linux_dsm_epyc7002/drivers/net/phy/phy.c
Alexander Kochetkov f555f34fdc net: phy: fix auto-negotiation stall due to unavailable interrupt
The Ethernet link on an interrupt driven PHY was not coming up if the Ethernet
cable was plugged before the Ethernet interface was brought up.

The patch trigger PHY state machine to update link state if PHY was requested to
do auto-negotiation and auto-negotiation complete flag already set.

During power-up cycle the PHY do auto-negotiation, generate interrupt and set
auto-negotiation complete flag. Interrupt is handled by PHY state machine but
doesn't update link state because PHY is in PHY_READY state. After some time
MAC bring up, start and request PHY to do auto-negotiation. If there are no new
settings to advertise genphy_config_aneg() doesn't start PHY auto-negotiation.
PHY continue to stay in auto-negotiation complete state and doesn't fire
interrupt. At the same time PHY state machine expect that PHY started
auto-negotiation and is waiting for interrupt from PHY and it won't get it.

Fixes: 321beec504 ("net: phy: Use interrupts when available in NOLINK state")
Signed-off-by: Alexander Kochetkov <al.kochet@gmail.com>
Cc: stable <stable@vger.kernel.org> # v4.9+
Tested-by: Roger Quadros <rogerq@ti.com>
Tested-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-26 14:32:00 -04:00

1524 lines
38 KiB
C

/* Framework for configuring and reading PHY devices
* Based on code in sungem_phy.c and gianfar_phy.c
*
* Author: Andy Fleming
*
* Copyright (c) 2004 Freescale Semiconductor, Inc.
* Copyright (c) 2006, 2007 Maciej W. Rozycki
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/phy_led_triggers.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/mdio.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <asm/irq.h>
static const char *phy_speed_to_str(int speed)
{
switch (speed) {
case SPEED_10:
return "10Mbps";
case SPEED_100:
return "100Mbps";
case SPEED_1000:
return "1Gbps";
case SPEED_2500:
return "2.5Gbps";
case SPEED_10000:
return "10Gbps";
case SPEED_UNKNOWN:
return "Unknown";
default:
return "Unsupported (update phy.c)";
}
}
#define PHY_STATE_STR(_state) \
case PHY_##_state: \
return __stringify(_state); \
static const char *phy_state_to_str(enum phy_state st)
{
switch (st) {
PHY_STATE_STR(DOWN)
PHY_STATE_STR(STARTING)
PHY_STATE_STR(READY)
PHY_STATE_STR(PENDING)
PHY_STATE_STR(UP)
PHY_STATE_STR(AN)
PHY_STATE_STR(RUNNING)
PHY_STATE_STR(NOLINK)
PHY_STATE_STR(FORCING)
PHY_STATE_STR(CHANGELINK)
PHY_STATE_STR(HALTED)
PHY_STATE_STR(RESUMING)
}
return NULL;
}
/**
* phy_print_status - Convenience function to print out the current phy status
* @phydev: the phy_device struct
*/
void phy_print_status(struct phy_device *phydev)
{
if (phydev->link) {
netdev_info(phydev->attached_dev,
"Link is Up - %s/%s - flow control %s\n",
phy_speed_to_str(phydev->speed),
DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
phydev->pause ? "rx/tx" : "off");
} else {
netdev_info(phydev->attached_dev, "Link is Down\n");
}
}
EXPORT_SYMBOL(phy_print_status);
/**
* phy_clear_interrupt - Ack the phy device's interrupt
* @phydev: the phy_device struct
*
* If the @phydev driver has an ack_interrupt function, call it to
* ack and clear the phy device's interrupt.
*
* Returns 0 on success or < 0 on error.
*/
static int phy_clear_interrupt(struct phy_device *phydev)
{
if (phydev->drv->ack_interrupt)
return phydev->drv->ack_interrupt(phydev);
return 0;
}
/**
* phy_config_interrupt - configure the PHY device for the requested interrupts
* @phydev: the phy_device struct
* @interrupts: interrupt flags to configure for this @phydev
*
* Returns 0 on success or < 0 on error.
*/
static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
{
phydev->interrupts = interrupts;
if (phydev->drv->config_intr)
return phydev->drv->config_intr(phydev);
return 0;
}
/**
* phy_aneg_done - return auto-negotiation status
* @phydev: target phy_device struct
*
* Description: Return the auto-negotiation status from this @phydev
* Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
* is still pending.
