mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 09:15:42 +07:00
818f5c8f4c
Allow userland to specify a syncobj that is waited on before a render job starts processing. v2: Use 0 as invalid syncobj to drop flag (Eric) Drop extra newline (Eric) Signed-off-by: Stefan Schake <stschake@gmail.com> Signed-off-by: Eric Anholt <eric@anholt.net> Reviewed-by: Eric Anholt <eric@anholt.net> Link: https://patchwork.freedesktop.org/patch/msgid/1524607427-12876-2-git-send-email-stschake@gmail.com
815 lines
23 KiB
C
815 lines
23 KiB
C
/*
|
|
* Copyright (C) 2015 Broadcom
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/reservation.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_encoder.h>
|
|
#include <drm/drm_gem_cma_helper.h>
|
|
#include <drm/drm_atomic.h>
|
|
#include <drm/drm_syncobj.h>
|
|
|
|
#include "uapi/drm/vc4_drm.h"
|
|
|
|
/* Don't forget to update vc4_bo.c: bo_type_names[] when adding to
|
|
* this.
|
|
*/
|
|
enum vc4_kernel_bo_type {
|
|
/* Any kernel allocation (gem_create_object hook) before it
|
|
* gets another type set.
|
|
*/
|
|
VC4_BO_TYPE_KERNEL,
|
|
VC4_BO_TYPE_V3D,
|
|
VC4_BO_TYPE_V3D_SHADER,
|
|
VC4_BO_TYPE_DUMB,
|
|
VC4_BO_TYPE_BIN,
|
|
VC4_BO_TYPE_RCL,
|
|
VC4_BO_TYPE_BCL,
|
|
VC4_BO_TYPE_KERNEL_CACHE,
|
|
VC4_BO_TYPE_COUNT
|
|
};
|
|
|
|
/* Performance monitor object. The perform lifetime is controlled by userspace
|
|
* using perfmon related ioctls. A perfmon can be attached to a submit_cl
|
|
* request, and when this is the case, HW perf counters will be activated just
|
|
* before the submit_cl is submitted to the GPU and disabled when the job is
|
|
* done. This way, only events related to a specific job will be counted.
|
|
*/
|
|
struct vc4_perfmon {
|
|
/* Tracks the number of users of the perfmon, when this counter reaches
|
|
* zero the perfmon is destroyed.
|
|
*/
|
|
refcount_t refcnt;
|
|
|
|
/* Number of counters activated in this perfmon instance
|
|
* (should be less than DRM_VC4_MAX_PERF_COUNTERS).
|
|
*/
|
|
u8 ncounters;
|
|
|
|
/* Events counted by the HW perf counters. */
|
|
u8 events[DRM_VC4_MAX_PERF_COUNTERS];
|
|
|
|
/* Storage for counter values. Counters are incremented by the HW
|
|
* perf counter values every time the perfmon is attached to a GPU job.
|
|
* This way, perfmon users don't have to retrieve the results after
|
|
* each job if they want to track events covering several submissions.
|
|
* Note that counter values can't be reset, but you can fake a reset by
|
|
* destroying the perfmon and creating a new one.
|
|
*/
|
|
u64 counters[0];
|
|
};
|
|
|
|
struct vc4_dev {
|
|
struct drm_device *dev;
|
|
|
|
struct vc4_hdmi *hdmi;
|
|
struct vc4_hvs *hvs;
|
|
struct vc4_v3d *v3d;
|
|
struct vc4_dpi *dpi;
|
|
struct vc4_dsi *dsi1;
|
|
struct vc4_vec *vec;
|
|
|
|
struct vc4_hang_state *hang_state;
|
|
|
|
/* The kernel-space BO cache. Tracks buffers that have been
|
|
* unreferenced by all other users (refcounts of 0!) but not
|
|
* yet freed, so we can do cheap allocations.
|
|
*/
|
|
struct vc4_bo_cache {
|
|
/* Array of list heads for entries in the BO cache,
|
|
* based on number of pages, so we can do O(1) lookups
|
|
* in the cache when allocating.
