linux_dsm_epyc7002/Documentation/x86/x86_64/mm.txt
Andrey Ryabinin f5a40711fa x86/mm: Set MODULES_END to 0xffffffffff000000
Since f06bdd4001 ("x86/mm: Adapt MODULES_END based on fixmap section size")
kasan_mem_to_shadow(MODULES_END) could be not aligned to a page boundary.

So passing page unaligned address to kasan_populate_zero_shadow() have two
possible effects:

1) It may leave one page hole in supposed to be populated area. After commit
  21506525fb ("x86/kasan/64: Teach KASAN about the cpu_entry_area") that
  hole happens to be in the shadow covering fixmap area and leads to crash:

 BUG: unable to handle kernel paging request at fffffbffffe8ee04
 RIP: 0010:check_memory_region+0x5c/0x190

 Call Trace:
  <NMI>
  memcpy+0x1f/0x50
  ghes_copy_tofrom_phys+0xab/0x180
  ghes_read_estatus+0xfb/0x280
  ghes_notify_nmi+0x2b2/0x410
  nmi_handle+0x115/0x2c0
  default_do_nmi+0x57/0x110
  do_nmi+0xf8/0x150
  end_repeat_nmi+0x1a/0x1e

Note, the crash likely disappeared after commit 92a0f81d89, which
changed kasan_populate_zero_shadow() call the way it was before
commit 21506525fb.

2) Attempt to load module near MODULES_END will fail, because
   __vmalloc_node_range() called from kasan_module_alloc() will hit the
   WARN_ON(!pte_none(*pte)) in the vmap_pte_range() and bail out with error.

To fix this we need to make kasan_mem_to_shadow(MODULES_END) page aligned
which means that MODULES_END should be 8*PAGE_SIZE aligned.

The whole point of commit f06bdd4001 was to move MODULES_END down if
NR_CPUS is big, so the cpu_entry_area takes a lot of space.
But since 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
the cpu_entry_area is no longer in fixmap, so we could just set
MODULES_END to a fixed 8*PAGE_SIZE aligned address.

Fixes: f06bdd4001 ("x86/mm: Adapt MODULES_END based on fixmap section size")
Reported-by: Jakub Kicinski <kubakici@wp.pl>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Link: https://lkml.kernel.org/r/20171228160620.23818-1-aryabinin@virtuozzo.com
2018-01-04 23:04:57 +01:00

73 lines
3.6 KiB
Plaintext

Virtual memory map with 4 level page tables:
0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
hole caused by [47:63] sign extension
ffff800000000000 - ffff87ffffffffff (=43 bits) guard hole, reserved for hypervisor
ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory
ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole
ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole
ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ...
ffffec0000000000 - fffffbffffffffff (=44 bits) kasan shadow memory (16TB)
... unused hole ...
fffffe0000000000 - fffffe7fffffffff (=39 bits) LDT remap for PTI
fffffe8000000000 - fffffeffffffffff (=39 bits) cpu_entry_area mapping
ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
... unused hole ...
ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
... unused hole ...
ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - [fixmap start] (~1526 MB) module mapping space (variable)
[fixmap start] - ffffffffff5fffff kernel-internal fixmap range
ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
Virtual memory map with 5 level page tables:
0000000000000000 - 00ffffffffffffff (=56 bits) user space, different per mm
hole caused by [56:63] sign extension
ff00000000000000 - ff0fffffffffffff (=52 bits) guard hole, reserved for hypervisor
ff10000000000000 - ff8fffffffffffff (=55 bits) direct mapping of all phys. memory
ff90000000000000 - ff9fffffffffffff (=52 bits) LDT remap for PTI
ffa0000000000000 - ffd1ffffffffffff (=54 bits) vmalloc/ioremap space (12800 TB)
ffd2000000000000 - ffd3ffffffffffff (=49 bits) hole
ffd4000000000000 - ffd5ffffffffffff (=49 bits) virtual memory map (512TB)
... unused hole ...
ffdf000000000000 - fffffc0000000000 (=53 bits) kasan shadow memory (8PB)
... unused hole ...
fffffe8000000000 - fffffeffffffffff (=39 bits) cpu_entry_area mapping
ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks
... unused hole ...
ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space
... unused hole ...
ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - fffffffffeffffff (1520 MB) module mapping space
[fixmap start] - ffffffffff5fffff kernel-internal fixmap range
ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI
ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole
Architecture defines a 64-bit virtual address. Implementations can support
less. Currently supported are 48- and 57-bit virtual addresses. Bits 63
through to the most-significant implemented bit are sign extended.
This causes hole between user space and kernel addresses if you interpret them
as unsigned.
The direct mapping covers all memory in the system up to the highest
memory address (this means in some cases it can also include PCI memory
holes).
vmalloc space is lazily synchronized into the different PML4/PML5 pages of
the processes using the page fault handler, with init_top_pgt as
reference.
We map EFI runtime services in the 'efi_pgd' PGD in a 64Gb large virtual
memory window (this size is arbitrary, it can be raised later if needed).
The mappings are not part of any other kernel PGD and are only available
during EFI runtime calls.
Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all
physical memory, vmalloc/ioremap space and virtual memory map are randomized.
Their order is preserved but their base will be offset early at boot time.