*/
int phy_aneg_done(struct phy_device *phydev)
{
if (phydev->drv && phydev->drv->aneg_done)
return phydev->drv->aneg_done(phydev);
return genphy_aneg_done(phydev);
}
EXPORT_SYMBOL(phy_aneg_done);
/* A structure for mapping a particular speed and duplex
* combination to a particular SUPPORTED and ADVERTISED value
*/
struct phy_setting {
int speed;
int duplex;
u32 setting;
};
/* A mapping of all SUPPORTED settings to speed/duplex */
static const struct phy_setting settings[] = {
{
.speed = SPEED_10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseKR_Full,
},
{
.speed = SPEED_10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseKX4_Full,
},
{
.speed = SPEED_10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseT_Full,
},
{
.speed = SPEED_2500,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_2500baseX_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_1000baseKX_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_1000baseT_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_1000baseT_Half,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_100baseT_Full,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_100baseT_Half,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10baseT_Full,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_10baseT_Half,
},
};
#define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
/**
* phy_find_setting - find a PHY settings array entry that matches speed & duplex
* @speed: speed to match
* @duplex: duplex to match
*
* Description: Searches the settings array for the setting which
* matches the desired speed and duplex, and returns the index
* of that setting. Returns the index of the last setting if
* none of the others match.
*/
static inline unsigned int phy_find_setting(int speed, int duplex)
{
unsigned int idx = 0;
while (idx < ARRAY_SIZE(settings) &&
(settings[idx].speed != speed || settings[idx].duplex != duplex))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/**
* phy_find_valid - find a PHY setting that matches the requested features mask
* @idx: The first index in settings[] to search
* @features: A mask of the valid settings
*
* Description: Returns the index of the first valid setting less
* than or equal to the one pointed to by idx, as determined by
* the mask in features. Returns the index of the last setting
* if nothing else matches.
*/
static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
{
while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/**
* phy_supported_speeds - return all speeds currently supported by a phy device
* @phy: The phy device to return supported speeds of.
* @speeds: buffer to store supported speeds in.
* @size: size of speeds buffer.
*
* Description: Returns the number of supported speeds, and fills the speeds
* buffer with the supported speeds. If speeds buffer is too small to contain
* all currently supported speeds, will return as many speeds as can fit.
*/
unsigned int phy_supported_speeds(struct phy_device *phy,
unsigned int *speeds,
unsigned int size)
{
unsigned int count = 0;
unsigned int idx = 0;
while (idx < MAX_NUM_SETTINGS && count < size) {
idx = phy_find_valid(idx, phy->supported);
if (!(settings[idx].setting & phy->supported))
break;
/* Assumes settings are grouped by speed */
if ((count == 0) ||
(speeds[count - 1] != settings[idx].speed)) {
speeds[count] = settings[idx].speed;
count++;
}
idx++;
}
return count;
}
/**
* phy_check_valid - check if there is a valid PHY setting which matches
* speed, duplex, and feature mask
* @speed: speed to match
* @duplex: duplex to match
* @features: A mask of the valid settings
*
* Description: Returns true if there is a valid setting, false otherwise.
*/
static inline bool phy_check_valid(int speed, int duplex, u32 features)
{
unsigned int idx;
idx = phy_find_valid(phy_find_setting(speed, duplex), features);
return settings[idx].speed == speed && settings[idx].duplex == duplex &&
(settings[idx].setting & features);
}
/**
* phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
* @phydev: the target phy_device struct
*
* Description: Make sure the PHY is set to supported speeds and
* duplexes. Drop down by one in this order: 1000/FULL,
* 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
*/
static void phy_sanitize_settings(struct phy_device *phydev)
{
u32 features = phydev->supported;
unsigned int idx;
/* Sanitize settings based on PHY capabilities */
if ((features & SUPPORTED_Autoneg) == 0)
phydev->autoneg = AUTONEG_DISABLE;
idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
features);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
}
/**
* phy_ethtool_sset - generic ethtool sset function, handles all the details
* @phydev: target phy_device struct
* @cmd: ethtool_cmd
*
* A few notes about parameter checking:
* - We don't set port or transceiver, so we don't care what they
* were set to.
* - phy_start_aneg() will make sure forced settings are sane, and
* choose the next best ones from the ones selected, so we don't
* care if ethtool tries to give us bad values.
