mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 19:19:34 +07:00
40e041a2c8
If two processes share a common memory region, they usually want some guarantees to allow safe access. This often includes: - one side cannot overwrite data while the other reads it - one side cannot shrink the buffer while the other accesses it - one side cannot grow the buffer beyond previously set boundaries If there is a trust-relationship between both parties, there is no need for policy enforcement. However, if there's no trust relationship (eg., for general-purpose IPC) sharing memory-regions is highly fragile and often not possible without local copies. Look at the following two use-cases: 1) A graphics client wants to share its rendering-buffer with a graphics-server. The memory-region is allocated by the client for read/write access and a second FD is passed to the server. While scanning out from the memory region, the server has no guarantee that the client doesn't shrink the buffer at any time, requiring rather cumbersome SIGBUS handling. 2) A process wants to perform an RPC on another process. To avoid huge bandwidth consumption, zero-copy is preferred. After a message is assembled in-memory and a FD is passed to the remote side, both sides want to be sure that neither modifies this shared copy, anymore. The source may have put sensible data into the message without a separate copy and the target may want to parse the message inline, to avoid a local copy. While SIGBUS handling, POSIX mandatory locking and MAP_DENYWRITE provide ways to achieve most of this, the first one is unproportionally ugly to use in libraries and the latter two are broken/racy or even disabled due to denial of service attacks. This patch introduces the concept of SEALING. If you seal a file, a specific set of operations is blocked on that file forever. Unlike locks, seals can only be set, never removed. Hence, once you verified a specific set of seals is set, you're guaranteed that no-one can perform the blocked operations on this file, anymore. An initial set of SEALS is introduced by this patch: - SHRINK: If SEAL_SHRINK is set, the file in question cannot be reduced in size. This affects ftruncate() and open(O_TRUNC). - GROW: If SEAL_GROW is set, the file in question cannot be increased in size. This affects ftruncate(), fallocate() and write(). - WRITE: If SEAL_WRITE is set, no write operations (besides resizing) are possible. This affects fallocate(PUNCH_HOLE), mmap() and write(). - SEAL: If SEAL_SEAL is set, no further seals can be added to a file. This basically prevents the F_ADD_SEAL operation on a file and can be set to prevent others from adding further seals that you don't want. The described use-cases can easily use these seals to provide safe use without any trust-relationship: 1) The graphics server can verify that a passed file-descriptor has SEAL_SHRINK set. This allows safe scanout, while the client is allowed to increase buffer size for window-resizing on-the-fly. Concurrent writes are explicitly allowed. 2) For general-purpose IPC, both processes can verify that SEAL_SHRINK, SEAL_GROW and SEAL_WRITE are set. This guarantees that neither process can modify the data while the other side parses it. Furthermore, it guarantees that even with writable FDs passed to the peer, it cannot increase the size to hit memory-limits of the source process (in case the file-storage is accounted to the source). The new API is an extension to fcntl(), adding two new commands: F_GET_SEALS: Return a bitset describing the seals on the file. This can be called on any FD if the underlying file supports sealing. F_ADD_SEALS: Change the seals of a given file. This requires WRITE access to the file and F_SEAL_SEAL may not already be set. Furthermore, the underlying file must support sealing and there may not be any existing shared mapping of that file. Otherwise, EBADF/EPERM is returned. The given seals are _added_ to the existing set of seals on the file. You cannot remove seals again. The fcntl() handler is currently specific to shmem and disabled on all files. A file needs to explicitly support sealing for this interface to work. A separate syscall is added in a follow-up, which creates files that support sealing. There is no intention to support this on other file-systems. Semantics are unclear for non-volatile files and we lack any use-case right now. Therefore, the implementation is specific to shmem. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
766 lines
17 KiB
C
766 lines
17 KiB
C
/*
|
|
* linux/fs/fcntl.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/syscalls.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/dnotify.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/security.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/shmem_fs.h>
|
|
|
|
#include <asm/poll.h>
|
|
#include <asm/siginfo.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
|
|
|
|
static int setfl(int fd, struct file * filp, unsigned long arg)
|
|
{
|
|
struct inode * inode = file_inode(filp);
|
|
int error = 0;
|
|
|
|
/*
|
|
* O_APPEND cannot be cleared if the file is marked as append-only
|
|
* and the file is open for write.
