mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-06 06:46:38 +07:00
ae687e58b3
When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
1888 lines
42 KiB
C
1888 lines
42 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include <linux/stddef.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/freezer.h>
|
|
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
|
|
static kmem_zone_t *xfs_buf_zone;
|
|
|
|
static struct workqueue_struct *xfslogd_workqueue;
|
|
|
|
#ifdef XFS_BUF_LOCK_TRACKING
|
|
# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
|
|
# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
|
|
# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
|
|
#else
|
|
# define XB_SET_OWNER(bp) do { } while (0)
|
|
# define XB_CLEAR_OWNER(bp) do { } while (0)
|
|
# define XB_GET_OWNER(bp) do { } while (0)
|
|
#endif
|
|
|
|
#define xb_to_gfp(flags) \
|
|
((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
|
|
|
|
|
|
static inline int
|
|
xfs_buf_is_vmapped(
|
|
struct xfs_buf *bp)
|
|
{
|
|
/*
|
|
* Return true if the buffer is vmapped.
|
|
*
|
|
* b_addr is null if the buffer is not mapped, but the code is clever
|
|
* enough to know it doesn't have to map a single page, so the check has
|
|
* to be both for b_addr and bp->b_page_count > 1.
|
|
*/
|
|
return bp->b_addr && bp->b_page_count > 1;
|
|
}
|
|
|
|
static inline int
|
|
xfs_buf_vmap_len(
|
|
struct xfs_buf *bp)
|
|
{
|
|
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
|
|
}
|
|
|
|
/*
|
|
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
|
|
* b_lru_ref count so that the buffer is freed immediately when the buffer
|
|
* reference count falls to zero. If the buffer is already on the LRU, we need
|
|
* to remove the reference that LRU holds on the buffer.
|
|
*
|
|
* This prevents build-up of stale buffers on the LRU.
|
|
*/
|
|
void
|
|
xfs_buf_stale(
|
|
struct xfs_buf *bp)
|
|
{
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
bp->b_flags |= XBF_STALE;
|
|
|
|
/*
|
|
* Clear the delwri status so that a delwri queue walker will not
|
|
* flush this buffer to disk now that it is stale. The delwri queue has
|
|
* a reference to the buffer, so this is safe to do.
|
|
*/
|
|
bp->b_flags &= ~_XBF_DELWRI_Q;
|
|
|
|
spin_lock(&bp->b_lock);
|
|
atomic_set(&bp->b_lru_ref, 0);
|
|
if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
|
|
(list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
|
|
atomic_dec(&bp->b_hold);
|
|
|
|
ASSERT(atomic_read(&bp->b_hold) >= 1);
|
|
spin_unlock(&bp->b_lock);
|
|
}
|
|
|
|
static int
|
|
xfs_buf_get_maps(
|
|
struct xfs_buf *bp,
|
|
int map_count)
|
|
{
|
|
ASSERT(bp->b_maps == NULL);
|
|
bp->b_map_count = map_count;
|
|
|
|
if (map_count == 1) {
|
|
bp->b_maps = &bp->__b_map;
|
|
return 0;
|
|
}
|
|
|
|
bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
|
|
KM_NOFS);
|
|
if (!bp->b_maps)
|
|
return ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
static void
|
|
xfs_buf_free_maps(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (bp->b_maps != &bp->__b_map) {
|
|
kmem_free(bp->b_maps);
|
|
bp->b_maps = NULL;
|
|
}
|
|
}
|
|
|
|
struct xfs_buf *
|
|
_xfs_buf_alloc(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
int i;
|
|
|
|
bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
|
|
if (unlikely(!bp))
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't want certain flags to appear in b_flags unless they are
|
|
* specifically set by later operations on the buffer.
|
|
*/
|
|
flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
atomic_set(&bp->b_hold, 1);
|
|
atomic_set(&bp->b_lru_ref, 1);
|
|
init_completion(&bp->b_iowait);
|
|
INIT_LIST_HEAD(&bp->b_lru);
|
|
INIT_LIST_HEAD(&bp->b_list);
|
|
RB_CLEAR_NODE(&bp->b_rbnode);
|
|
sema_init(&bp->b_sema, 0); /* held, no waiters */
|
|
spin_lock_init(&bp->b_lock);
|
|
XB_SET_OWNER(bp);
|
|
bp->b_target = target;
|
|
bp->b_flags = flags;
|
|
|
|
/*
|
|
* Set length and io_length to the same value initially.
|
|
* I/O routines should use io_length, which will be the same in
|
|
* most cases but may be reset (e.g. XFS recovery).
|
|
*/
|
|
error = xfs_buf_get_maps(bp, nmaps);
|
|
if (error) {
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
return NULL;
|
|
}
|
|
|
|
bp->b_bn = map[0].bm_bn;
|
|
bp->b_length = 0;
|
|
for (i = 0; i < nmaps; i++) {
|
|
bp->b_maps[i].bm_bn = map[i].bm_bn;
|
|
bp->b_maps[i].bm_len = map[i].bm_len;
|
|
bp->b_length += map[i].bm_len;
|
|
}
|
|
bp->b_io_length = bp->b_length;
|
|
|
|
atomic_set(&bp->b_pin_count, 0);
|
|
init_waitqueue_head(&bp->b_waiters);
|
|
|
|
XFS_STATS_INC(xb_create);
|
|
trace_xfs_buf_init(bp, _RET_IP_);
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Allocate a page array capable of holding a specified number
|
|
* of pages, and point the page buf at it.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_get_pages(
|
|
xfs_buf_t *bp,
|
|
int page_count,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
/* Make sure that we have a page list */
|
|
if (bp->b_pages == NULL) {
|
|
bp->b_page_count = page_count;
|
|
if (page_count <= XB_PAGES) {
|
|
bp->b_pages = bp->b_page_array;
|
|
} else {
|
|
bp->b_pages = kmem_alloc(sizeof(struct page *) *
|
|
page_count, KM_NOFS);
|
|
if (bp->b_pages == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
STATIC void
|
|
_xfs_buf_free_pages(
|
|
xfs_buf_t *bp)
|
|
{
|
|
if (bp->b_pages != bp->b_page_array) {
|
|
kmem_free(bp->b_pages);
|
|
bp->b_pages = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Releases the specified buffer.
|
|
*
|
|
* The modification state of any associated pages is left unchanged.
