|
continue;
|
|
|
|
ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
|
|
if (ret)
|
|
intel_dp_check_mst_status(&intel_dig_port->dp);
|
|
}
|
|
}
|