|
|
*/
|
|
if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
|
|
return -EPERM;
|
|
|
|
/* O_NOATIME can only be set by the owner or superuser */
|
|
if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
/* required for strict SunOS emulation */
|
|
if (O_NONBLOCK != O_NDELAY)
|
|
if (arg & O_NDELAY)
|
|
arg |= O_NONBLOCK;
|
|
|
|
if (arg & O_DIRECT) {
|
|
if (!filp->f_mapping || !filp->f_mapping->a_ops ||
|
|
!filp->f_mapping->a_ops->direct_IO)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (filp->f_op->check_flags)
|
|
error = filp->f_op->check_flags(arg);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* ->fasync() is responsible for setting the FASYNC bit.
|
|
*/
|
|
if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
|
|
error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
|
|
if (error < 0)
|
|
goto out;
|
|
if (error > 0)
|
|
error = 0;
|
|
}
|
|
spin_lock(&filp->f_lock);
|
|
filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
|
|
spin_unlock(&filp->f_lock);
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
|
|
int force)
|
|
{
|
|
write_lock_irq(&filp->f_owner.lock);
|
|
if (force || !filp->f_owner.pid) {
|
|
put_pid(filp->f_owner.pid);
|
|
filp->f_owner.pid = get_pid(pid);
|
|
filp->f_owner.pid_type = type;
|
|
|
|
if (pid) {
|
|
const struct cred *cred = current_cred();
|
|
filp->f_owner.uid = cred->uid;
|
|
filp->f_owner.euid = cred->euid;
|
|
}
|
|
}
|
|
write_unlock_irq(&filp->f_owner.lock);
|
|
}
|
|
|
|
int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
|
|
int force)
|
|
{
|
|
int err;
|
|
|
|
err = security_file_set_fowner(filp);
|
|
if (err)
|
|
return err;
|
|
|
|
f_modown(filp, pid, type, force);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__f_setown);
|
|
|
|
int f_setown(struct file *filp, unsigned long arg, int force)
|
|
{
|
|
enum pid_type type;
|
|
struct pid *pid;
|
|
int who = arg;
|
|
int result;
|
|
type = PIDTYPE_PID;
|
|
if (who < 0) {
|
|
type = PIDTYPE_PGID;
|
|
who = -who;
|
|
}
|
|
rcu_read_lock();
|
|
pid = find_vpid(who);
|
|
result = __f_setown(filp, pid, type, force);
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(f_setown);
|
|
|
|
void f_delown(struct file *filp)
|
|
{
|
|
f_modown(filp, NULL, PIDTYPE_PID, 1);
|
|
}
|
|
|
|
pid_t f_getown(struct file *filp)
|
|
{
|
|
pid_t pid;
|
|
read_lock(&filp->f_owner.lock);
|
|
pid = pid_vnr(filp->f_owner.pid);
|
|
if (filp->f_owner.pid_type == PIDTYPE_PGID)
|
|
pid = -pid;
|
|
read_unlock(&filp->f_owner.lock);
|
|
return pid;
|
|
}
|
|
|
|
static int f_setown_ex(struct file *filp, unsigned long arg)
|
|
{
|
|
struct f_owner_ex __user *owner_p = (void __user *)arg;
|
|
struct f_owner_ex owner;
|
|
struct pid *pid;
|
|
int type;
|
|
int ret;
|
|
|
|
ret = copy_from_user(&owner, owner_p, sizeof(owner));
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
switch (owner.type) {
|
|
case F_OWNER_TID:
|
|
type = PIDTYPE_MAX;
|
|
break;
|
|
|
|
case F_OWNER_PID:
|
|
type = PIDTYPE_PID;
|
|
break;
|
|
|
|
case F_OWNER_PGRP:
|
|
type = PIDTYPE_PGID;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
pid = find_vpid(owner.pid);
|
|
if (owner.pid && !pid)
|
|
ret = -ESRCH;
|
|
else
|
|
ret = __f_setown(filp, pid, type, 1);
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f_getown_ex(struct file *filp, unsigned long arg)
|
|
{
|
|
struct f_owner_ex __user *owner_p = (void __user *)arg;
|
|
struct f_owner_ex owner;
|
|
int ret = 0;
|
|
|
|