*/
int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
u32 speed = ethtool_cmd_speed(cmd);
if (cmd->phy_address != phydev->mdio.addr)
return -EINVAL;
/* We make sure that we don't pass unsupported values in to the PHY */
cmd->advertising &= phydev->supported;
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
((speed != SPEED_1000 &&
speed != SPEED_100 &&
speed != SPEED_10) ||
(cmd->duplex != DUPLEX_HALF &&
cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
phydev->autoneg = cmd->autoneg;
phydev->speed = speed;
phydev->advertising = cmd->advertising;
if (AUTONEG_ENABLE == cmd->autoneg)
phydev->advertising |= ADVERTISED_Autoneg;
else
phydev->advertising &= ~ADVERTISED_Autoneg;
phydev->duplex = cmd->duplex;
phydev->mdix_ctrl = cmd->eth_tp_mdix_ctrl;
/* Restart the PHY */
phy_start_aneg(phydev);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_sset);
int phy_ethtool_ksettings_set(struct phy_device *phydev,
const struct ethtool_link_ksettings *cmd)
{
u8 autoneg = cmd->base.autoneg;
u8 duplex = cmd->base.duplex;
u32 speed = cmd->base.speed;
u32 advertising;
if (cmd->base.phy_address != phydev->mdio.addr)
return -EINVAL;
ethtool_convert_link_mode_to_legacy_u32(&advertising,
cmd->link_modes.advertising);
/* We make sure that we don't pass unsupported values in to the PHY */
advertising &= phydev->supported;
/* Verify the settings we care about. */
if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (autoneg == AUTONEG_ENABLE && advertising == 0)
return -EINVAL;
if (autoneg == AUTONEG_DISABLE &&
((speed != SPEED_1000 &&
speed != SPEED_100 &&
speed != SPEED_10) ||
(duplex != DUPLEX_HALF &&
duplex != DUPLEX_FULL)))
return -EINVAL;
phydev->autoneg = autoneg;
phydev->speed = speed;
phydev->advertising = advertising;
if (autoneg == AUTONEG_ENABLE)
phydev->advertising |= ADVERTISED_Autoneg;
else
phydev->advertising &= ~ADVERTISED_Autoneg;
phydev->duplex = duplex;
phydev->mdix_ctrl = cmd->base.eth_tp_mdix_ctrl;
/* Restart the PHY */
phy_start_aneg(phydev);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_ksettings_set);
int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
cmd->supported = phydev->supported;
cmd->advertising = phydev->advertising;
cmd->lp_advertising = phydev->lp_advertising;
ethtool_cmd_speed_set(cmd, phydev->speed);
cmd->duplex = phydev->duplex;
if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
cmd->port = PORT_BNC;
else
cmd->port = PORT_MII;
cmd->phy_address = phydev->mdio.addr;
cmd->transceiver = phy_is_internal(phydev) ?
XCVR_INTERNAL : XCVR_EXTERNAL;
cmd->autoneg = phydev->autoneg;
cmd->eth_tp_mdix_ctrl = phydev->mdix_ctrl;
cmd->eth_tp_mdix = phydev->mdix;
return 0;
}
EXPORT_SYMBOL(phy_ethtool_gset);
int phy_ethtool_ksettings_get(struct phy_device *phydev,
struct ethtool_link_ksettings *cmd)
{
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
phydev->supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
phydev->advertising);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
phydev->lp_advertising);
cmd->base.speed = phydev->speed;
cmd->base.duplex = phydev->duplex;
if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
cmd->base.port = PORT_BNC;
else
cmd->base.port = PORT_MII;
cmd->base.phy_address = phydev->mdio.addr;
cmd->base.autoneg = phydev->autoneg;
cmd->base.eth_tp_mdix_ctrl = phydev->mdix_ctrl;
cmd->base.eth_tp_mdix = phydev->mdix;
return 0;
}
EXPORT_SYMBOL(phy_ethtool_ksettings_get);
/**
* phy_mii_ioctl - generic PHY MII ioctl interface
* @phydev: the phy_device struct
* @ifr: &struct ifreq for socket ioctl's
* @cmd: ioctl cmd to execute
*
* Note that this function is currently incompatible with the
* PHYCONTROL layer. It changes registers without regard to
* current state. Use at own risk.