|
|
*/
|
|
struct list_head *size_list;
|
|
uint32_t size_list_size;
|
|
|
|
/* List of all BOs in the cache, ordered by age, so we
|
|
* can do O(1) lookups when trying to free old
|
|
* buffers.
|
|
*/
|
|
struct list_head time_list;
|
|
struct work_struct time_work;
|
|
struct timer_list time_timer;
|
|
} bo_cache;
|
|
|
|
u32 num_labels;
|
|
struct vc4_label {
|
|
const char *name;
|
|
u32 num_allocated;
|
|
u32 size_allocated;
|
|
} *bo_labels;
|
|
|
|
/* Protects bo_cache and bo_labels. */
|
|
struct mutex bo_lock;
|
|
|
|
/* Purgeable BO pool. All BOs in this pool can have their memory
|
|
* reclaimed if the driver is unable to allocate new BOs. We also
|
|
* keep stats related to the purge mechanism here.
|
|
*/
|
|
struct {
|
|
struct list_head list;
|
|
unsigned int num;
|
|
size_t size;
|
|
unsigned int purged_num;
|
|
size_t purged_size;
|
|
struct mutex lock;
|
|
} purgeable;
|
|
|
|
uint64_t dma_fence_context;
|
|
|
|
/* Sequence number for the last job queued in bin_job_list.
|
|
* Starts at 0 (no jobs emitted).
|
|
*/
|
|
uint64_t emit_seqno;
|
|
|
|
/* Sequence number for the last completed job on the GPU.
|
|
* Starts at 0 (no jobs completed).
|
|
*/
|
|
uint64_t finished_seqno;
|
|
|
|
/* List of all struct vc4_exec_info for jobs to be executed in
|
|
* the binner. The first job in the list is the one currently
|
|
* programmed into ct0ca for execution.
|
|
*/
|
|
struct list_head bin_job_list;
|
|
|
|
/* List of all struct vc4_exec_info for jobs that have
|
|
* completed binning and are ready for rendering. The first
|
|
* job in the list is the one currently programmed into ct1ca
|
|
* for execution.
|
|
*/
|
|
struct list_head render_job_list;
|
|
|
|
/* List of the finished vc4_exec_infos waiting to be freed by
|
|
* job_done_work.
|
|
*/
|
|
struct list_head job_done_list;
|
|
/* Spinlock used to synchronize the job_list and seqno
|
|
* accesses between the IRQ handler and GEM ioctls.
|
|
*/
|
|
spinlock_t job_lock;
|
|
wait_queue_head_t job_wait_queue;
|
|
struct work_struct job_done_work;
|
|
|
|
/* Used to track the active perfmon if any. Access to this field is
|
|
* protected by job_lock.
|
|
*/
|
|
struct vc4_perfmon *active_perfmon;
|
|
|
|
/* List of struct vc4_seqno_cb for callbacks to be made from a
|
|
* workqueue when the given seqno is passed.
|
|
*/
|
|
struct list_head seqno_cb_list;
|
|
|
|
/* The memory used for storing binner tile alloc, tile state,
|
|
* and overflow memory allocations. This is freed when V3D
|
|
* powers down.
|
|
*/
|
|
struct vc4_bo *bin_bo;
|
|
|
|
/* Size of blocks allocated within bin_bo. */
|
|
uint32_t bin_alloc_size;
|
|
|
|
/* Bitmask of the bin_alloc_size chunks in bin_bo that are
|
|
* used.
|
|
*/
|
|
uint32_t bin_alloc_used;
|
|
|
|
/* Bitmask of the current bin_alloc used for overflow memory. */
|
|
uint32_t bin_alloc_overflow;
|
|
|
|
struct work_struct overflow_mem_work;
|
|
|
|
int power_refcount;
|
|
|
|
/* Mutex controlling the power refcount. */
|
|
struct mutex power_lock;
|
|
|
|
struct {
|
|
struct timer_list timer;
|
|
struct work_struct reset_work;
|
|
} hangcheck;
|
|
|
|
struct semaphore async_modeset;
|
|
|
|
struct drm_modeset_lock ctm_state_lock;
|
|
struct drm_private_obj ctm_manager;
|
|
};
|
|
|
|
static inline struct vc4_dev *
|
|
to_vc4_dev(struct drm_device *dev)
|
|
{
|
|
return (struct vc4_dev *)dev->dev_private;
|
|
}
|
|
|
|
struct vc4_bo {
|
|
struct drm_gem_cma_object base;
|
|
|
|
/* seqno of the last job to render using this BO. */
|
|
uint64_t seqno;
|
|
|
|
/* seqno of the last job to use the RCL to write to this BO.