read_lock(&filp->f_owner.lock);
|
|
owner.pid = pid_vnr(filp->f_owner.pid);
|
|
switch (filp->f_owner.pid_type) {
|
|
case PIDTYPE_MAX:
|
|
owner.type = F_OWNER_TID;
|
|
break;
|
|
|
|
case PIDTYPE_PID:
|
|
owner.type = F_OWNER_PID;
|
|
break;
|
|
|
|
case PIDTYPE_PGID:
|
|
owner.type = F_OWNER_PGRP;
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(1);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
read_unlock(&filp->f_owner.lock);
|
|
|
|
if (!ret) {
|
|
ret = copy_to_user(owner_p, &owner, sizeof(owner));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
static int f_getowner_uids(struct file *filp, unsigned long arg)
|
|
{
|
|
struct user_namespace *user_ns = current_user_ns();
|
|
uid_t __user *dst = (void __user *)arg;
|
|
uid_t src[2];
|
|
int err;
|
|
|
|
read_lock(&filp->f_owner.lock);
|
|
src[0] = from_kuid(user_ns, filp->f_owner.uid);
|
|
src[1] = from_kuid(user_ns, filp->f_owner.euid);
|
|
read_unlock(&filp->f_owner.lock);
|
|
|
|
err = put_user(src[0], &dst[0]);
|
|
err |= put_user(src[1], &dst[1]);
|
|
|
|
return err;
|
|
}
|
|
#else
|
|
static int f_getowner_uids(struct file *filp, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
|
|
struct file *filp)
|
|
{
|
|
long err = -EINVAL;
|
|
|
|
switch (cmd) {
|
|
case F_DUPFD:
|
|
err = f_dupfd(arg, filp, 0);
|
|
break;
|
|
case F_DUPFD_CLOEXEC:
|
|
err = f_dupfd(arg, filp, O_CLOEXEC);
|
|
break;
|
|
case F_GETFD:
|
|
err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
|
|
break;
|
|
case F_SETFD:
|
|
err = 0;
|
|
set_close_on_exec(fd, arg & FD_CLOEXEC);
|
|
break;
|
|
case F_GETFL:
|
|
err = filp->f_flags;
|
|
break;
|
|
case F_SETFL:
|
|
err = setfl(fd, filp, arg);
|
|
break;
|
|
#if BITS_PER_LONG != 32
|
|
/* 32-bit arches must use fcntl64() */
|
|
case F_OFD_GETLK:
|
|
#endif
|
|
case F_GETLK:
|
|
err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
|
|
break;
|
|
#if BITS_PER_LONG != 32
|
|
/* 32-bit arches must use fcntl64() */
|
|
case F_OFD_SETLK:
|
|
case F_OFD_SETLKW:
|
|
#endif
|
|
/* Fallthrough */
|
|
case F_SETLK:
|
|
case F_SETLKW:
|
|
err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
|
|
break;
|
|
case F_GETOWN:
|
|
/*
|
|
* XXX If f_owner is a process group, the
|
|
* negative return value will get converted
|
|
* into an error. Oops. If we keep the
|
|
* current syscall conventions, the only way
|
|
* to fix this will be in libc.
|
|
*/
|
|
err = f_getown(filp);
|
|
force_successful_syscall_return();
|
|
break;
|
|
case F_SETOWN:
|
|
err = f_setown(filp, arg, 1);
|
|
break;
|
|
case F_GETOWN_EX:
|
|
err = f_getown_ex(filp, arg);
|
|
break;
|
|
case F_SETOWN_EX:
|
|
err = f_setown_ex(filp, arg);
|
|
break;
|
|
case F_GETOWNER_UIDS:
|
|
err = f_getowner_uids(filp, arg);
|
|
break;
|
|
case F_GETSIG:
|
|
err = filp->f_owner.signum;
|
|
break;
|
|
case F_SETSIG:
|
|
/* arg == 0 restores default behaviour. */
|
|
if (!valid_signal(arg)) {
|
|
break;
|
|
}
|
|
err = 0;
|
|
filp->f_owner.signum = arg;
|
|
break;
|
|
case F_GETLEASE:
|
|
err = fcntl_getlease(filp);
|
|
break;
|
|
case F_SETLEASE:
|
|
err = fcntl_setlease(fd, filp, arg);
|
|
break;
|
|
case F_NOTIFY:
|
|
err = fcntl_dirnotify(fd, filp, arg);
|
|
break;
|
|
case F_SETPIPE_SZ:
|
|
case F_GETPIPE_SZ:
|
|
err = pipe_fcntl(filp, cmd, arg);
|
|
break;
|
|
case F_ADD_SEALS:
|
|
case F_GET_SEALS:
|
|
err = shmem_fcntl(filp, cmd, arg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int check_fcntl_cmd(unsigned cmd)
|
|
{
|
|