*/
int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *mii_data = if_mii(ifr);
u16 val = mii_data->val_in;
bool change_autoneg = false;
switch (cmd) {
case SIOCGMIIPHY:
mii_data->phy_id = phydev->mdio.addr;
/* fall through */
case SIOCGMIIREG:
mii_data->val_out = mdiobus_read(phydev->mdio.bus,
mii_data->phy_id,
mii_data->reg_num);
return 0;
case SIOCSMIIREG:
if (mii_data->phy_id == phydev->mdio.addr) {
switch (mii_data->reg_num) {
case MII_BMCR:
if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
if (phydev->autoneg == AUTONEG_ENABLE)
change_autoneg = true;
phydev->autoneg = AUTONEG_DISABLE;
if (val & BMCR_FULLDPLX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
if (val & BMCR_SPEED1000)
phydev->speed = SPEED_1000;
else if (val & BMCR_SPEED100)
phydev->speed = SPEED_100;
else phydev->speed = SPEED_10;
}
else {
if (phydev->autoneg == AUTONEG_DISABLE)
change_autoneg = true;
phydev->autoneg = AUTONEG_ENABLE;
}
break;
case MII_ADVERTISE:
phydev->advertising = mii_adv_to_ethtool_adv_t(val);
change_autoneg = true;
break;
default:
/* do nothing */
break;
}
}
mdiobus_write(phydev->mdio.bus, mii_data->phy_id,
mii_data->reg_num, val);
if (mii_data->phy_id == phydev->mdio.addr &&
mii_data->reg_num == MII_BMCR &&
val & BMCR_RESET)
return phy_init_hw(phydev);
if (change_autoneg)
return phy_start_aneg(phydev);
return 0;
case SIOCSHWTSTAMP:
if (phydev->drv && phydev->drv->hwtstamp)
return phydev->drv->hwtstamp(phydev, ifr);
/* fall through */
default:
return -EOPNOTSUPP;
}
}
EXPORT_SYMBOL(phy_mii_ioctl);
/**
* phy_start_aneg_priv - start auto-negotiation for this PHY device
* @phydev: the phy_device struct
* @sync: indicate whether we should wait for the workqueue cancelation
*
* Description: Sanitizes the settings (if we're not autonegotiating
* them), and then calls the driver's config_aneg function.
* If the PHYCONTROL Layer is operating, we change the state to
* reflect the beginning of Auto-negotiation or forcing.
*/
static int phy_start_aneg_priv(struct phy_device *phydev, bool sync)
{
bool trigger = 0;
int err;
if (!phydev->drv)
return -EIO;
mutex_lock(&phydev->lock);
if (AUTONEG_DISABLE == phydev->autoneg)
phy_sanitize_settings(phydev);
/* Invalidate LP advertising flags */
phydev->lp_advertising = 0;
err = phydev->drv->config_aneg(phydev);
if (err < 0)
goto out_unlock;
if (phydev->state != PHY_HALTED) {
if (AUTONEG_ENABLE == phydev->autoneg) {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
} else {
phydev->state = PHY_FORCING;
phydev->link_timeout = PHY_FORCE_TIMEOUT;
}
}
/* Re-schedule a PHY state machine to check PHY status because
* negotiation may already be done and aneg interrupt may not be
* generated.
*/
if (phy_interrupt_is_valid(phydev) && (phydev->state == PHY_AN)) {
err = phy_aneg_done(phydev);
if (err > 0) {
trigger = true;
err = 0;
}
}
out_unlock:
mutex_unlock(&phydev->lock);
if (trigger)
phy_trigger_machine(phydev, sync);
return err;
}
/**
* phy_start_aneg - start auto-negotiation for this PHY device
* @phydev: the phy_device struct
*
* Description: Sanitizes the settings (if we're not autonegotiating
* them), and then calls the driver's config_aneg function.
* If the PHYCONTROL Layer is operating, we change the state to
* reflect the beginning of Auto-negotiation or forcing.
*/
int phy_start_aneg(struct phy_device *phydev)
{
return phy_start_aneg_priv(phydev, true);
}
EXPORT_SYMBOL(phy_start_aneg);
/**
* phy_start_machine - start PHY state machine tracking
* @phydev: the phy_device struct
*
* Description: The PHY infrastructure can run a state machine
* which tracks whether the PHY is starting up, negotiating,
* etc. This function starts the timer which tracks the state
* of the PHY. If you want to maintain your own state machine,
* do not call this function.
*/
void phy_start_machine(struct phy_device *phydev)
{
queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
}
/**
* phy_trigger_machine - trigger the state machine to run
*
* @phydev: the phy_device struct
* @sync: indicate whether we should wait for the workqueue cancelation
*
* Description: There has been a change in state which requires that the
* state machine runs.
*/
void phy_trigger_machine(struct phy_device *phydev, bool sync)
{
if (sync)
cancel_delayed_work_sync(&phydev->state_queue);
else
cancel_delayed_work(&phydev->state_queue);
queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
}
/**
* phy_stop_machine - stop the PHY state machine tracking
* @phydev: target phy_device struct
*
* Description: Stops the state machine timer, sets the state to UP
* (unless it wasn't up yet). This function must be called BEFORE
* phy_detach.