|
|
*
|
|
* Note that this doesn't include binner overflow memory
|
|
* writes.
|
|
*/
|
|
uint64_t write_seqno;
|
|
|
|
bool t_format;
|
|
|
|
/* List entry for the BO's position in either
|
|
* vc4_exec_info->unref_list or vc4_dev->bo_cache.time_list
|
|
*/
|
|
struct list_head unref_head;
|
|
|
|
/* Time in jiffies when the BO was put in vc4->bo_cache. */
|
|
unsigned long free_time;
|
|
|
|
/* List entry for the BO's position in vc4_dev->bo_cache.size_list */
|
|
struct list_head size_head;
|
|
|
|
/* Struct for shader validation state, if created by
|
|
* DRM_IOCTL_VC4_CREATE_SHADER_BO.
|
|
*/
|
|
struct vc4_validated_shader_info *validated_shader;
|
|
|
|
/* normally (resv == &_resv) except for imported bo's */
|
|
struct reservation_object *resv;
|
|
struct reservation_object _resv;
|
|
|
|
/* One of enum vc4_kernel_bo_type, or VC4_BO_TYPE_COUNT + i
|
|
* for user-allocated labels.
|
|
*/
|
|
int label;
|
|
|
|
/* Count the number of active users. This is needed to determine
|
|
* whether we can move the BO to the purgeable list or not (when the BO
|
|
* is used by the GPU or the display engine we can't purge it).
|
|
*/
|
|
refcount_t usecnt;
|
|
|
|
/* Store purgeable/purged state here */
|
|
u32 madv;
|
|
struct mutex madv_lock;
|
|
};
|
|
|
|
static inline struct vc4_bo *
|
|
to_vc4_bo(struct drm_gem_object *bo)
|
|
{
|
|
return (struct vc4_bo *)bo;
|
|
}
|
|
|
|
struct vc4_fence {
|
|
struct dma_fence base;
|
|
struct drm_device *dev;
|
|
/* vc4 seqno for signaled() test */
|
|
uint64_t seqno;
|
|
};
|
|
|
|
static inline struct vc4_fence *
|
|
to_vc4_fence(struct dma_fence *fence)
|
|
{
|
|
return (struct vc4_fence *)fence;
|
|
}
|
|
|
|
struct vc4_seqno_cb {
|
|
struct work_struct work;
|
|
uint64_t seqno;
|
|
void (*func)(struct vc4_seqno_cb *cb);
|
|
};
|
|
|
|
struct vc4_v3d {
|
|
struct vc4_dev *vc4;
|
|
struct platform_device *pdev;
|
|
void __iomem *regs;
|
|
struct clk *clk;
|
|
};
|
|
|
|
struct vc4_hvs {
|
|
struct platform_device *pdev;
|
|
void __iomem *regs;
|
|
u32 __iomem *dlist;
|
|
|
|
/* Memory manager for CRTCs to allocate space in the display
|
|
* list. Units are dwords.
|
|
*/
|
|
struct drm_mm dlist_mm;
|
|
/* Memory manager for the LBM memory used by HVS scaling. */
|
|
struct drm_mm lbm_mm;
|
|
spinlock_t mm_lock;
|
|
|
|
struct drm_mm_node mitchell_netravali_filter;
|
|
};
|
|
|
|
struct vc4_plane {
|
|
struct drm_plane base;
|
|
};
|
|
|
|
static inline struct vc4_plane *
|
|
to_vc4_plane(struct drm_plane *plane)
|
|
{
|
|
return (struct vc4_plane *)plane;
|
|
}
|
|
|
|
enum vc4_scaling_mode {
|
|
VC4_SCALING_NONE,
|
|
VC4_SCALING_TPZ,
|
|
VC4_SCALING_PPF,
|
|
};
|
|
|
|
struct vc4_plane_state {
|
|
struct drm_plane_state base;
|
|
/* System memory copy of the display list for this element, computed
|
|
* at atomic_check time.