switch (cmd) {
|
|
case F_DUPFD:
|
|
case F_DUPFD_CLOEXEC:
|
|
case F_GETFD:
|
|
case F_SETFD:
|
|
case F_GETFL:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
|
|
{
|
|
struct fd f = fdget_raw(fd);
|
|
long err = -EBADF;
|
|
|
|
if (!f.file)
|
|
goto out;
|
|
|
|
if (unlikely(f.file->f_mode & FMODE_PATH)) {
|
|
if (!check_fcntl_cmd(cmd))
|
|
goto out1;
|
|
}
|
|
|
|
err = security_file_fcntl(f.file, cmd, arg);
|
|
if (!err)
|
|
err = do_fcntl(fd, cmd, arg, f.file);
|
|
|
|
out1:
|
|
fdput(f);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#if BITS_PER_LONG == 32
|
|
SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
|
|
unsigned long, arg)
|
|
{
|
|
struct fd f = fdget_raw(fd);
|
|
long err = -EBADF;
|
|
|
|
if (!f.file)
|
|
goto out;
|
|
|
|
if (unlikely(f.file->f_mode & FMODE_PATH)) {
|
|
if (!check_fcntl_cmd(cmd))
|
|
goto out1;
|
|
}
|
|
|
|
err = security_file_fcntl(f.file, cmd, arg);
|
|
if (err)
|
|
goto out1;
|
|
|
|
switch (cmd) {
|
|
case F_GETLK64:
|
|
case F_OFD_GETLK:
|
|
err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
|
|
break;
|
|
case F_SETLK64:
|
|
case F_SETLKW64:
|
|
case F_OFD_SETLK:
|
|
case F_OFD_SETLKW:
|
|
err = fcntl_setlk64(fd, f.file, cmd,
|
|
(struct flock64 __user *) arg);
|
|
break;
|
|
default:
|
|
err = do_fcntl(fd, cmd, arg, f.file);
|
|
break;
|
|
}
|
|
out1:
|
|
fdput(f);
|
|
out:
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/* Table to convert sigio signal codes into poll band bitmaps */
|
|
|
|
static const long band_table[NSIGPOLL] = {
|
|
POLLIN | POLLRDNORM, /* POLL_IN */
|
|
POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
|
|
POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
|
|
POLLERR, /* POLL_ERR */
|
|
POLLPRI | POLLRDBAND, /* POLL_PRI */
|
|
POLLHUP | POLLERR /* POLL_HUP */
|
|
};
|
|
|
|
static inline int sigio_perm(struct task_struct *p,
|
|
struct fown_struct *fown, int sig)
|
|
{
|
|
const struct cred *cred;
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
cred = __task_cred(p);
|
|
ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
|
|
uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
|
|
uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
|
|
!security_file_send_sigiotask(p, fown, sig));
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static void send_sigio_to_task(struct task_struct *p,
|
|
struct fown_struct *fown,
|
|
int fd, int reason, int group)
|
|
{
|
|
/*
|
|
* F_SETSIG can change ->signum lockless in parallel, make
|
|
* sure we read it once and use the same value throughout.
|
|
*/
|
|
int signum = ACCESS_ONCE(fown->signum);
|
|
|
|
if (!sigio_perm(p, fown, signum))
|
|
return;
|
|
|
|
switch (signum) {
|
|
siginfo_t si;
|
|
default:
|
|
/* Queue a rt signal with the appropriate fd as its
|
|
value. We use SI_SIGIO as the source, not
|
|
SI_KERNEL, since kernel signals always get
|
|
delivered even if we can't queue. Failure to
|
|
queue in this case _should_ be reported; we fall
|
|
back to SIGIO in that case. --sct */
|
|
si.si_signo = signum;
|
|
si.si_errno = 0;
|
|
si.si_code = reason;
|
|
/* Make sure we are called with one of the POLL_*
|
|
reasons, otherwise we could leak kernel stack into
|
|
userspace. */
|
|
BUG_ON((reason & __SI_MASK) != __SI_POLL);
|
|
if (reason - POLL_IN >= NSIGPOLL)
|
|
si.si_band = ~0L;
|
|
else
|
|
si.si_band = band_table[reason - POLL_IN];
|
|
si.si_fd = fd;
|
|
if (!do_send_sig_info(signum, &si, p, group))
|
|