*/
void phy_stop_machine(struct phy_device *phydev)
{
cancel_delayed_work_sync(&phydev->state_queue);
mutex_lock(&phydev->lock);
if (phydev->state > PHY_UP && phydev->state != PHY_HALTED)
phydev->state = PHY_UP;
mutex_unlock(&phydev->lock);
}
/**
* phy_error - enter HALTED state for this PHY device
* @phydev: target phy_device struct
*
* Moves the PHY to the HALTED state in response to a read
* or write error, and tells the controller the link is down.
* Must not be called from interrupt context, or while the
* phydev->lock is held.
*/
static void phy_error(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
phydev->state = PHY_HALTED;
mutex_unlock(&phydev->lock);
phy_trigger_machine(phydev, false);
}
/**
* phy_interrupt - PHY interrupt handler
* @irq: interrupt line
* @phy_dat: phy_device pointer
*
* Description: When a PHY interrupt occurs, the handler disables
* interrupts, and uses phy_change to handle the interrupt.
*/
static irqreturn_t phy_interrupt(int irq, void *phy_dat)
{
struct phy_device *phydev = phy_dat;
if (PHY_HALTED == phydev->state)
return IRQ_NONE; /* It can't be ours. */
disable_irq_nosync(irq);
atomic_inc(&phydev->irq_disable);
phy_change(phydev);
return IRQ_HANDLED;
}
/**
* phy_enable_interrupts - Enable the interrupts from the PHY side
* @phydev: target phy_device struct
*/
static int phy_enable_interrupts(struct phy_device *phydev)
{
int err = phy_clear_interrupt(phydev);
if (err < 0)
return err;
return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
}
/**
* phy_disable_interrupts - Disable the PHY interrupts from the PHY side
* @phydev: target phy_device struct
*/
static int phy_disable_interrupts(struct phy_device *phydev)
{
int err;
/* Disable PHY interrupts */
err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
if (err)
goto phy_err;
/* Clear the interrupt */
err = phy_clear_interrupt(phydev);
if (err)
goto phy_err;
return 0;
phy_err:
phy_error(phydev);
return err;
}
/**
* phy_start_interrupts - request and enable interrupts for a PHY device
* @phydev: target phy_device struct
*
* Description: Request the interrupt for the given PHY.
* If this fails, then we set irq to PHY_POLL.
* Otherwise, we enable the interrupts in the PHY.
* This should only be called with a valid IRQ number.
* Returns 0 on success or < 0 on error.
*/
int phy_start_interrupts(struct phy_device *phydev)
{
atomic_set(&phydev->irq_disable, 0);
if (request_threaded_irq(phydev->irq, NULL, phy_interrupt,
IRQF_ONESHOT | IRQF_SHARED,
phydev_name(phydev), phydev) < 0) {
pr_warn("%s: Can't get IRQ %d (PHY)\n",
phydev->mdio.bus->name, phydev->irq);
phydev->irq = PHY_POLL;
return 0;
}
return phy_enable_interrupts(phydev);
}
EXPORT_SYMBOL(phy_start_interrupts);
/**
* phy_stop_interrupts - disable interrupts from a PHY device
* @phydev: target phy_device struct
*/
int phy_stop_interrupts(struct phy_device *phydev)
{
int err = phy_disable_interrupts(phydev);
if (err)
phy_error(phydev);
free_irq(phydev->irq, phydev);
/* If work indeed has been cancelled, disable_irq() will have
* been left unbalanced from phy_interrupt() and enable_irq()
* has to be called so that other devices on the line work.
*/
while (atomic_dec_return(&phydev->irq_disable) >= 0)
enable_irq(phydev->irq);
return err;
}
EXPORT_SYMBOL(phy_stop_interrupts);
/**
* phy_change - Called by the phy_interrupt to handle PHY changes
* @phydev: phy_device struct that interrupted
*/
void phy_change(struct phy_device *phydev)
{
if (phy_interrupt_is_valid(phydev)) {
if (phydev->drv->did_interrupt &&
!phydev->drv->did_interrupt(phydev))
goto ignore;
if (phy_disable_interrupts(phydev))
goto phy_err;
}
mutex_lock(&phydev->lock);
if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
phydev->state = PHY_CHANGELINK;
mutex_unlock(&phydev->lock);
if (phy_interrupt_is_valid(phydev)) {
atomic_dec(&phydev->irq_disable);
enable_irq(phydev->irq);
/* Reenable interrupts */
if (PHY_HALTED != phydev->state &&
phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
goto irq_enable_err;
}
/* reschedule state queue work to run as soon as possible */
phy_trigger_machine(phydev, true);
return;
ignore:
atomic_dec(&phydev->irq_disable);
enable_irq(phydev->irq);
return;
irq_enable_err:
disable_irq(phydev->irq);
atomic_inc(&phydev->irq_disable);
phy_err:
phy_error(phydev);
}
/**
* phy_change_work - Scheduled by the phy_mac_interrupt to handle PHY changes
* @work: work_struct that describes the work to be done
*/
void phy_change_work(struct work_struct *work)
{
struct phy_device *phydev =
container_of(work, struct phy_device, phy_queue);
phy_change(phydev);
}
/**
* phy_stop - Bring down the PHY link, and stop checking the status
* @phydev: target phy_device struct
*/
void phy_stop(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
if (PHY_HALTED == phydev->state)
goto out_unlock;
if (phy_interrupt_is_valid(phydev)) {
/* Disable PHY Interrupts */
phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
/* Clear any pending interrupts */
phy_clear_interrupt(phydev);
}
phydev->state = PHY_HALTED;
out_unlock:
mutex_unlock(&phydev->lock);
/* Cannot call flush_scheduled_work() here as desired because
* of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
* will not reenable interrupts.