|
|
*/
|
|
u32 *dlist;
|
|
u32 dlist_size; /* Number of dwords allocated for the display list */
|
|
u32 dlist_count; /* Number of used dwords in the display list. */
|
|
|
|
/* Offset in the dlist to various words, for pageflip or
|
|
* cursor updates.
|
|
*/
|
|
u32 pos0_offset;
|
|
u32 pos2_offset;
|
|
u32 ptr0_offset;
|
|
|
|
/* Offset where the plane's dlist was last stored in the
|
|
* hardware at vc4_crtc_atomic_flush() time.
|
|
*/
|
|
u32 __iomem *hw_dlist;
|
|
|
|
/* Clipped coordinates of the plane on the display. */
|
|
int crtc_x, crtc_y, crtc_w, crtc_h;
|
|
/* Clipped area being scanned from in the FB. */
|
|
u32 src_x, src_y;
|
|
|
|
u32 src_w[2], src_h[2];
|
|
|
|
/* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
|
|
enum vc4_scaling_mode x_scaling[2], y_scaling[2];
|
|
bool is_unity;
|
|
bool is_yuv;
|
|
|
|
/* Offset to start scanning out from the start of the plane's
|
|
* BO.
|
|
*/
|
|
u32 offsets[3];
|
|
|
|
/* Our allocation in LBM for temporary storage during scaling. */
|
|
struct drm_mm_node lbm;
|
|
|
|
/* Set when the plane has per-pixel alpha content or does not cover
|
|
* the entire screen. This is a hint to the CRTC that it might need
|
|
* to enable background color fill.
|
|
*/
|
|
bool needs_bg_fill;
|
|
};
|
|
|
|
static inline struct vc4_plane_state *
|
|
to_vc4_plane_state(struct drm_plane_state *state)
|
|
{
|
|
return (struct vc4_plane_state *)state;
|
|
}
|
|
|
|
enum vc4_encoder_type {
|
|
VC4_ENCODER_TYPE_NONE,
|
|
VC4_ENCODER_TYPE_HDMI,
|
|
VC4_ENCODER_TYPE_VEC,
|
|
VC4_ENCODER_TYPE_DSI0,
|
|
VC4_ENCODER_TYPE_DSI1,
|
|
VC4_ENCODER_TYPE_SMI,
|
|
VC4_ENCODER_TYPE_DPI,
|
|
};
|
|
|
|
struct vc4_encoder {
|
|
struct drm_encoder base;
|
|
enum vc4_encoder_type type;
|
|
u32 clock_select;
|
|
};
|
|
|
|
static inline struct vc4_encoder *
|
|
to_vc4_encoder(struct drm_encoder *encoder)
|
|
{
|
|
return container_of(encoder, struct vc4_encoder, base);
|
|
}
|
|
|
|
struct vc4_crtc_data {
|
|
/* Which channel of the HVS this pixelvalve sources from. */
|
|
int hvs_channel;
|
|
|
|
enum vc4_encoder_type encoder_types[4];
|
|
};
|
|
|
|
struct vc4_crtc {
|
|
struct drm_crtc base;
|
|
const struct vc4_crtc_data *data;
|
|
void __iomem *regs;
|
|
|
|
/* Timestamp at start of vblank irq - unaffected by lock delays. */
|
|
ktime_t t_vblank;
|
|
|
|
/* Which HVS channel we're using for our CRTC. */
|
|
int channel;
|
|
|
|
u8 lut_r[256];
|
|
u8 lut_g[256];
|
|
u8 lut_b[256];
|
|
/* Size in pixels of the COB memory allocated to this CRTC. */
|
|
u32 cob_size;
|
|
|
|
struct drm_pending_vblank_event *event;
|
|
};
|
|
|
|
static inline struct vc4_crtc *
|
|
to_vc4_crtc(struct drm_crtc *crtc)
|
|
{
|
|
return (struct vc4_crtc *)crtc;
|
|
}
|
|
|
|
#define V3D_READ(offset) readl(vc4->v3d->regs + offset)
|
|
#define V3D_WRITE(offset, val) writel(val, vc4->v3d->regs + offset)
|
|
#define HVS_READ(offset) readl(vc4->hvs->regs + offset)
|
|
#define HVS_WRITE(offset, val) writel(val, vc4->hvs->regs + offset)
|
|
|
|
struct vc4_exec_info {
|
|
/* Sequence number for this bin/render job. */
|
|
uint64_t seqno;
|
|
|
|
/* Latest write_seqno of any BO that binning depends on. */
|
|
uint64_t bin_dep_seqno;
|
|
|
|
struct dma_fence *fence;
|
|
|
|
/* Last current addresses the hardware was processing when the
|
|
* hangcheck timer checked on us.