break;
|
|
/* fall-through: fall back on the old plain SIGIO signal */
|
|
case 0:
|
|
do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
|
|
}
|
|
}
|
|
|
|
void send_sigio(struct fown_struct *fown, int fd, int band)
|
|
{
|
|
struct task_struct *p;
|
|
enum pid_type type;
|
|
struct pid *pid;
|
|
int group = 1;
|
|
|
|
read_lock(&fown->lock);
|
|
|
|
type = fown->pid_type;
|
|
if (type == PIDTYPE_MAX) {
|
|
group = 0;
|
|
type = PIDTYPE_PID;
|
|
}
|
|
|
|
pid = fown->pid;
|
|
if (!pid)
|
|
goto out_unlock_fown;
|
|
|
|
read_lock(&tasklist_lock);
|
|
do_each_pid_task(pid, type, p) {
|
|
send_sigio_to_task(p, fown, fd, band, group);
|
|
} while_each_pid_task(pid, type, p);
|
|
read_unlock(&tasklist_lock);
|
|
out_unlock_fown:
|
|
read_unlock(&fown->lock);
|
|
}
|
|
|
|
static void send_sigurg_to_task(struct task_struct *p,
|
|
struct fown_struct *fown, int group)
|
|
{
|
|
if (sigio_perm(p, fown, SIGURG))
|
|
do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
|
|
}
|
|
|
|
int send_sigurg(struct fown_struct *fown)
|
|
{
|
|
struct task_struct *p;
|
|
enum pid_type type;
|
|
struct pid *pid;
|
|
int group = 1;
|
|
int ret = 0;
|
|
|
|
read_lock(&fown->lock);
|
|
|
|
type = fown->pid_type;
|
|
if (type == PIDTYPE_MAX) {
|
|
group = 0;
|
|
type = PIDTYPE_PID;
|
|
}
|
|
|
|
pid = fown->pid;
|
|
if (!pid)
|
|
goto out_unlock_fown;
|
|
|
|
ret = 1;
|
|
|
|
read_lock(&tasklist_lock);
|
|
do_each_pid_task(pid, type, p) {
|
|
send_sigurg_to_task(p, fown, group);
|
|
} while_each_pid_task(pid, type, p);
|
|
read_unlock(&tasklist_lock);
|
|
out_unlock_fown:
|
|
read_unlock(&fown->lock);
|
|
return ret;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(fasync_lock);
|
|
static struct kmem_cache *fasync_cache __read_mostly;
|
|
|
|
static void fasync_free_rcu(struct rcu_head *head)
|
|
{
|
|
kmem_cache_free(fasync_cache,
|
|
container_of(head, struct fasync_struct, fa_rcu));
|
|
}
|
|
|
|
/*
|
|
* Remove a fasync entry. If successfully removed, return
|
|
* positive and clear the FASYNC flag. If no entry exists,
|
|
* do nothing and return 0.
|
|
*
|
|
* NOTE! It is very important that the FASYNC flag always
|
|
* match the state "is the filp on a fasync list".
|
|
*
|
|
*/
|
|
int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
|
|
{
|
|
struct fasync_struct *fa, **fp;
|
|
int result = 0;
|
|
|
|
spin_lock(&filp->f_lock);
|
|
spin_lock(&fasync_lock);
|
|
for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
|
|
if (fa->fa_file != filp)
|
|
continue;
|
|
|
|
spin_lock_irq(&fa->fa_lock);
|
|
fa->fa_file = NULL;
|
|
spin_unlock_irq(&fa->fa_lock);
|
|
|
|
*fp = fa->fa_next;
|
|
call_rcu(&fa->fa_rcu, fasync_free_rcu);
|
|
filp->f_flags &= ~FASYNC;
|
|
result = 1;
|
|
break;
|
|
}
|
|
spin_unlock(&fasync_lock);
|
|
spin_unlock(&filp->f_lock);
|
|
return result;
|
|
}
|
|
|
|
struct fasync_struct *fasync_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* NOTE! This can be used only for unused fasync entries:
|
|
* entries that actually got inserted on the fasync list
|
|
* need to be released by rcu - see fasync_remove_entry.
|
|
*/
|
|
void fasync_free(struct fasync_struct *new)
|
|
{
|
|
kmem_cache_free(fasync_cache, new);
|
|
}
|
|
|
|
/*
|
|
* Insert a new entry into the fasync list. Return the pointer to the
|
|
* old one if we didn't use the new one.
|
|
*
|
|
* NOTE! It is very important that the FASYNC flag always
|
|
* match the state "is the filp on a fasync list".