*/
}
EXPORT_SYMBOL(phy_stop);
/**
* phy_start - start or restart a PHY device
* @phydev: target phy_device struct
*
* Description: Indicates the attached device's readiness to
* handle PHY-related work. Used during startup to start the
* PHY, and after a call to phy_stop() to resume operation.
* Also used to indicate the MDIO bus has cleared an error
* condition.
*/
void phy_start(struct phy_device *phydev)
{
bool do_resume = false;
int err = 0;
mutex_lock(&phydev->lock);
switch (phydev->state) {
case PHY_STARTING:
phydev->state = PHY_PENDING;
break;
case PHY_READY:
phydev->state = PHY_UP;
break;
case PHY_HALTED:
/* make sure interrupts are re-enabled for the PHY */
if (phydev->irq != PHY_POLL) {
err = phy_enable_interrupts(phydev);
if (err < 0)
break;
}
phydev->state = PHY_RESUMING;
do_resume = true;
break;
default:
break;
}
mutex_unlock(&phydev->lock);
/* if phy was suspended, bring the physical link up again */
if (do_resume)
phy_resume(phydev);
phy_trigger_machine(phydev, true);
}
EXPORT_SYMBOL(phy_start);
static void phy_adjust_link(struct phy_device *phydev)
{
phydev->adjust_link(phydev->attached_dev);
phy_led_trigger_change_speed(phydev);
}
/**
* phy_state_machine - Handle the state machine
* @work: work_struct that describes the work to be done
*/
void phy_state_machine(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct phy_device *phydev =
container_of(dwork, struct phy_device, state_queue);
bool needs_aneg = false, do_suspend = false;
enum phy_state old_state;
int err = 0;
int old_link;
mutex_lock(&phydev->lock);
old_state = phydev->state;
if (phydev->drv && phydev->drv->link_change_notify)
phydev->drv->link_change_notify(phydev);
switch (phydev->state) {
case PHY_DOWN:
case PHY_STARTING:
case PHY_READY:
case PHY_PENDING:
break;
case PHY_UP:
needs_aneg = true;
phydev->link_timeout = PHY_AN_TIMEOUT;
break;
case PHY_AN:
err = phy_read_status(phydev);
if (err < 0)
break;
/* If the link is down, give up on negotiation for now */
if (!phydev->link) {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
phy_adjust_link(phydev);
break;
}
/* Check if negotiation is done. Break if there's an error */
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* If AN is done, we're running */
if (err > 0) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phy_adjust_link(phydev);
} else if (0 == phydev->link_timeout--)
needs_aneg = true;
break;
case PHY_NOLINK:
if (phy_interrupt_is_valid(phydev))
break;
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
if (AUTONEG_ENABLE == phydev->autoneg) {
err = phy_aneg_done(phydev);
if (err < 0)
break;
if (!err) {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
break;
}
}
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phy_adjust_link(phydev);
}
break;
case PHY_FORCING:
err = genphy_update_link(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
if (0 == phydev->link_timeout--)
needs_aneg = true;
}
phy_adjust_link(phydev);
break;
case PHY_RUNNING:
/* Only register a CHANGE if we are polling and link changed
* since latest checking.
*/
if (phydev->irq == PHY_POLL) {
old_link = phydev->link;
err = phy_read_status(phydev);
if (err)
break;
if (old_link != phydev->link)
phydev->state = PHY_CHANGELINK;
}
/*
* Failsafe: check that nobody set phydev->link=0 between two
* poll cycles, otherwise we won't leave RUNNING state as long
* as link remains down.
