mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 18:00:36 +07:00
7d6c37e90c
Now that the CS line to be selected is passed to ->exec_op() and stored in chip->cur_cs and after patching all drivers implementing ->exec_op() to stop implementing this method, we can deprecate it by moving it to the nand_legacy structure. Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Tested-by: Janusz Krzysztofik <jmkrzyszt@gmail.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
247 lines
6.6 KiB
C
247 lines
6.6 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*
|
|
* Copyright © 2012 John Crispin <john@phrozen.org>
|
|
* Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
|
|
*/
|
|
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <lantiq_soc.h>
|
|
|
|
/* nand registers */
|
|
#define EBU_ADDSEL1 0x24
|
|
#define EBU_NAND_CON 0xB0
|
|
#define EBU_NAND_WAIT 0xB4
|
|
#define NAND_WAIT_RD BIT(0) /* NAND flash status output */
|
|
#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */
|
|
#define EBU_NAND_ECC0 0xB8
|
|
#define EBU_NAND_ECC_AC 0xBC
|
|
|
|
/*
|
|
* nand commands
|
|
* The pins of the NAND chip are selected based on the address bits of the
|
|
* "register" read and write. There are no special registers, but an
|
|
* address range and the lower address bits are used to activate the
|
|
* correct line. For example when the bit (1 << 2) is set in the address
|
|
* the ALE pin will be activated.
|
|
*/
|
|
#define NAND_CMD_ALE BIT(2) /* address latch enable */
|
|
#define NAND_CMD_CLE BIT(3) /* command latch enable */
|
|
#define NAND_CMD_CS BIT(4) /* chip select */
|
|
#define NAND_CMD_SE BIT(5) /* spare area access latch */
|
|
#define NAND_CMD_WP BIT(6) /* write protect */
|
|
#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE)
|
|
#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE)
|
|
#define NAND_WRITE_DATA (NAND_CMD_CS)
|
|
#define NAND_READ_DATA (NAND_CMD_CS)
|
|
|
|
/* we need to tel the ebu which addr we mapped the nand to */
|
|
#define ADDSEL1_MASK(x) (x << 4)
|
|
#define ADDSEL1_REGEN 1
|
|
|
|
/* we need to tell the EBU that we have nand attached and set it up properly */
|
|
#define BUSCON1_SETUP (1 << 22)
|
|
#define BUSCON1_BCGEN_RES (0x3 << 12)
|
|
#define BUSCON1_WAITWRC2 (2 << 8)
|
|
#define BUSCON1_WAITRDC2 (2 << 6)
|
|
#define BUSCON1_HOLDC1 (1 << 4)
|
|
#define BUSCON1_RECOVC1 (1 << 2)
|
|
#define BUSCON1_CMULT4 1
|
|
|
|
#define NAND_CON_CE (1 << 20)
|
|
#define NAND_CON_OUT_CS1 (1 << 10)
|
|
#define NAND_CON_IN_CS1 (1 << 8)
|
|
#define NAND_CON_PRE_P (1 << 7)
|
|
#define NAND_CON_WP_P (1 << 6)
|
|
#define NAND_CON_SE_P (1 << 5)
|
|
#define NAND_CON_CS_P (1 << 4)
|
|
#define NAND_CON_CSMUX (1 << 1)
|
|
#define NAND_CON_NANDM 1
|
|
|
|
struct xway_nand_data {
|
|
struct nand_chip chip;
|
|
unsigned long csflags;
|
|
void __iomem *nandaddr;
|
|
};
|
|
|
|
static u8 xway_readb(struct mtd_info *mtd, int op)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct xway_nand_data *data = nand_get_controller_data(chip);
|
|
|
|
return readb(data->nandaddr + op);
|
|
}
|
|
|
|
static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct xway_nand_data *data = nand_get_controller_data(chip);
|
|
|
|
writeb(value, data->nandaddr + op);
|
|
}
|
|
|
|
static void xway_select_chip(struct nand_chip *chip, int select)
|
|
{
|
|
struct xway_nand_data *data = nand_get_controller_data(chip);
|
|
|
|
switch (select) {
|
|
case -1:
|
|
ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
|
|
ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
|
|
spin_unlock_irqrestore(&ebu_lock, data->csflags);