|
|
*/
|
|
struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
|
|
{
|
|
struct fasync_struct *fa, **fp;
|
|
|
|
spin_lock(&filp->f_lock);
|
|
spin_lock(&fasync_lock);
|
|
for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
|
|
if (fa->fa_file != filp)
|
|
continue;
|
|
|
|
spin_lock_irq(&fa->fa_lock);
|
|
fa->fa_fd = fd;
|
|
spin_unlock_irq(&fa->fa_lock);
|
|
goto out;
|
|
}
|
|
|
|
spin_lock_init(&new->fa_lock);
|
|
new->magic = FASYNC_MAGIC;
|
|
new->fa_file = filp;
|
|
new->fa_fd = fd;
|
|
new->fa_next = *fapp;
|
|
rcu_assign_pointer(*fapp, new);
|
|
filp->f_flags |= FASYNC;
|
|
|
|
out:
|
|
spin_unlock(&fasync_lock);
|
|
spin_unlock(&filp->f_lock);
|
|
return fa;
|
|
}
|
|
|
|
/*
|
|
* Add a fasync entry. Return negative on error, positive if
|
|
* added, and zero if did nothing but change an existing one.
|
|
*/
|
|
static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
|
|
{
|
|
struct fasync_struct *new;
|
|
|
|
new = fasync_alloc();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* fasync_insert_entry() returns the old (update) entry if
|
|
* it existed.
|
|
*
|
|
* So free the (unused) new entry and return 0 to let the
|
|
* caller know that we didn't add any new fasync entries.
|
|
*/
|
|
if (fasync_insert_entry(fd, filp, fapp, new)) {
|
|
fasync_free(new);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* fasync_helper() is used by almost all character device drivers
|
|
* to set up the fasync queue, and for regular files by the file
|
|
* lease code. It returns negative on error, 0 if it did no changes
|
|
* and positive if it added/deleted the entry.
|
|
*/
|
|
int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
|
|
{
|
|
if (!on)
|
|
return fasync_remove_entry(filp, fapp);
|
|
return fasync_add_entry(fd, filp, fapp);
|
|
}
|
|
|
|
EXPORT_SYMBOL(fasync_helper);
|
|
|
|
/*
|
|
* rcu_read_lock() is held
|
|
*/
|
|
static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
|
|
{
|
|
while (fa) {
|
|
struct fown_struct *fown;
|
|
unsigned long flags;
|
|
|
|
if (fa->magic != FASYNC_MAGIC) {
|
|
printk(KERN_ERR "kill_fasync: bad magic number in "
|
|
"fasync_struct!\n");
|
|
return;
|
|
}
|
|
spin_lock_irqsave(&fa->fa_lock, flags);
|
|
if (fa->fa_file) {
|
|
fown = &fa->fa_file->f_owner;
|
|
/* Don't send SIGURG to processes which have not set a
|
|
queued signum: SIGURG has its own default signalling
|
|
mechanism. */
|
|
if (!(sig == SIGURG && fown->signum == 0))
|
|
send_sigio(fown, fa->fa_fd, band);
|
|
}
|
|
spin_unlock_irqrestore(&fa->fa_lock, flags);
|
|
fa = rcu_dereference(fa->fa_next);
|
|
}
|
|
}
|
|
|
|
void kill_fasync(struct fasync_struct **fp, int sig, int band)
|
|
{
|
|
/* First a quick test without locking: usually
|
|
* the list is empty.
|
|
*/
|
|
if (*fp) {
|
|
rcu_read_lock();
|
|
kill_fasync_rcu(rcu_dereference(*fp), sig, band);
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(kill_fasync);
|
|
|
|
static int __init fcntl_init(void)
|
|
{
|
|
/*
|
|
* Please add new bits here to ensure allocation uniqueness.
|
|
* Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
|
|
* is defined as O_NONBLOCK on some platforms and not on others.
|
|
*/
|
|
BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
|
|
O_RDONLY | O_WRONLY | O_RDWR |
|
|
O_CREAT | O_EXCL | O_NOCTTY |
|
|
O_TRUNC | O_APPEND | /* O_NONBLOCK | */
|
|
__O_SYNC | O_DSYNC | FASYNC |
|
|
O_DIRECT | O_LARGEFILE | O_DIRECTORY |
|
|
O_NOFOLLOW | O_NOATIME | O_CLOEXEC |
|
|
__FMODE_EXEC | O_PATH | __O_TMPFILE
|
|
));
|
|
|
|
fasync_cache = kmem_cache_create("fasync_cache",
|
|
sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
|
|
return 0;
|
|
}
|
|
|
|
module_init(fcntl_init)
|