|
|
*/
|
|
uint32_t last_ct0ca, last_ct1ca;
|
|
|
|
/* Kernel-space copy of the ioctl arguments */
|
|
struct drm_vc4_submit_cl *args;
|
|
|
|
/* This is the array of BOs that were looked up at the start of exec.
|
|
* Command validation will use indices into this array.
|
|
*/
|
|
struct drm_gem_cma_object **bo;
|
|
uint32_t bo_count;
|
|
|
|
/* List of BOs that are being written by the RCL. Other than
|
|
* the binner temporary storage, this is all the BOs written
|
|
* by the job.
|
|
*/
|
|
struct drm_gem_cma_object *rcl_write_bo[4];
|
|
uint32_t rcl_write_bo_count;
|
|
|
|
/* Pointers for our position in vc4->job_list */
|
|
struct list_head head;
|
|
|
|
/* List of other BOs used in the job that need to be released
|
|
* once the job is complete.
|
|
*/
|
|
struct list_head unref_list;
|
|
|
|
/* Current unvalidated indices into @bo loaded by the non-hardware
|
|
* VC4_PACKET_GEM_HANDLES.
|
|
*/
|
|
uint32_t bo_index[2];
|
|
|
|
/* This is the BO where we store the validated command lists, shader
|
|
* records, and uniforms.
|
|
*/
|
|
struct drm_gem_cma_object *exec_bo;
|
|
|
|
/**
|
|
* This tracks the per-shader-record state (packet 64) that
|
|
* determines the length of the shader record and the offset
|
|
* it's expected to be found at. It gets read in from the
|
|
* command lists.
|
|
*/
|
|
struct vc4_shader_state {
|
|
uint32_t addr;
|
|
/* Maximum vertex index referenced by any primitive using this
|
|
* shader state.
|
|
*/
|
|
uint32_t max_index;
|
|
} *shader_state;
|
|
|
|
/** How many shader states the user declared they were using. */
|
|
uint32_t shader_state_size;
|
|
/** How many shader state records the validator has seen. */
|
|
uint32_t shader_state_count;
|
|
|
|
bool found_tile_binning_mode_config_packet;
|
|
bool found_start_tile_binning_packet;
|
|
bool found_increment_semaphore_packet;
|
|
bool found_flush;
|
|
uint8_t bin_tiles_x, bin_tiles_y;
|
|
/* Physical address of the start of the tile alloc array
|
|
* (where each tile's binned CL will start)
|
|
*/
|
|
uint32_t tile_alloc_offset;
|
|
/* Bitmask of which binner slots are freed when this job completes. */
|
|
uint32_t bin_slots;
|
|
|
|
/**
|
|
* Computed addresses pointing into exec_bo where we start the
|
|
* bin thread (ct0) and render thread (ct1).
|
|
*/
|
|
uint32_t ct0ca, ct0ea;
|
|
uint32_t ct1ca, ct1ea;
|
|
|
|
/* Pointer to the unvalidated bin CL (if present). */
|
|
void *bin_u;
|
|
|
|
/* Pointers to the shader recs. These paddr gets incremented as CL
|
|
* packets are relocated in validate_gl_shader_state, and the vaddrs
|
|
* (u and v) get incremented and size decremented as the shader recs
|
|
* themselves are validated.
