mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 08:46:49 +07:00
8901925d32
Use BIT_MASK() and BIT_WORD() rather than hard-coding the size of the "long" type. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
350 lines
8.5 KiB
C
350 lines
8.5 KiB
C
/*
|
|
* Copyright 1995, Russell King.
|
|
* Various bits and pieces copyrights include:
|
|
* Linus Torvalds (test_bit).
|
|
* Big endian support: Copyright 2001, Nicolas Pitre
|
|
* reworked by rmk.
|
|
*
|
|
* bit 0 is the LSB of an "unsigned long" quantity.
|
|
*
|
|
* Please note that the code in this file should never be included
|
|
* from user space. Many of these are not implemented in assembler
|
|
* since they would be too costly. Also, they require privileged
|
|
* instructions (which are not available from user mode) to ensure
|
|
* that they are atomic.
|
|
*/
|
|
|
|
#ifndef __ASM_ARM_BITOPS_H
|
|
#define __ASM_ARM_BITOPS_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
#error only <linux/bitops.h> can be included directly
|
|
#endif
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/irqflags.h>
|
|
#include <asm/barrier.h>
|
|
|
|
/*
|
|
* These functions are the basis of our bit ops.
|
|
*
|
|
* First, the atomic bitops. These use native endian.
|
|
*/
|
|
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask = BIT_MASK(bit);
|
|
|
|
p += BIT_WORD(bit);
|
|
|
|
raw_local_irq_save(flags);
|
|
*p |= mask;
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask = BIT_MASK(bit);
|
|
|
|
p += BIT_WORD(bit);
|
|
|
|
raw_local_irq_save(flags);
|
|
*p &= ~mask;
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask = BIT_MASK(bit);
|
|
|
|
p += BIT_WORD(bit);
|
|
|
|
raw_local_irq_save(flags);
|
|
*p ^= mask;
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
static inline int
|
|
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int res;
|
|
unsigned long mask = BIT_MASK(bit);
|
|
|
|
p += BIT_WORD(bit);
|
|
|
|
raw_local_irq_save(flags);
|
|
res = *p;
|
|
*p = res | mask;
|
|
raw_local_irq_restore(flags);
|
|
|
|
return (res & mask) != 0;
|
|
}
|
|
|
|
static inline int
|
|
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int res;
|
|
unsigned long mask = BIT_MASK(bit);
|
|
|
|
p += BIT_WORD(bit);
|
|
|
|
raw_local_irq_save(flags);
|
|
res = *p;
|
|
*p = res & ~mask;
|
|
raw_local_irq_restore(flags);
|
|
|
|
return (res & mask) != 0;
|
|
}
|
|
|
|
static inline int
|
|
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int res;
|
|
unsigned long mask = BIT_MASK(bit);
|
|
|
|
p += BIT_WORD(bit);
|
|
|
|
raw_local_irq_save(flags);
|
|
res = *p;
|
|
*p = res ^ mask;
|
|
raw_local_irq_restore(flags);
|
|
|
|
return (res & mask) != 0;
|
|
}
|
|
|
|
#include <asm-generic/bitops/non-atomic.h>
|
|
|
|
/*
|
|
* A note about Endian-ness.
|
|
* -------------------------
|
|
*
|
|
* When the ARM is put into big endian mode via CR15, the processor
|
|
* merely swaps the order of bytes within words, thus:
|
|
*
|
|
* ------------ physical data bus bits -----------
|
|
* D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
|
|
* little byte 3 byte 2 byte 1 byte 0
|
|
* big byte 0 byte 1 byte 2 byte 3
|
|
*
|
|
* This means that reading a 32-bit word at address 0 returns the same
|
|
* value irrespective of the endian mode bit.
|
|
*
|
|
* Peripheral devices should be connected with the data bus reversed in
|
|
* "Big Endian" mode. ARM Application Note 61 is applicable, and is
|
|
* available from http://www.arm.com/.
|
|
*
|
|
* The following assumes that the data bus connectivity for big endian
|
|
* mode has been followed.
|
|
*
|
|
* Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
|
|
*/
|
|
|
|
/*
|
|
* Native endian assembly bitops. nr = 0 -> word 0 bit 0.
|
|
*/
|
|
extern void _set_bit(int nr, volatile unsigned long * p);
|
|
extern void _clear_bit(int nr, volatile unsigned long * p);
|
|
extern void _change_bit(int nr, volatile unsigned long * p);
|
|
extern int _test_and_set_bit(int nr, volatile unsigned long * p);
|
|
extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
|
|
extern int _test_and_change_bit(int nr, volatile unsigned long * p);
|
|
|
|
/*
|
|
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
|
|
*/
|
|
extern int _find_first_zero_bit_le(const void * p, unsigned size);
|
|
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
|
|
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
|
|
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
|
|
|
|
/*
|
|
* Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
|
|
*/
|
|
extern int _find_first_zero_bit_be(const void * p, unsigned size);
|
|
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
|
|
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
|
|
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
|
|
|
|
#ifndef CONFIG_SMP
|
|
/*
|
|
* The __* form of bitops are non-atomic and may be reordered.