|
|
* The buffer must not be on any hash - use xfs_buf_rele instead for
|
|
* hashed and refcounted buffers
|
|
*/
|
|
void
|
|
xfs_buf_free(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_free(bp, _RET_IP_);
|
|
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
|
|
if (bp->b_flags & _XBF_PAGES) {
|
|
uint i;
|
|
|
|
if (xfs_buf_is_vmapped(bp))
|
|
vm_unmap_ram(bp->b_addr - bp->b_offset,
|
|
bp->b_page_count);
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page = bp->b_pages[i];
|
|
|
|
__free_page(page);
|
|
}
|
|
} else if (bp->b_flags & _XBF_KMEM)
|
|
kmem_free(bp->b_addr);
|
|
_xfs_buf_free_pages(bp);
|
|
xfs_buf_free_maps(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
}
|
|
|
|
/*
|
|
* Allocates all the pages for buffer in question and builds it's page list.
|
|
*/
|
|
STATIC int
|
|
xfs_buf_allocate_memory(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
size_t size;
|
|
size_t nbytes, offset;
|
|
gfp_t gfp_mask = xb_to_gfp(flags);
|
|
unsigned short page_count, i;
|
|
xfs_off_t start, end;
|
|
int error;
|
|
|
|
/*
|
|
* for buffers that are contained within a single page, just allocate
|
|
* the memory from the heap - there's no need for the complexity of
|
|
* page arrays to keep allocation down to order 0.
|
|
*/
|
|
size = BBTOB(bp->b_length);
|
|
if (size < PAGE_SIZE) {
|
|
bp->b_addr = kmem_alloc(size, KM_NOFS);
|
|
if (!bp->b_addr) {
|
|
/* low memory - use alloc_page loop instead */
|
|
goto use_alloc_page;
|
|
}
|
|
|
|
if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
|
|
((unsigned long)bp->b_addr & PAGE_MASK)) {
|
|
/* b_addr spans two pages - use alloc_page instead */
|
|
kmem_free(bp->b_addr);
|
|
bp->b_addr = NULL;
|
|
goto use_alloc_page;
|
|
}
|
|
bp->b_offset = offset_in_page(bp->b_addr);
|
|
bp->b_pages = bp->b_page_array;
|
|
bp->b_pages[0] = virt_to_page(bp->b_addr);
|
|
bp->b_page_count = 1;
|
|
bp->b_flags |= _XBF_KMEM;
|
|
return 0;
|
|
}
|
|
|
|
use_alloc_page:
|
|
start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
|
|
end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
|
|
>> PAGE_SHIFT;
|
|
page_count = end - start;
|
|
error = _xfs_buf_get_pages(bp, page_count, flags);
|
|
if (unlikely(error))
|
|
return error;
|
|
|
|
offset = bp->b_offset;
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page;
|
|
uint retries = 0;
|
|
retry:
|
|
page = alloc_page(gfp_mask);
|
|
if (unlikely(page == NULL)) {
|
|
if (flags & XBF_READ_AHEAD) {
|
|
bp->b_page_count = i;
|
|
error = ENOMEM;
|
|
goto out_free_pages;
|
|
}
|
|
|
|
/*
|
|
* This could deadlock.
|
|
*
|
|
* But until all the XFS lowlevel code is revamped to
|
|
* handle buffer allocation failures we can't do much.
|
|
*/
|
|
if (!(++retries % 100))
|
|
xfs_err(NULL,
|
|
"possible memory allocation deadlock in %s (mode:0x%x)",
|
|
__func__, gfp_mask);
|
|
|
|
XFS_STATS_INC(xb_page_retries);
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
|
|
XFS_STATS_INC(xb_page_found);
|
|
|
|
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
|
|
size -= nbytes;
|
|
bp->b_pages[i] = page;
|
|
offset = 0;
|
|
}
|
|
return 0;
|
|
|
|
out_free_pages:
|
|
for (i = 0; i < bp->b_page_count; i++)
|
|
__free_page(bp->b_pages[i]);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Map buffer into kernel address-space if necessary.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_map_pages(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
ASSERT(bp->b_flags & _XBF_PAGES);
|
|
if (bp->b_page_count == 1) {
|
|
/* A single page buffer is always mappable */
|
|
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
|
|
} else if (flags & XBF_UNMAPPED) {
|
|
bp->b_addr = NULL;
|
|
} else {
|
|
int retried = 0;
|
|
unsigned noio_flag;
|
|
|
|
/*
|
|
* vm_map_ram() will allocate auxillary structures (e.g.
|
|
* pagetables) with GFP_KERNEL, yet we are likely to be under
|
|
* GFP_NOFS context here. Hence we need to tell memory reclaim
|
|
* that we are in such a context via PF_MEMALLOC_NOIO to prevent
|
|
* memory reclaim re-entering the filesystem here and
|
|
* potentially deadlocking.
|
|
*/
|
|
noio_flag = memalloc_noio_save();
|
|
do {
|
|
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
|
|
-1, PAGE_KERNEL);
|
|
if (bp->b_addr)
|
|
break;
|
|
vm_unmap_aliases();
|
|
} while (retried++ <= 1);
|
|
memalloc_noio_restore(noio_flag);
|
|
|
|
if (!bp->b_addr)
|
|
return -ENOMEM;
|
|
bp->b_addr += bp->b_offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finding and Reading Buffers
|
|
*/
|
|
|
|
/*
|
|
* Look up, and creates if absent, a lockable buffer for
|
|
* a given range of an inode. The buffer is returned
|
|
* locked. No I/O is implied by this call.
|
|
*/
|
|
xfs_buf_t *
|
|
_xfs_buf_find(
|
|
struct xfs_buftarg *btp,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags,
|
|
xfs_buf_t *new_bp)
|
|
{
|
|
size_t numbytes;
|
|
struct xfs_perag *pag;
|
|
struct rb_node **rbp;
|
|
struct rb_node *parent;
|
|
xfs_buf_t *bp;
|
|
xfs_daddr_t blkno = map[0].bm_bn;
|
|
xfs_daddr_t eofs;
|
|
int numblks = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < nmaps; i++)
|
|
numblks += map[i].bm_len;
|
|
numbytes = BBTOB(numblks);
|
|
|
|
/* Check for IOs smaller than the sector size / not sector aligned */
|
|
ASSERT(!(numbytes < btp->bt_meta_sectorsize));
|
|
ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
|
|
|
|
/*
|
|
* Corrupted block numbers can get through to here, unfortunately, so we
|
|
* have to check that the buffer falls within the filesystem bounds.