|
|
*/
|
|
void *shader_rec_u;
|
|
void *shader_rec_v;
|
|
uint32_t shader_rec_p;
|
|
uint32_t shader_rec_size;
|
|
|
|
/* Pointers to the uniform data. These pointers are incremented, and
|
|
* size decremented, as each batch of uniforms is uploaded.
|
|
*/
|
|
void *uniforms_u;
|
|
void *uniforms_v;
|
|
uint32_t uniforms_p;
|
|
uint32_t uniforms_size;
|
|
|
|
/* Pointer to a performance monitor object if the user requested it,
|
|
* NULL otherwise.
|
|
*/
|
|
struct vc4_perfmon *perfmon;
|
|
};
|
|
|
|
/* Per-open file private data. Any driver-specific resource that has to be
|
|
* released when the DRM file is closed should be placed here.
|
|
*/
|
|
struct vc4_file {
|
|
struct {
|
|
struct idr idr;
|
|
struct mutex lock;
|
|
} perfmon;
|
|
};
|
|
|
|
static inline struct vc4_exec_info *
|
|
vc4_first_bin_job(struct vc4_dev *vc4)
|
|
{
|
|
return list_first_entry_or_null(&vc4->bin_job_list,
|
|
struct vc4_exec_info, head);
|
|
}
|
|
|
|
static inline struct vc4_exec_info *
|
|
vc4_first_render_job(struct vc4_dev *vc4)
|
|
{
|
|
return list_first_entry_or_null(&vc4->render_job_list,
|
|
struct vc4_exec_info, head);
|
|
}
|
|
|
|
static inline struct vc4_exec_info *
|
|
vc4_last_render_job(struct vc4_dev *vc4)
|
|
{
|
|
if (list_empty(&vc4->render_job_list))
|
|
return NULL;
|
|
return list_last_entry(&vc4->render_job_list,
|
|
struct vc4_exec_info, head);
|
|
}
|
|
|
|
/**
|
|
* struct vc4_texture_sample_info - saves the offsets into the UBO for texture
|
|
* setup parameters.
|
|
*
|
|
* This will be used at draw time to relocate the reference to the texture
|
|
* contents in p0, and validate that the offset combined with
|
|
* width/height/stride/etc. from p1 and p2/p3 doesn't sample outside the BO.
|
|
* Note that the hardware treats unprovided config parameters as 0, so not all
|
|
* of them need to be set up for every texure sample, and we'll store ~0 as
|
|
* the offset to mark the unused ones.
|
|
*
|
|
* See the VC4 3D architecture guide page 41 ("Texture and Memory Lookup Unit
|
|
* Setup") for definitions of the texture parameters.
|
|
*/
|
|
struct vc4_texture_sample_info {
|
|
bool is_direct;
|
|
uint32_t p_offset[4];
|
|
};
|
|
|
|
/**
|
|
* struct vc4_validated_shader_info - information about validated shaders that
|
|
* needs to be used from command list validation.
|
|
*
|
|
* For a given shader, each time a shader state record references it, we need
|
|
* to verify that the shader doesn't read more uniforms than the shader state
|
|
* record's uniform BO pointer can provide, and we need to apply relocations
|
|
* and validate the shader state record's uniforms that define the texture
|
|
* samples.
|
|
*/
|
|
struct vc4_validated_shader_info {
|
|
uint32_t uniforms_size;
|
|
uint32_t uniforms_src_size;
|
|
uint32_t num_texture_samples;
|
|
struct vc4_texture_sample_info *texture_samples;
|
|
|
|
uint32_t num_uniform_addr_offsets;
|
|
uint32_t *uniform_addr_offsets;
|
|
|
|
bool is_threaded;
|
|
};
|
|
|
|
/**
|
|
* _wait_for - magic (register) wait macro
|
|
*
|
|
* Does the right thing for modeset paths when run under kdgb or similar atomic
|
|
* contexts. Note that it's important that we check the condition again after
|
|
* having timed out, since the timeout could be due to preemption or similar and
|
|
* we've never had a chance to check the condition before the timeout.