|
|
*/
|
|
#define ATOMIC_BITOP(name,nr,p) \
|
|
(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
|
|
#else
|
|
#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
|
|
#endif
|
|
|
|
/*
|
|
* Native endian atomic definitions.
|
|
*/
|
|
#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
|
|
#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
|
|
#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
|
|
#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
|
|
#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
|
|
#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
|
|
|
|
#ifndef __ARMEB__
|
|
/*
|
|
* These are the little endian, atomic definitions.
|
|
*/
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
|
|
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
|
|
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
|
|
|
|
#else
|
|
/*
|
|
* These are the big endian, atomic definitions.
|
|
*/
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
|
|
#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
|
|
#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
|
|
|
|
#endif
|
|
|
|
#if __LINUX_ARM_ARCH__ < 5
|
|
|
|
#include <asm-generic/bitops/ffz.h>
|
|
#include <asm-generic/bitops/__fls.h>
|
|
#include <asm-generic/bitops/__ffs.h>
|
|
#include <asm-generic/bitops/fls.h>
|
|
#include <asm-generic/bitops/ffs.h>
|
|
|
|
#else
|
|
|
|
static inline int constant_fls(int x)
|
|
{
|
|
int r = 32;
|
|
|
|
if (!x)
|
|
return 0;
|
|
if (!(x & 0xffff0000u)) {
|
|
x <<= 16;
|
|
r -= 16;
|
|
}
|
|
if (!(x & 0xff000000u)) {
|
|
x <<= 8;
|
|
r -= 8;
|
|
}
|
|
if (!(x & 0xf0000000u)) {
|
|
x <<= 4;
|
|
r -= 4;
|
|
}
|
|
if (!(x & 0xc0000000u)) {
|
|
x <<= 2;
|
|
r -= 2;
|
|
}
|
|
if (!(x & 0x80000000u)) {
|
|
x <<= 1;
|
|
r -= 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* On ARMv5 and above those functions can be implemented around the
|
|
* clz instruction for much better code efficiency. __clz returns
|
|
* the number of leading zeros, zero input will return 32, and
|
|
* 0x80000000 will return 0.
|
|
*/
|
|
static inline unsigned int __clz(unsigned int x)
|
|
{
|
|
unsigned int ret;
|
|
|
|
asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fls() returns zero if the input is zero, otherwise returns the bit
|
|
* position of the last set bit, where the LSB is 1 and MSB is 32.
|
|
*/
|
|
static inline int fls(int x)
|
|
{
|
|
if (__builtin_constant_p(x))
|
|
return constant_fls(x);
|
|
|
|
return 32 - __clz(x);
|
|
}
|
|
|
|
/*
|
|
* __fls() returns the bit position of the last bit set, where the
|
|
* LSB is 0 and MSB is 31. Zero input is undefined.
|
|
*/
|
|
static inline unsigned long __fls(unsigned long x)
|
|
{
|
|
return fls(x) - 1;
|
|
}
|
|
|
|
/*
|
|
* ffs() returns zero if the input was zero, otherwise returns the bit
|
|
* position of the first set bit, where the LSB is 1 and MSB is 32.
|
|
*/
|
|
static inline int ffs(int x)
|
|
{
|
|
return fls(x & -x);
|
|
}
|
|
|
|
/*
|
|
* __ffs() returns the bit position of the first bit set, where the
|
|
* LSB is 0 and MSB is 31. Zero input is undefined.
|
|
*/
|
|
static inline unsigned long __ffs(unsigned long x)
|
|
{
|
|
return ffs(x) - 1;
|
|
}
|
|
|
|
#define ffz(x) __ffs( ~(x) )
|
|
|
|
#endif
|
|
|
|
#include <asm-generic/bitops/fls64.h>
|
|
|
|
#include <asm-generic/bitops/sched.h>
|
|
#include <asm-generic/bitops/hweight.h>
|
|
#include <asm-generic/bitops/lock.h>
|
|
|
|
#ifdef __ARMEB__
|
|
|
|
static inline int find_first_zero_bit_le(const void *p, unsigned size)
|
|
{
|
|
return _find_first_zero_bit_le(p, size);
|
|
}
|
|
#define find_first_zero_bit_le find_first_zero_bit_le
|
|
|
|
static inline int find_next_zero_bit_le(const void *p, int size, int offset)
|
|
{
|
|
return _find_next_zero_bit_le(p, size, offset);
|
|
}
|
|
#define find_next_zero_bit_le find_next_zero_bit_le
|
|
|
|
static inline int find_next_bit_le(const void *p, int size, int offset)
|
|
{
|
|
return _find_next_bit_le(p, size, offset);
|
|
}
|
|
#define find_next_bit_le find_next_bit_le
|
|
|
|
#endif
|
|
|
|
#include <asm-generic/bitops/le.h>
|
|
|
|
/*
|
|
* Ext2 is defined to use little-endian byte ordering.
|
|
*/
|
|
#include <asm-generic/bitops/ext2-atomic-setbit.h>
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _ARM_BITOPS_H */
|