|
|
*/
|
|
eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
|
|
if (blkno >= eofs) {
|
|
/*
|
|
* XXX (dgc): we should really be returning EFSCORRUPTED here,
|
|
* but none of the higher level infrastructure supports
|
|
* returning a specific error on buffer lookup failures.
|
|
*/
|
|
xfs_alert(btp->bt_mount,
|
|
"%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
|
|
__func__, blkno, eofs);
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
|
|
/* get tree root */
|
|
pag = xfs_perag_get(btp->bt_mount,
|
|
xfs_daddr_to_agno(btp->bt_mount, blkno));
|
|
|
|
/* walk tree */
|
|
spin_lock(&pag->pag_buf_lock);
|
|
rbp = &pag->pag_buf_tree.rb_node;
|
|
parent = NULL;
|
|
bp = NULL;
|
|
while (*rbp) {
|
|
parent = *rbp;
|
|
bp = rb_entry(parent, struct xfs_buf, b_rbnode);
|
|
|
|
if (blkno < bp->b_bn)
|
|
rbp = &(*rbp)->rb_left;
|
|
else if (blkno > bp->b_bn)
|
|
rbp = &(*rbp)->rb_right;
|
|
else {
|
|
/*
|
|
* found a block number match. If the range doesn't
|
|
* match, the only way this is allowed is if the buffer
|
|
* in the cache is stale and the transaction that made
|
|
* it stale has not yet committed. i.e. we are
|
|
* reallocating a busy extent. Skip this buffer and
|
|
* continue searching to the right for an exact match.
|
|
*/
|
|
if (bp->b_length != numblks) {
|
|
ASSERT(bp->b_flags & XBF_STALE);
|
|
rbp = &(*rbp)->rb_right;
|
|
continue;
|
|
}
|
|
atomic_inc(&bp->b_hold);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* No match found */
|
|
if (new_bp) {
|
|
rb_link_node(&new_bp->b_rbnode, parent, rbp);
|
|
rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
|
|
/* the buffer keeps the perag reference until it is freed */
|
|
new_bp->b_pag = pag;
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
XFS_STATS_INC(xb_miss_locked);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
return new_bp;
|
|
|
|
found:
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
|
|
if (!xfs_buf_trylock(bp)) {
|
|
if (flags & XBF_TRYLOCK) {
|
|
xfs_buf_rele(bp);
|
|
XFS_STATS_INC(xb_busy_locked);
|
|
return NULL;
|
|
}
|
|
xfs_buf_lock(bp);
|
|
XFS_STATS_INC(xb_get_locked_waited);
|
|
}
|
|
|
|
/*
|
|
* if the buffer is stale, clear all the external state associated with
|
|
* it. We need to keep flags such as how we allocated the buffer memory
|
|
* intact here.
|
|
*/
|
|
if (bp->b_flags & XBF_STALE) {
|
|
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
|
|
ASSERT(bp->b_iodone == NULL);
|
|
bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
|
|
bp->b_ops = NULL;
|
|
}
|
|
|
|
trace_xfs_buf_find(bp, flags, _RET_IP_);
|
|
XFS_STATS_INC(xb_get_locked);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Assembles a buffer covering the specified range. The code is optimised for
|
|
* cache hits, as metadata intensive workloads will see 3 orders of magnitude
|
|
* more hits than misses.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_get_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
struct xfs_buf *new_bp;
|
|
int error = 0;
|
|
|
|
bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
|
|
if (likely(bp))
|
|
goto found;
|
|
|
|
new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
|
|
if (unlikely(!new_bp))
|
|
return NULL;
|
|
|
|
error = xfs_buf_allocate_memory(new_bp, flags);
|
|
if (error) {
|
|
xfs_buf_free(new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
|
|
if (!bp) {
|
|
xfs_buf_free(new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
if (bp != new_bp)
|
|
xfs_buf_free(new_bp);
|
|
|
|
found:
|
|
if (!bp->b_addr) {
|
|
error = _xfs_buf_map_pages(bp, flags);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pagesn", __func__);
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
XFS_STATS_INC(xb_get);
|
|
trace_xfs_buf_get(bp, flags, _RET_IP_);
|
|
return bp;
|
|
}
|
|
|
|
STATIC int
|
|
_xfs_buf_read(
|
|
xfs_buf_t *bp,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
ASSERT(!(flags & XBF_WRITE));
|
|
ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
|
|
|
|
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
|
|
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
xfs_buf_iorequest(bp);
|
|
if (flags & XBF_ASYNC)
|
|
return 0;
|
|
return xfs_buf_iowait(bp);
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_read_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
flags |= XBF_READ;
|
|
|
|
bp = xfs_buf_get_map(target, map, nmaps, flags);
|
|
if (bp) {
|
|
trace_xfs_buf_read(bp, flags, _RET_IP_);
|
|
|
|
if (!XFS_BUF_ISDONE(bp)) {
|
|
XFS_STATS_INC(xb_get_read);
|
|
bp->b_ops = ops;
|
|
_xfs_buf_read(bp, flags);
|
|
} else if (flags & XBF_ASYNC) {
|
|
/*
|
|
* Read ahead call which is already satisfied,
|
|
* drop the buffer
|
|
*/
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
} else {
|
|
/* We do not want read in the flags */
|
|
bp->b_flags &= ~XBF_READ;
|
|
}
|
|
}
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* If we are not low on memory then do the readahead in a deadlock
|
|
* safe manner.
|
|
*/
|
|
void
|
|
xfs_buf_readahead_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
if (bdi_read_congested(target->bt_bdi))
|
|
return;
|
|
|
|
xfs_buf_read_map(target, map, nmaps,
|
|
XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
|
|
}
|
|
|
|
/*
|
|
* Read an uncached buffer from disk. Allocates and returns a locked
|
|
* buffer containing the disk contents or nothing.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_read_uncached(
|
|
struct xfs_buftarg *target,
|
|
xfs_daddr_t daddr,
|
|
size_t numblks,
|
|
int flags,
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
bp = xfs_buf_get_uncached(target, numblks, flags);
|
|
if (!bp)
|
|
return NULL;
|
|
|
|
/* set up the buffer for a read IO */
|
|
ASSERT(bp->b_map_count == 1);
|
|
bp->b_bn = daddr;
|
|
bp->b_maps[0].bm_bn = daddr;
|
|
bp->b_flags |= XBF_READ;
|
|
bp->b_ops = ops;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
}
|
|
xfs_buf_iorequest(bp);
|
|
xfs_buf_iowait(bp);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Return a buffer allocated as an empty buffer and associated to external
|
|
* memory via xfs_buf_associate_memory() back to it's empty state.