|
|
break;
|
|
case 0:
|
|
spin_lock_irqsave(&ebu_lock, data->csflags);
|
|
ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
|
|
ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (cmd == NAND_CMD_NONE)
|
|
return;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
xway_writeb(mtd, NAND_WRITE_CMD, cmd);
|
|
else if (ctrl & NAND_ALE)
|
|
xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
|
|
|
|
while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
|
|
;
|
|
}
|
|
|
|
static int xway_dev_ready(struct nand_chip *chip)
|
|
{
|
|
return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
|
|
}
|
|
|
|
static unsigned char xway_read_byte(struct nand_chip *chip)
|
|
{
|
|
return xway_readb(nand_to_mtd(chip), NAND_READ_DATA);
|
|
}
|
|
|
|
static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA);
|
|
}
|
|
|
|
static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]);
|
|
}
|
|
|
|
/*
|
|
* Probe for the NAND device.
|
|
*/
|
|
static int xway_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct xway_nand_data *data;
|
|
struct mtd_info *mtd;
|
|
struct resource *res;
|
|
int err;
|
|
u32 cs;
|
|
u32 cs_flag = 0;
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
data->nandaddr = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(data->nandaddr))
|
|
return PTR_ERR(data->nandaddr);
|
|
|
|
nand_set_flash_node(&data->chip, pdev->dev.of_node);
|
|
mtd = nand_to_mtd(&data->chip);
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
data->chip.legacy.cmd_ctrl = xway_cmd_ctrl;
|
|
data->chip.legacy.dev_ready = xway_dev_ready;
|
|
data->chip.legacy.select_chip = xway_select_chip;
|
|
data->chip.legacy.write_buf = xway_write_buf;
|
|
data->chip.legacy.read_buf = xway_read_buf;
|
|
data->chip.legacy.read_byte = xway_read_byte;
|
|
data->chip.legacy.chip_delay = 30;
|
|
|
|
data->chip.ecc.mode = NAND_ECC_SOFT;
|
|
data->chip.ecc.algo = NAND_ECC_HAMMING;
|
|
|
|
platform_set_drvdata(pdev, data);
|
|
nand_set_controller_data(&data->chip, data);
|
|
|
|
/* load our CS from the DT. Either we find a valid 1 or default to 0 */
|
|
err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
|
|
if (!err && cs == 1)
|
|
cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
|
|
|
|
/* setup the EBU to run in NAND mode on our base addr */
|
|
ltq_ebu_w32(CPHYSADDR(data->nandaddr)
|
|
| ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
|
|
|
|
ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
|
|
| BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
|
|
| BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
|
|
|
|
ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
|
|
| NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
|
|
| cs_flag, EBU_NAND_CON);
|
|
|
|
/* Scan to find existence of the device */
|
|
err = nand_scan(&data->chip, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mtd_device_register(mtd, NULL, 0);
|
|
if (err)
|
|
nand_release(&data->chip);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Remove a NAND device.
|
|
*/
|
|
static int xway_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct xway_nand_data *data = platform_get_drvdata(pdev);
|
|
|
|
nand_release(&data->chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id xway_nand_match[] = {
|
|
{ .compatible = "lantiq,nand-xway" },
|
|
{},
|
|
};
|
|
|
|
static struct platform_driver xway_nand_driver = {
|
|
.probe = xway_nand_probe,
|
|
.remove = xway_nand_remove,
|
|
.driver = {
|
|
.name = "lantiq,nand-xway",
|
|
.of_match_table = xway_nand_match,
|
|
},
|
|
};
|
|
|
|
builtin_platform_driver(xway_nand_driver);
|