*/
if (!phydev->link && phydev->state == PHY_RUNNING) {
phydev->state = PHY_CHANGELINK;
phydev_err(phydev, "no link in PHY_RUNNING\n");
}
break;
case PHY_CHANGELINK:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
}
phy_adjust_link(phydev);
if (phy_interrupt_is_valid(phydev))
err = phy_config_interrupt(phydev,
PHY_INTERRUPT_ENABLED);
break;
case PHY_HALTED:
if (phydev->link) {
phydev->link = 0;
netif_carrier_off(phydev->attached_dev);
phy_adjust_link(phydev);
do_suspend = true;
}
break;
case PHY_RESUMING:
if (AUTONEG_ENABLE == phydev->autoneg) {
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* err > 0 if AN is done.
* Otherwise, it's 0, and we're still waiting for AN
*/
if (err > 0) {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
}
phy_adjust_link(phydev);
} else {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
}
} else {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
}
phy_adjust_link(phydev);
}
break;
}
mutex_unlock(&phydev->lock);
if (needs_aneg)
err = phy_start_aneg_priv(phydev, false);
else if (do_suspend)
phy_suspend(phydev);
if (err < 0)
phy_error(phydev);
phydev_dbg(phydev, "PHY state change %s -> %s\n",
phy_state_to_str(old_state),
phy_state_to_str(phydev->state));
/* Only re-schedule a PHY state machine change if we are polling the
* PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving
* between states from phy_mac_interrupt()
*/
if (phydev->irq == PHY_POLL)
queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
PHY_STATE_TIME * HZ);
}
/**
* phy_mac_interrupt - MAC says the link has changed
* @phydev: phy_device struct with changed link
* @new_link: Link is Up/Down.
*
* Description: The MAC layer is able indicate there has been a change
* in the PHY link status. Set the new link status, and trigger the
* state machine, work a work queue.
*/
void phy_mac_interrupt(struct phy_device *phydev, int new_link)
{
phydev->link = new_link;
/* Trigger a state machine change */
queue_work(system_power_efficient_wq, &phydev->phy_queue);
}
EXPORT_SYMBOL(phy_mac_interrupt);
static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
int addr)
{
/* Write the desired MMD Devad */
bus->write(bus, addr, MII_MMD_CTRL, devad);
/* Write the desired MMD register address */
bus->write(bus, addr, MII_MMD_DATA, prtad);
/* Select the Function : DATA with no post increment */
bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
}
/**
* phy_read_mmd_indirect - reads data from the MMD registers
* @phydev: The PHY device bus
* @prtad: MMD Address
* @devad: MMD DEVAD
*
* Description: it reads data from the MMD registers (clause 22 to access to
* clause 45) of the specified phy address.
* To read these register we have:
* 1) Write reg 13 // DEVAD
* 2) Write reg 14 // MMD Address
* 3) Write reg 13 // MMD Data Command for MMD DEVAD
* 3) Read reg 14 // Read MMD data
*/
int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad)
{
struct phy_driver *phydrv = phydev->drv;
int addr = phydev->mdio.addr;
int value = -1;
if (!phydrv->read_mmd_indirect) {
struct mii_bus *bus = phydev->mdio.bus;
mutex_lock(&bus->mdio_lock);
mmd_phy_indirect(bus, prtad, devad, addr);
/* Read the content of the MMD's selected register */
value = bus->read(bus, addr, MII_MMD_DATA);
mutex_unlock(&bus->mdio_lock);
} else {
value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
}
return value;
}
EXPORT_SYMBOL(phy_read_mmd_indirect);
/**
* phy_write_mmd_indirect - writes data to the MMD registers
* @phydev: The PHY device
* @prtad: MMD Address
* @devad: MMD DEVAD
* @data: data to write in the MMD register
*
* Description: Write data from the MMD registers of the specified
* phy address.
* To write these register we have:
* 1) Write reg 13 // DEVAD
* 2) Write reg 14 // MMD Address
* 3) Write reg 13 // MMD Data Command for MMD DEVAD
* 3) Write reg 14 // Write MMD data
*/
void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
int devad, u32 data)
{
struct phy_driver *phydrv = phydev->drv;
int addr = phydev->mdio.addr;
if (!phydrv->write_mmd_indirect) {
struct mii_bus *bus = phydev->mdio.bus;
mutex_lock(&bus->mdio_lock);
mmd_phy_indirect(bus, prtad, devad, addr);
/* Write the data into MMD's selected register */
bus->write(bus, addr, MII_MMD_DATA, data);
mutex_unlock(&bus->mdio_lock);
} else {
phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
}
}
EXPORT_SYMBOL(phy_write_mmd_indirect);
/**
* phy_init_eee - init and check the EEE feature
* @phydev: target phy_device struct
* @clk_stop_enable: PHY may stop the clock during LPI
*
* Description: it checks if the Energy-Efficient Ethernet (EEE)
* is supported by looking at the MMD registers 3.20 and 7.60/61
* and it programs the MMD register 3.0 setting the "Clock stop enable"
* bit if required.