|
|
*/
|
|
void
|
|
xfs_buf_set_empty(
|
|
struct xfs_buf *bp,
|
|
size_t numblks)
|
|
{
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_page_count = 0;
|
|
bp->b_addr = NULL;
|
|
bp->b_length = numblks;
|
|
bp->b_io_length = numblks;
|
|
|
|
ASSERT(bp->b_map_count == 1);
|
|
bp->b_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_maps[0].bm_len = bp->b_length;
|
|
}
|
|
|
|
static inline struct page *
|
|
mem_to_page(
|
|
void *addr)
|
|
{
|
|
if ((!is_vmalloc_addr(addr))) {
|
|
return virt_to_page(addr);
|
|
} else {
|
|
return vmalloc_to_page(addr);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_buf_associate_memory(
|
|
xfs_buf_t *bp,
|
|
void *mem,
|
|
size_t len)
|
|
{
|
|
int rval;
|
|
int i = 0;
|
|
unsigned long pageaddr;
|
|
unsigned long offset;
|
|
size_t buflen;
|
|
int page_count;
|
|
|
|
pageaddr = (unsigned long)mem & PAGE_MASK;
|
|
offset = (unsigned long)mem - pageaddr;
|
|
buflen = PAGE_ALIGN(len + offset);
|
|
page_count = buflen >> PAGE_SHIFT;
|
|
|
|
/* Free any previous set of page pointers */
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_addr = mem;
|
|
|
|
rval = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (rval)
|
|
return rval;
|
|
|
|
bp->b_offset = offset;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
bp->b_pages[i] = mem_to_page((void *)pageaddr);
|
|
pageaddr += PAGE_SIZE;
|
|
}
|
|
|
|
bp->b_io_length = BTOBB(len);
|
|
bp->b_length = BTOBB(buflen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_get_uncached(
|
|
struct xfs_buftarg *target,
|
|
size_t numblks,
|
|
int flags)
|
|
{
|
|
unsigned long page_count;
|
|
int error, i;
|
|
struct xfs_buf *bp;
|
|
DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
|
|
|
|
bp = _xfs_buf_alloc(target, &map, 1, 0);
|
|
if (unlikely(bp == NULL))
|
|
goto fail;
|
|
|
|
page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
|
|
error = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (error)
|
|
goto fail_free_buf;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
|
|
if (!bp->b_pages[i])
|
|
goto fail_free_mem;
|
|
}
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
error = _xfs_buf_map_pages(bp, 0);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages", __func__);
|
|
goto fail_free_mem;
|
|
}
|
|
|
|
trace_xfs_buf_get_uncached(bp, _RET_IP_);
|
|
return bp;
|
|
|
|
fail_free_mem:
|
|
while (--i >= 0)
|
|
__free_page(bp->b_pages[i]);
|
|
_xfs_buf_free_pages(bp);
|
|
fail_free_buf:
|
|
xfs_buf_free_maps(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Increment reference count on buffer, to hold the buffer concurrently
|
|
* with another thread which may release (free) the buffer asynchronously.
|
|
* Must hold the buffer already to call this function.
|
|
*/
|
|
void
|
|
xfs_buf_hold(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_hold(bp, _RET_IP_);
|
|
atomic_inc(&bp->b_hold);
|
|
}
|
|
|
|
/*
|
|
* Releases a hold on the specified buffer. If the
|
|
* the hold count is 1, calls xfs_buf_free.
|
|
*/
|
|
void
|
|
xfs_buf_rele(
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
|
|
trace_xfs_buf_rele(bp, _RET_IP_);
|
|
|
|
if (!pag) {
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
|
|
if (atomic_dec_and_test(&bp->b_hold))
|
|
xfs_buf_free(bp);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
|
|
|
|
ASSERT(atomic_read(&bp->b_hold) > 0);
|
|
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
|
|
spin_lock(&bp->b_lock);
|
|
if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
|
|
/*
|
|
* If the buffer is added to the LRU take a new
|
|
* reference to the buffer for the LRU and clear the
|
|
* (now stale) dispose list state flag
|
|
*/
|
|
if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
|
|
bp->b_state &= ~XFS_BSTATE_DISPOSE;
|
|
atomic_inc(&bp->b_hold);
|
|
}
|
|
spin_unlock(&bp->b_lock);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
/*
|
|
* most of the time buffers will already be removed from
|
|
* the LRU, so optimise that case by checking for the
|
|
* XFS_BSTATE_DISPOSE flag indicating the last list the
|
|
* buffer was on was the disposal list
|
|
*/
|
|
if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
|
|
list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
|
|
} else {
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
}
|
|
spin_unlock(&bp->b_lock);
|
|
|
|
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
|
|
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
xfs_buf_free(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Lock a buffer object, if it is not already locked.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we are
|
|
* being asked to lock a buffer that has been reallocated. Because it is
|
|
* pinned, we know that the log has not been pushed to disk and hence it
|
|
* will still be locked. Rather than continuing to have trylock attempts
|
|
* fail until someone else pushes the log, push it ourselves before
|
|
* returning. This means that the xfsaild will not get stuck trying
|
|
* to push on stale inode buffers.
|
|
*/
|
|
int
|
|
xfs_buf_trylock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int locked;
|
|
|
|
locked = down_trylock(&bp->b_sema) == 0;
|
|
if (locked)
|
|
XB_SET_OWNER(bp);
|
|
|
|
trace_xfs_buf_trylock(bp, _RET_IP_);
|
|
return locked;
|
|
}
|
|
|
|
/*
|
|
* Lock a buffer object.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we
|
|
* are being asked to lock a buffer that has been reallocated. Because
|
|
* it is pinned, we know that the log has not been pushed to disk and
|
|
* hence it will still be locked. Rather than sleeping until someone
|
|
* else pushes the log, push it ourselves before trying to get the lock.