|
|
*/
|
|
#define _wait_for(COND, MS, W) ({ \
|
|
unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1; \
|
|
int ret__ = 0; \
|
|
while (!(COND)) { \
|
|
if (time_after(jiffies, timeout__)) { \
|
|
if (!(COND)) \
|
|
ret__ = -ETIMEDOUT; \
|
|
break; \
|
|
} \
|
|
if (W && drm_can_sleep()) { \
|
|
msleep(W); \
|
|
} else { \
|
|
cpu_relax(); \
|
|
} \
|
|
} \
|
|
ret__; \
|
|
})
|
|
|
|
#define wait_for(COND, MS) _wait_for(COND, MS, 1)
|
|
|
|
/* vc4_bo.c */
|
|
struct drm_gem_object *vc4_create_object(struct drm_device *dev, size_t size);
|
|
void vc4_free_object(struct drm_gem_object *gem_obj);
|
|
struct vc4_bo *vc4_bo_create(struct drm_device *dev, size_t size,
|
|
bool from_cache, enum vc4_kernel_bo_type type);
|
|
int vc4_dumb_create(struct drm_file *file_priv,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args);
|
|
struct dma_buf *vc4_prime_export(struct drm_device *dev,
|
|
struct drm_gem_object *obj, int flags);
|
|
int vc4_create_bo_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_create_shader_bo_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_mmap_bo_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_set_tiling_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_get_tiling_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_label_bo_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_fault(struct vm_fault *vmf);
|
|
int vc4_mmap(struct file *filp, struct vm_area_struct *vma);
|
|
struct reservation_object *vc4_prime_res_obj(struct drm_gem_object *obj);
|
|
int vc4_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma);
|
|
struct drm_gem_object *vc4_prime_import_sg_table(struct drm_device *dev,
|
|
struct dma_buf_attachment *attach,
|
|
struct sg_table *sgt);
|
|
void *vc4_prime_vmap(struct drm_gem_object *obj);
|
|
int vc4_bo_cache_init(struct drm_device *dev);
|
|
void vc4_bo_cache_destroy(struct drm_device *dev);
|
|
int vc4_bo_stats_debugfs(struct seq_file *m, void *arg);
|
|
int vc4_bo_inc_usecnt(struct vc4_bo *bo);
|
|
void vc4_bo_dec_usecnt(struct vc4_bo *bo);
|
|
void vc4_bo_add_to_purgeable_pool(struct vc4_bo *bo);
|
|
void vc4_bo_remove_from_purgeable_pool(struct vc4_bo *bo);
|
|
|
|
/* vc4_crtc.c */
|
|
extern struct platform_driver vc4_crtc_driver;
|
|
int vc4_crtc_debugfs_regs(struct seq_file *m, void *arg);
|
|
bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
|
|
bool in_vblank_irq, int *vpos, int *hpos,
|
|
ktime_t *stime, ktime_t *etime,
|
|
const struct drm_display_mode *mode);
|
|
|
|
/* vc4_debugfs.c */
|
|
int vc4_debugfs_init(struct drm_minor *minor);
|
|
|
|
/* vc4_drv.c */
|
|
void __iomem *vc4_ioremap_regs(struct platform_device *dev, int index);
|
|
|
|
/* vc4_dpi.c */
|
|
extern struct platform_driver vc4_dpi_driver;
|
|
int vc4_dpi_debugfs_regs(struct seq_file *m, void *unused);
|
|
|
|
/* vc4_dsi.c */
|
|
extern struct platform_driver vc4_dsi_driver;
|
|
int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused);
|
|
|
|
/* vc4_fence.c */
|
|
extern const struct dma_fence_ops vc4_fence_ops;
|
|
|
|
/* vc4_gem.c */
|
|
void vc4_gem_init(struct drm_device *dev);
|
|
void vc4_gem_destroy(struct drm_device *dev);
|
|
int vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
void vc4_submit_next_bin_job(struct drm_device *dev);
|
|
void vc4_submit_next_render_job(struct drm_device *dev);
|