*/
int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
{
if (!phydev->drv)
return -EIO;
/* According to 802.3az,the EEE is supported only in full duplex-mode.
* Also EEE feature is active when core is operating with MII, GMII
* or RGMII (all kinds). Internal PHYs are also allowed to proceed and
* should return an error if they do not support EEE.
*/
if ((phydev->duplex == DUPLEX_FULL) &&
((phydev->interface == PHY_INTERFACE_MODE_MII) ||
(phydev->interface == PHY_INTERFACE_MODE_GMII) ||
phy_interface_is_rgmii(phydev) ||
phy_is_internal(phydev))) {
int eee_lp, eee_cap, eee_adv;
u32 lp, cap, adv;
int status;
/* Read phy status to properly get the right settings */
status = phy_read_status(phydev);
if (status)
return status;
/* First check if the EEE ability is supported */
eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
MDIO_MMD_PCS);
if (eee_cap <= 0)
goto eee_exit_err;
cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
if (!cap)
goto eee_exit_err;
/* Check which link settings negotiated and verify it in
* the EEE advertising registers.
*/
eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
MDIO_MMD_AN);
if (eee_lp <= 0)
goto eee_exit_err;
eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
MDIO_MMD_AN);
if (eee_adv <= 0)
goto eee_exit_err;
adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
goto eee_exit_err;
if (clk_stop_enable) {
/* Configure the PHY to stop receiving xMII
* clock while it is signaling LPI.
*/
int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
MDIO_MMD_PCS);
if (val < 0)
return val;
val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
phy_write_mmd_indirect(phydev, MDIO_CTRL1,
MDIO_MMD_PCS, val);
}
return 0; /* EEE supported */
}
eee_exit_err:
return -EPROTONOSUPPORT;
}
EXPORT_SYMBOL(phy_init_eee);
/**
* phy_get_eee_err - report the EEE wake error count
* @phydev: target phy_device struct
*
* Description: it is to report the number of time where the PHY
* failed to complete its normal wake sequence.
*/
int phy_get_eee_err(struct phy_device *phydev)
{
if (!phydev->drv)
return -EIO;
return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS);
}
EXPORT_SYMBOL(phy_get_eee_err);
/**
* phy_ethtool_get_eee - get EEE supported and status
* @phydev: target phy_device struct
* @data: ethtool_eee data
*
* Description: it reportes the Supported/Advertisement/LP Advertisement
* capabilities.
*/
int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
{
int val;
if (!phydev->drv)
return -EIO;
/* Get Supported EEE */
val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS);
if (val < 0)
return val;
data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
/* Get advertisement EEE */
val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN);
if (val < 0)
return val;
data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
/* Get LP advertisement EEE */
val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN);
if (val < 0)
return val;
data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_get_eee);
/**
* phy_ethtool_set_eee - set EEE supported and status
* @phydev: target phy_device struct
* @data: ethtool_eee data
*
* Description: it is to program the Advertisement EEE register.
*/
int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
{
int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
if (!phydev->drv)
return -EIO;
/* Mask prohibited EEE modes */
val &= ~phydev->eee_broken_modes;
phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_set_eee);
int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
if (phydev->drv && phydev->drv->set_wol)
return phydev->drv->set_wol(phydev, wol);
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(phy_ethtool_set_wol);
void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
if (phydev->drv && phydev->drv->get_wol)
phydev->drv->get_wol(phydev, wol);
}
EXPORT_SYMBOL(phy_ethtool_get_wol);
int phy_ethtool_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct phy_device *phydev = ndev->phydev;
if (!phydev)
return -ENODEV;
return phy_ethtool_ksettings_get(phydev, cmd);
}
EXPORT_SYMBOL(phy_ethtool_get_link_ksettings);
int phy_ethtool_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct phy_device *phydev = ndev->phydev;
if (!phydev)
return -ENODEV;
return phy_ethtool_ksettings_set(phydev, cmd);
}
EXPORT_SYMBOL(phy_ethtool_set_link_ksettings);
int phy_ethtool_nway_reset(struct net_device *ndev)
{
struct phy_device *phydev = ndev->phydev;
if (!phydev)
return -ENODEV;
if (!phydev->drv)
return -EIO;
return genphy_restart_aneg(phydev);
}
EXPORT_SYMBOL(phy_ethtool_nway_reset);