|
|
*/
|
|
void
|
|
xfs_buf_lock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
trace_xfs_buf_lock(bp, _RET_IP_);
|
|
|
|
if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
|
|
xfs_log_force(bp->b_target->bt_mount, 0);
|
|
down(&bp->b_sema);
|
|
XB_SET_OWNER(bp);
|
|
|
|
trace_xfs_buf_lock_done(bp, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_unlock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
XB_CLEAR_OWNER(bp);
|
|
up(&bp->b_sema);
|
|
|
|
trace_xfs_buf_unlock(bp, _RET_IP_);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_wait_unpin(
|
|
xfs_buf_t *bp)
|
|
{
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
return;
|
|
|
|
add_wait_queue(&bp->b_waiters, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
break;
|
|
io_schedule();
|
|
}
|
|
remove_wait_queue(&bp->b_waiters, &wait);
|
|
set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Buffer Utility Routines
|
|
*/
|
|
|
|
STATIC void
|
|
xfs_buf_iodone_work(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_buf *bp =
|
|
container_of(work, xfs_buf_t, b_iodone_work);
|
|
bool read = !!(bp->b_flags & XBF_READ);
|
|
|
|
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
|
|
|
|
/* only validate buffers that were read without errors */
|
|
if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
|
|
bp->b_ops->verify_read(bp);
|
|
|
|
if (bp->b_iodone)
|
|
(*(bp->b_iodone))(bp);
|
|
else if (bp->b_flags & XBF_ASYNC)
|
|
xfs_buf_relse(bp);
|
|
else {
|
|
ASSERT(read && bp->b_ops);
|
|
complete(&bp->b_iowait);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioend(
|
|
struct xfs_buf *bp,
|
|
int schedule)
|
|
{
|
|
bool read = !!(bp->b_flags & XBF_READ);
|
|
|
|
trace_xfs_buf_iodone(bp, _RET_IP_);
|
|
|
|
if (bp->b_error == 0)
|
|
bp->b_flags |= XBF_DONE;
|
|
|
|
if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
|
|
if (schedule) {
|
|
INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
|
|
queue_work(xfslogd_workqueue, &bp->b_iodone_work);
|
|
} else {
|
|
xfs_buf_iodone_work(&bp->b_iodone_work);
|
|
}
|
|
} else {
|
|
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
|
|
complete(&bp->b_iowait);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror(
|
|
xfs_buf_t *bp,
|
|
int error)
|
|
{
|
|
ASSERT(error >= 0 && error <= 0xffff);
|
|
bp->b_error = (unsigned short)error;
|
|
trace_xfs_buf_ioerror(bp, error, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror_alert(
|
|
struct xfs_buf *bp,
|
|
const char *func)
|
|
{
|
|
xfs_alert(bp->b_target->bt_mount,
|
|
"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
|
|
(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
|
|
}
|
|
|
|
/*
|
|
* Called when we want to stop a buffer from getting written or read.
|
|
* We attach the EIO error, muck with its flags, and call xfs_buf_ioend
|
|
* so that the proper iodone callbacks get called.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror(
|
|
xfs_buf_t *bp)
|
|
{
|
|
#ifdef XFSERRORDEBUG
|
|
ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
|
|
#endif
|
|
|
|
/*
|
|
* No need to wait until the buffer is unpinned, we aren't flushing it.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
|
|
/*
|
|
* We're calling xfs_buf_ioend, so delete XBF_DONE flag.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_UNDONE(bp);
|
|
xfs_buf_stale(bp);
|
|
|
|
xfs_buf_ioend(bp, 0);
|
|
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Same as xfs_bioerror, except that we are releasing the buffer
|
|
* here ourselves, and avoiding the xfs_buf_ioend call.
|
|
* This is meant for userdata errors; metadata bufs come with
|
|
* iodone functions attached, so that we can track down errors.
|
|
*/
|
|
int
|
|
xfs_bioerror_relse(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int64_t fl = bp->b_flags;
|
|
/*
|
|
* No need to wait until the buffer is unpinned.
|
|
* We aren't flushing it.
|
|
*
|
|
* chunkhold expects B_DONE to be set, whether
|
|
* we actually finish the I/O or not. We don't want to
|
|
* change that interface.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_DONE(bp);
|
|
xfs_buf_stale(bp);
|
|
bp->b_iodone = NULL;
|
|
if (!(fl & XBF_ASYNC)) {
|
|
/*
|
|
* Mark b_error and B_ERROR _both_.
|
|
* Lot's of chunkcache code assumes that.
|
|
* There's no reason to mark error for
|
|
* ASYNC buffers.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
complete(&bp->b_iowait);
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
return EIO;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_bdstrat_cb(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
/*
|
|
* Metadata write that didn't get logged but
|
|
* written delayed anyway. These aren't associated
|
|
* with a transaction, and can be ignored.
|
|
*/
|
|
if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
|
|
return xfs_bioerror_relse(bp);
|
|
else
|
|
return xfs_bioerror(bp);
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_bwrite(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
bp->b_flags |= XBF_WRITE;
|
|
bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
|
|
|
|
xfs_bdstrat_cb(bp);
|
|
|
|
error = xfs_buf_iowait(bp);
|
|
if (error) {
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioend(
|
|
xfs_buf_t *bp,
|
|
int schedule)
|
|
{
|
|
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
|
|
xfs_buf_ioend(bp, schedule);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_bio_end_io(
|
|
struct bio *bio,
|
|
int error)
|
|
{
|
|
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
|
|
|
|
/*
|
|
* don't overwrite existing errors - otherwise we can lose errors on
|
|
* buffers that require multiple bios to complete.
|
|
*/
|
|
if (!bp->b_error)
|
|
xfs_buf_ioerror(bp, -error);
|
|
|
|
if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
|
|
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
|
|
|
|
_xfs_buf_ioend(bp, 1);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void
|
|
xfs_buf_ioapply_map(
|
|
struct xfs_buf *bp,
|
|
int map,
|
|
int *buf_offset,
|
|
int *count,
|
|
int rw)
|
|
{
|
|
int page_index;
|
|
int total_nr_pages = bp->b_page_count;
|
|
int nr_pages;
|
|
struct bio *bio;
|
|
sector_t sector = bp->b_maps[map].bm_bn;
|
|
int size;
|
|
int offset;
|
|
|
|
total_nr_pages = bp->b_page_count;
|
|
|
|
/* skip the pages in the buffer before the start offset */
|
|
page_index = 0;
|
|
offset = *buf_offset;
|
|
while (offset >= PAGE_SIZE) {
|
|
page_index++;
|
|
offset -= PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Limit the IO size to the length of the current vector, and update the
|
|
* remaining IO count for the next time around.