|
void vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec);
|
|
int vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno,
|
|
uint64_t timeout_ns, bool interruptible);
|
|
void vc4_job_handle_completed(struct vc4_dev *vc4);
|
|
int vc4_queue_seqno_cb(struct drm_device *dev,
|
|
struct vc4_seqno_cb *cb, uint64_t seqno,
|
|
void (*func)(struct vc4_seqno_cb *cb));
|
|
int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
|
|
/* vc4_hdmi.c */
|
|
extern struct platform_driver vc4_hdmi_driver;
|
|
int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused);
|
|
|
|
/* vc4_vec.c */
|
|
extern struct platform_driver vc4_vec_driver;
|
|
int vc4_vec_debugfs_regs(struct seq_file *m, void *unused);
|
|
|
|
/* vc4_irq.c */
|
|
irqreturn_t vc4_irq(int irq, void *arg);
|
|
void vc4_irq_preinstall(struct drm_device *dev);
|
|
int vc4_irq_postinstall(struct drm_device *dev);
|
|
void vc4_irq_uninstall(struct drm_device *dev);
|
|
void vc4_irq_reset(struct drm_device *dev);
|
|
|
|
/* vc4_hvs.c */
|
|
extern struct platform_driver vc4_hvs_driver;
|
|
void vc4_hvs_dump_state(struct drm_device *dev);
|
|
int vc4_hvs_debugfs_regs(struct seq_file *m, void *unused);
|
|
|
|
/* vc4_kms.c */
|
|
int vc4_kms_load(struct drm_device *dev);
|
|
|
|
/* vc4_plane.c */
|
|
struct drm_plane *vc4_plane_init(struct drm_device *dev,
|
|
enum drm_plane_type type);
|
|
u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist);
|
|
u32 vc4_plane_dlist_size(const struct drm_plane_state *state);
|
|
void vc4_plane_async_set_fb(struct drm_plane *plane,
|
|
struct drm_framebuffer *fb);
|
|
|
|
/* vc4_v3d.c */
|
|
extern struct platform_driver vc4_v3d_driver;
|
|
int vc4_v3d_debugfs_ident(struct seq_file *m, void *unused);
|
|
int vc4_v3d_debugfs_regs(struct seq_file *m, void *unused);
|
|
int vc4_v3d_get_bin_slot(struct vc4_dev *vc4);
|
|
|
|
/* vc4_validate.c */
|
|
int
|
|
vc4_validate_bin_cl(struct drm_device *dev,
|
|
void *validated,
|
|
void *unvalidated,
|
|
struct vc4_exec_info *exec);
|
|
|
|
int
|
|
vc4_validate_shader_recs(struct drm_device *dev, struct vc4_exec_info *exec);
|
|
|
|
struct drm_gem_cma_object *vc4_use_bo(struct vc4_exec_info *exec,
|
|
uint32_t hindex);
|
|
|
|
int vc4_get_rcl(struct drm_device *dev, struct vc4_exec_info *exec);
|
|
|
|
bool vc4_check_tex_size(struct vc4_exec_info *exec,
|
|
struct drm_gem_cma_object *fbo,
|
|
uint32_t offset, uint8_t tiling_format,
|
|
uint32_t width, uint32_t height, uint8_t cpp);
|
|
|
|
/* vc4_validate_shader.c */
|
|
struct vc4_validated_shader_info *
|
|
vc4_validate_shader(struct drm_gem_cma_object *shader_obj);
|
|
|
|
/* vc4_perfmon.c */
|
|
void vc4_perfmon_get(struct vc4_perfmon *perfmon);
|
|
void vc4_perfmon_put(struct vc4_perfmon *perfmon);
|
|
void vc4_perfmon_start(struct vc4_dev *vc4, struct vc4_perfmon *perfmon);
|
|
void vc4_perfmon_stop(struct vc4_dev *vc4, struct vc4_perfmon *perfmon,
|
|
bool capture);
|
|
struct vc4_perfmon *vc4_perfmon_find(struct vc4_file *vc4file, int id);
|
|
void vc4_perfmon_open_file(struct vc4_file *vc4file);
|
|
void vc4_perfmon_close_file(struct vc4_file *vc4file);
|
|
int vc4_perfmon_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_perfmon_destroy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
int vc4_perfmon_get_values_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|