|
|
*/
|
|
size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
|
|
*count -= size;
|
|
*buf_offset += size;
|
|
|
|
next_chunk:
|
|
atomic_inc(&bp->b_io_remaining);
|
|
nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
|
|
if (nr_pages > total_nr_pages)
|
|
nr_pages = total_nr_pages;
|
|
|
|
bio = bio_alloc(GFP_NOIO, nr_pages);
|
|
bio->bi_bdev = bp->b_target->bt_bdev;
|
|
bio->bi_iter.bi_sector = sector;
|
|
bio->bi_end_io = xfs_buf_bio_end_io;
|
|
bio->bi_private = bp;
|
|
|
|
|
|
for (; size && nr_pages; nr_pages--, page_index++) {
|
|
int rbytes, nbytes = PAGE_SIZE - offset;
|
|
|
|
if (nbytes > size)
|
|
nbytes = size;
|
|
|
|
rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
|
|
offset);
|
|
if (rbytes < nbytes)
|
|
break;
|
|
|
|
offset = 0;
|
|
sector += BTOBB(nbytes);
|
|
size -= nbytes;
|
|
total_nr_pages--;
|
|
}
|
|
|
|
if (likely(bio->bi_iter.bi_size)) {
|
|
if (xfs_buf_is_vmapped(bp)) {
|
|
flush_kernel_vmap_range(bp->b_addr,
|
|
xfs_buf_vmap_len(bp));
|
|
}
|
|
submit_bio(rw, bio);
|
|
if (size)
|
|
goto next_chunk;
|
|
} else {
|
|
/*
|
|
* This is guaranteed not to be the last io reference count
|
|
* because the caller (xfs_buf_iorequest) holds a count itself.
|
|
*/
|
|
atomic_dec(&bp->b_io_remaining);
|
|
xfs_buf_ioerror(bp, EIO);
|
|
bio_put(bio);
|
|
}
|
|
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioapply(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct blk_plug plug;
|
|
int rw;
|
|
int offset;
|
|
int size;
|
|
int i;
|
|
|
|
/*
|
|
* Make sure we capture only current IO errors rather than stale errors
|
|
* left over from previous use of the buffer (e.g. failed readahead).
|
|
*/
|
|
bp->b_error = 0;
|
|
|
|
if (bp->b_flags & XBF_WRITE) {
|
|
if (bp->b_flags & XBF_SYNCIO)
|
|
rw = WRITE_SYNC;
|
|
else
|
|
rw = WRITE;
|
|
if (bp->b_flags & XBF_FUA)
|
|
rw |= REQ_FUA;
|
|
if (bp->b_flags & XBF_FLUSH)
|
|
rw |= REQ_FLUSH;
|
|
|
|
/*
|
|
* Run the write verifier callback function if it exists. If
|
|
* this function fails it will mark the buffer with an error and
|
|
* the IO should not be dispatched.
|
|
*/
|
|
if (bp->b_ops) {
|
|
bp->b_ops->verify_write(bp);
|
|
if (bp->b_error) {
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_CORRUPT_INCORE);
|
|
return;
|
|
}
|
|
}
|
|
} else if (bp->b_flags & XBF_READ_AHEAD) {
|
|
rw = READA;
|
|
} else {
|
|
rw = READ;
|
|
}
|
|
|
|
/* we only use the buffer cache for meta-data */
|
|
rw |= REQ_META;
|
|
|
|
/*
|
|
* Walk all the vectors issuing IO on them. Set up the initial offset
|
|
* into the buffer and the desired IO size before we start -
|
|
* _xfs_buf_ioapply_vec() will modify them appropriately for each
|
|
* subsequent call.
|
|
*/
|
|
offset = bp->b_offset;
|
|
size = BBTOB(bp->b_io_length);
|
|
blk_start_plug(&plug);
|
|
for (i = 0; i < bp->b_map_count; i++) {
|
|
xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
|
|
if (bp->b_error)
|
|
break;
|
|
if (size <= 0)
|
|
break; /* all done */
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
void
|
|
xfs_buf_iorequest(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iorequest(bp, _RET_IP_);
|
|
|
|
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
|
|
|
|
if (bp->b_flags & XBF_WRITE)
|
|
xfs_buf_wait_unpin(bp);
|
|
xfs_buf_hold(bp);
|
|
|
|
/* Set the count to 1 initially, this will stop an I/O
|
|
* completion callout which happens before we have started
|
|
* all the I/O from calling xfs_buf_ioend too early.
|
|
*/
|
|
atomic_set(&bp->b_io_remaining, 1);
|
|
_xfs_buf_ioapply(bp);
|
|
_xfs_buf_ioend(bp, 1);
|
|
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
/*
|
|
* Waits for I/O to complete on the buffer supplied. It returns immediately if
|
|
* no I/O is pending or there is already a pending error on the buffer. It
|
|
* returns the I/O error code, if any, or 0 if there was no error.
|
|
*/
|
|
int
|
|
xfs_buf_iowait(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iowait(bp, _RET_IP_);
|
|
|
|
if (!bp->b_error)
|
|
wait_for_completion(&bp->b_iowait);
|
|
|
|
trace_xfs_buf_iowait_done(bp, _RET_IP_);
|
|
return bp->b_error;
|
|
}
|
|
|
|
xfs_caddr_t
|
|
xfs_buf_offset(
|
|
xfs_buf_t *bp,
|
|
size_t offset)
|
|
{
|
|
struct page *page;
|
|
|
|
if (bp->b_addr)
|
|
return bp->b_addr + offset;
|
|
|
|
offset += bp->b_offset;
|
|
page = bp->b_pages[offset >> PAGE_SHIFT];
|
|
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
|
|
}
|
|
|
|
/*
|
|
* Move data into or out of a buffer.
|
|
*/
|
|
void
|
|
xfs_buf_iomove(
|
|
xfs_buf_t *bp, /* buffer to process */
|
|
size_t boff, /* starting buffer offset */
|
|
size_t bsize, /* length to copy */
|
|
void *data, /* data address */
|
|
xfs_buf_rw_t mode) /* read/write/zero flag */
|
|
{
|
|
size_t bend;
|
|
|
|
bend = boff + bsize;
|
|
while (boff < bend) {
|
|
struct page *page;
|
|
int page_index, page_offset, csize;
|
|
|
|
page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
|
|
page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
|
|
page = bp->b_pages[page_index];
|
|
csize = min_t(size_t, PAGE_SIZE - page_offset,
|
|
BBTOB(bp->b_io_length) - boff);
|
|
|
|
ASSERT((csize + page_offset) <= PAGE_SIZE);
|
|
|
|
switch (mode) {
|
|
case XBRW_ZERO:
|
|
memset(page_address(page) + page_offset, 0, csize);
|
|
break;
|
|
case XBRW_READ:
|
|
memcpy(data, page_address(page) + page_offset, csize);
|
|
break;
|
|
case XBRW_WRITE:
|
|
memcpy(page_address(page) + page_offset, data, csize);
|
|
}
|
|
|
|
boff += csize;
|
|
data += csize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handling of buffer targets (buftargs).
|
|
*/
|
|
|
|
/*
|
|
* Wait for any bufs with callbacks that have been submitted but have not yet
|
|
* returned. These buffers will have an elevated hold count, so wait on those
|
|
* while freeing all the buffers only held by the LRU.
|
|
*/
|
|
static enum lru_status
|
|
xfs_buftarg_wait_rele(
|
|
struct list_head *item,
|
|
spinlock_t *lru_lock,
|
|
void *arg)
|
|
|
|
{
|
|
struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
|
|
struct list_head *dispose = arg;
|
|
|
|
if (atomic_read(&bp->b_hold) > 1) {
|
|
/* need to wait, so skip it this pass */
|
|
trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
|
|
return LRU_SKIP;
|
|
}
|
|
if (!spin_trylock(&bp->b_lock))
|
|
return LRU_SKIP;
|
|
|
|
/*
|
|
* clear the LRU reference count so the buffer doesn't get
|
|
* ignored in xfs_buf_rele().
|
|
*/
|
|
atomic_set(&bp->b_lru_ref, 0);
|
|
bp->b_state |= XFS_BSTATE_DISPOSE;
|
|
list_move(item, dispose);
|
|
spin_unlock(&bp->b_lock);
|
|
return LRU_REMOVED;
|
|
}
|
|
|
|
void
|
|
xfs_wait_buftarg(
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
LIST_HEAD(dispose);
|
|
int loop = 0;
|
|
|
|
/* loop until there is nothing left on the lru list. */
|
|
while (list_lru_count(&btp->bt_lru)) {
|
|
list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
|
|
&dispose, LONG_MAX);
|
|
|
|
while (!list_empty(&dispose)) {
|
|
struct xfs_buf *bp;
|
|
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
|
|
list_del_init(&bp->b_lru);
|
|
if (bp->b_flags & XBF_WRITE_FAIL) {
|
|
xfs_alert(btp->bt_mount,
|
|
"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
|
|
"Please run xfs_repair to determine the extent of the problem.",
|
|
(long long)bp->b_bn);
|
|
}
|
|
xfs_buf_rele(bp);
|
|
}
|
|
if (loop++ != 0)
|
|
delay(100);
|
|
}
|
|
}
|
|
|
|
static enum lru_status
|
|
xfs_buftarg_isolate(
|
|
struct list_head *item,
|
|
spinlock_t *lru_lock,
|
|
void *arg)
|
|
{
|
|
struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
|
|
struct list_head *dispose = arg;
|
|
|
|
/*
|
|
* we are inverting the lru lock/bp->b_lock here, so use a trylock.
|
|
* If we fail to get the lock, just skip it.
|
|
*/
|
|
if (!spin_trylock(&bp->b_lock))
|
|
return LRU_SKIP;
|
|
/*
|
|
* Decrement the b_lru_ref count unless the value is already
|
|
* zero. If the value is already zero, we need to reclaim the
|
|
* buffer, otherwise it gets another trip through the LRU.
|
|
*/
|
|
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
|
|
spin_unlock(&bp->b_lock);
|
|
return LRU_ROTATE;
|
|
}
|
|
|
|
bp->b_state |= XFS_BSTATE_DISPOSE;
|
|
list_move(item, dispose);
|
|
spin_unlock(&bp->b_lock);
|
|
return LRU_REMOVED;
|
|
}
|
|
|
|
static unsigned long
|
|
xfs_buftarg_shrink_scan(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_buftarg *btp = container_of(shrink,
|
|
struct xfs_buftarg, bt_shrinker);
|
|
LIST_HEAD(dispose);
|
|
unsigned long freed;
|
|
unsigned long nr_to_scan = sc->nr_to_scan;
|
|
|
|
freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
|
|
&dispose, &nr_to_scan);
|
|
|
|
while (!list_empty(&dispose)) {
|
|
struct xfs_buf *bp;
|
|
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
|
|
list_del_init(&bp->b_lru);
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
return freed;
|
|
}
|
|
|
|
static unsigned long
|
|
xfs_buftarg_shrink_count(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_buftarg *btp = container_of(shrink,
|
|
struct xfs_buftarg, bt_shrinker);
|
|
return list_lru_count_node(&btp->bt_lru, sc->nid);
|
|
}
|
|
|
|
void
|
|
xfs_free_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
unregister_shrinker(&btp->bt_shrinker);
|
|
list_lru_destroy(&btp->bt_lru);
|
|
|
|
if (mp->m_flags & XFS_MOUNT_BARRIER)
|
|
xfs_blkdev_issue_flush(btp);
|
|
|
|
kmem_free(btp);
|
|
}
|
|
|
|
int
|
|
xfs_setsize_buftarg(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize)
|
|
{
|
|
/* Set up metadata sector size info */
|
|
btp->bt_meta_sectorsize = sectorsize;
|
|
btp->bt_meta_sectormask = sectorsize - 1;
|
|
|
|
if (set_blocksize(btp->bt_bdev, sectorsize)) {
|
|
char name[BDEVNAME_SIZE];
|
|
|
|
bdevname(btp->bt_bdev, name);
|
|
|
|
xfs_warn(btp->bt_mount,
|
|
"Cannot set_blocksize to %u on device %s",
|
|
sectorsize, name);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Set up device logical sector size mask */
|
|
btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
|
|
btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When allocating the initial buffer target we have not yet
|
|
* read in the superblock, so don't know what sized sectors
|
|
* are being used at this early stage. Play safe.
|
|
*/
|
|
STATIC int
|
|
xfs_setsize_buftarg_early(
|
|
xfs_buftarg_t *btp,
|
|
struct block_device *bdev)
|
|
{
|
|
return xfs_setsize_buftarg(btp, PAGE_SIZE,
|
|
bdev_logical_block_size(bdev));
|
|
}
|
|
|
|
xfs_buftarg_t *
|
|
xfs_alloc_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct block_device *bdev,
|
|
int external,
|
|
const char *fsname)
|
|
{
|
|
xfs_buftarg_t *btp;
|
|
|
|
btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
|
|
|
|
btp->bt_mount = mp;
|
|
btp->bt_dev = bdev->bd_dev;
|
|
btp->bt_bdev = bdev;
|
|
btp->bt_bdi = blk_get_backing_dev_info(bdev);
|
|
if (!btp->bt_bdi)
|
|
goto error;
|
|
|
|
if (xfs_setsize_buftarg_early(btp, bdev))
|
|
goto error;
|
|
|
|
if (list_lru_init(&btp->bt_lru))
|
|
goto error;
|
|
|
|
btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
|
|
btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
|
|
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
|
|
btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
|
|
register_shrinker(&btp->bt_shrinker);
|
|
return btp;
|
|
|
|
error:
|
|
kmem_free(btp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Add a buffer to the delayed write list.
|
|
*
|
|
* This queues a buffer for writeout if it hasn't already been. Note that
|
|
* neither this routine nor the buffer list submission functions perform
|
|
* any internal synchronization. It is expected that the lists are thread-local
|
|
* to the callers.
|
|
*
|
|
* Returns true if we queued up the buffer, or false if it already had
|
|
* been on the buffer list.
|
|
*/
|
|
bool
|
|
xfs_buf_delwri_queue(
|
|
struct xfs_buf *bp,
|
|
struct list_head *list)
|
|
{
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
ASSERT(!(bp->b_flags & XBF_READ));
|
|
|
|
/*
|
|
* If the buffer is already marked delwri it already is queued up
|
|
* by someone else for imediate writeout. Just ignore it in that
|
|
* case.
|
|
*/
|
|
if (bp->b_flags & _XBF_DELWRI_Q) {
|
|
trace_xfs_buf_delwri_queued(bp, _RET_IP_);
|
|
return false;
|
|
}
|
|
|
|
trace_xfs_buf_delwri_queue(bp, _RET_IP_);
|
|
|
|
/*
|
|
* If a buffer gets written out synchronously or marked stale while it
|
|
* is on a delwri list we lazily remove it. To do this, the other party
|
|
* clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
|
|
* It remains referenced and on the list. In a rare corner case it
|
|
* might get readded to a delwri list after the synchronous writeout, in
|
|
* which case we need just need to re-add the flag here.
|
|
*/
|
|
bp->b_flags |= _XBF_DELWRI_Q;
|
|
if (list_empty(&bp->b_list)) {
|
|
atomic_inc(&bp->b_hold);
|
|
list_add_tail(&bp->b_list, list);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compare function is more complex than it needs to be because
|
|
* the return value is only 32 bits and we are doing comparisons
|
|
* on 64 bit values
|
|
*/
|
|
static int
|
|
xfs_buf_cmp(
|
|
void *priv,
|
|
struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
|
|
struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
|
|
xfs_daddr_t diff;
|
|
|
|
diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
|
|
if (diff < 0)
|
|
return -1;
|
|
if (diff > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__xfs_buf_delwri_submit(
|
|
struct list_head *buffer_list,
|
|
struct list_head *io_list,
|
|
bool wait)
|
|
{
|
|
struct blk_plug plug;
|
|
struct xfs_buf *bp, *n;
|
|
int pinned = 0;
|
|
|
|
list_for_each_entry_safe(bp, n, buffer_list, b_list) {
|
|
if (!wait) {
|
|
if (xfs_buf_ispinned(bp)) {
|
|
pinned++;
|
|
continue;
|
|
}
|
|
if (!xfs_buf_trylock(bp))
|
|
continue;
|
|
} else {
|
|
xfs_buf_lock(bp);
|
|
}
|
|
|
|
/*
|
|
* Someone else might have written the buffer synchronously or
|
|
* marked it stale in the meantime. In that case only the
|
|
* _XBF_DELWRI_Q flag got cleared, and we have to drop the
|
|
* reference and remove it from the list here.
|
|
*/
|
|
if (!(bp->b_flags & _XBF_DELWRI_Q)) {
|
|
list_del_init(&bp->b_list);
|
|
xfs_buf_relse(bp);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&bp->b_list, io_list);
|
|
trace_xfs_buf_delwri_split(bp, _RET_IP_);
|
|
}
|
|
|
|
list_sort(NULL, io_list, xfs_buf_cmp);
|
|
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry_safe(bp, n, io_list, b_list) {
|
|
bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
|
|
bp->b_flags |= XBF_WRITE;
|
|
|
|
if (!wait) {
|
|
bp->b_flags |= XBF_ASYNC;
|
|
list_del_init(&bp->b_list);
|
|
}
|
|
xfs_bdstrat_cb(bp);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
return pinned;
|
|
}
|
|
|
|
/*
|
|
* Write out a buffer list asynchronously.
|
|
*
|
|
* This will take the @buffer_list, write all non-locked and non-pinned buffers
|
|
* out and not wait for I/O completion on any of the buffers. This interface
|
|
* is only safely useable for callers that can track I/O completion by higher
|
|
* level means, e.g. AIL pushing as the @buffer_list is consumed in this
|
|
* function.
|
|
*/
|
|
int
|
|
xfs_buf_delwri_submit_nowait(
|
|
struct list_head *buffer_list)
|
|
{
|
|
LIST_HEAD (io_list);
|
|
return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
|
|
}
|
|
|
|
/*
|
|
* Write out a buffer list synchronously.
|
|
*
|
|
* This will take the @buffer_list, write all buffers out and wait for I/O
|
|
* completion on all of the buffers. @buffer_list is consumed by the function,
|
|
* so callers must have some other way of tracking buffers if they require such
|
|
* functionality.
|
|
*/
|
|
int
|
|
xfs_buf_delwri_submit(
|
|
struct list_head *buffer_list)
|
|
{
|
|
LIST_HEAD (io_list);
|
|
int error = 0, error2;
|
|
struct xfs_buf *bp;
|
|
|
|
__xfs_buf_delwri_submit(buffer_list, &io_list, true);
|
|
|
|
/* Wait for IO to complete. */
|
|
while (!list_empty(&io_list)) {
|
|
bp = list_first_entry(&io_list, struct xfs_buf, b_list);
|
|
|
|
list_del_init(&bp->b_list);
|
|
error2 = xfs_buf_iowait(bp);
|
|
xfs_buf_relse(bp);
|
|
if (!error)
|
|
error = error2;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int __init
|
|
xfs_buf_init(void)
|
|
{
|
|
xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
|
|
KM_ZONE_HWALIGN, NULL);
|
|
if (!xfs_buf_zone)
|
|
goto out;
|
|
|
|
xfslogd_workqueue = alloc_workqueue("xfslogd",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
|
|
if (!xfslogd_workqueue)
|
|
goto out_free_buf_zone;
|
|
|
|
return 0;
|
|
|
|
out_free_buf_zone:
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_buf_terminate(void)
|
|
{
|
|
destroy_workqueue(xfslogd_workqueue);
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
}
|