linux_dsm_epyc7002/drivers/gpu/drm/amd/amdkfd/kfd_crat.c
Alex Sierra ef66915653 drm/amdkfd: bug fix for out of bounds mem on gpu cache filling info
The bitmap in cu_info structure is defined as a 4x4 size array. In
Acturus, this matrix is initialized as a 4x2. Based on the 8 shaders.
In the gpu cache filling initialization, the access to the bitmap matrix
was done as an 8x1 instead of 4x2. Causing an out of bounds memory
access error.
Due to this, the number of GPU cache entries was inconsistent.

Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-10-30 11:06:51 -04:00

1406 lines
41 KiB
C

/*
* Copyright 2015-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include "kfd_crat.h"
#include "kfd_priv.h"
#include "kfd_topology.h"
#include "kfd_iommu.h"
#include "amdgpu_amdkfd.h"
/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
* GPU processor ID are expressed with Bit[31]=1.
* The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
* used in the CRAT.
*/
static uint32_t gpu_processor_id_low = 0x80001000;
/* Return the next available gpu_processor_id and increment it for next GPU
* @total_cu_count - Total CUs present in the GPU including ones
* masked off
*/
static inline unsigned int get_and_inc_gpu_processor_id(
unsigned int total_cu_count)
{
int current_id = gpu_processor_id_low;
gpu_processor_id_low += total_cu_count;
return current_id;
}
/* Static table to describe GPU Cache information */
struct kfd_gpu_cache_info {
uint32_t cache_size;
uint32_t cache_level;
uint32_t flags;
/* Indicates how many Compute Units share this cache
* Value = 1 indicates the cache is not shared
*/
uint32_t num_cu_shared;
};
static struct kfd_gpu_cache_info kaveri_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
/* TODO: Add L2 Cache information */
};
static struct kfd_gpu_cache_info carrizo_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank. */
.cache_size = 4,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
/* TODO: Add L2 Cache information */
};
/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
* the following ASICs may need a separate table.
*/
#define hawaii_cache_info kaveri_cache_info
#define tonga_cache_info carrizo_cache_info
#define fiji_cache_info carrizo_cache_info
#define polaris10_cache_info carrizo_cache_info
#define polaris11_cache_info carrizo_cache_info
#define polaris12_cache_info carrizo_cache_info
#define vegam_cache_info carrizo_cache_info
/* TODO - check & update Vega10 cache details */
#define vega10_cache_info carrizo_cache_info
#define raven_cache_info carrizo_cache_info
#define renoir_cache_info carrizo_cache_info
/* TODO - check & update Navi10 cache details */
#define navi10_cache_info carrizo_cache_info
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.array_count = cu->array_count;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
}
/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
struct list_head *device_list)
{
struct kfd_topology_device *dev;
pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, device_list, list) {
if (cu->proximity_domain == dev->proximity_domain) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
}
return 0;
}
static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
struct kfd_topology_device *dev)
{
struct kfd_mem_properties *props;
list_for_each_entry(props, &dev->mem_props, list) {
if (props->heap_type == heap_type
&& props->flags == flags
&& props->width == width)
return props;
}
return NULL;
}
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
struct list_head *device_list)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
uint32_t heap_type;
uint64_t size_in_bytes;
uint32_t flags = 0;
uint32_t width;
pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->proximity_domain);
list_for_each_entry(dev, device_list, list) {
if (mem->proximity_domain == dev->proximity_domain) {
/* We're on GPU node */
if (dev->node_props.cpu_cores_count == 0) {
/* APU */
if (mem->visibility_type == 0)
heap_type =
HSA_MEM_HEAP_TYPE_FB_PRIVATE;
/* dGPU */
else
heap_type = mem->visibility_type;
} else
heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
flags |= HSA_MEM_FLAGS_NON_VOLATILE;
size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
width = mem->width;
/* Multiple banks of the same type are aggregated into
* one. User mode doesn't care about multiple physical
* memory segments. It's managed as a single virtual
* heap for user mode.
*/
props = find_subtype_mem(heap_type, flags, width, dev);
if (props) {
props->size_in_bytes += size_in_bytes;
break;
}
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->heap_type = heap_type;
props->flags = flags;
props->size_in_bytes = size_in_bytes;
props->width = width;
dev->node_props.mem_banks_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
struct list_head *device_list)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
uint32_t total_num_of_cu;
id = cache->processor_id_low;
pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, device_list, list) {
total_num_of_cu = (dev->node_props.array_count *
dev->node_props.cu_per_simd_array);
/* Cache infomration in CRAT doesn't have proximity_domain
* information as it is associated with a CPU core or GPU
* Compute Unit. So map the cache using CPU core Id or SIMD
* (GPU) ID.
* TODO: This works because currently we can safely assume that
* Compute Units are parsed before caches are parsed. In
* future, remove this dependency
*/
if ((id >= dev->node_props.cpu_core_id_base &&
id <= dev->node_props.cpu_core_id_base +
dev->node_props.cpu_cores_count) ||
(id >= dev->node_props.simd_id_base &&
id < dev->node_props.simd_id_base +
total_num_of_cu)) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
memcpy(props->sibling_map, cache->sibling_map,
sizeof(props->sibling_map));
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
struct list_head *device_list)
{
struct kfd_iolink_properties *props = NULL, *props2;
struct kfd_topology_device *dev, *to_dev;
uint32_t id_from;
uint32_t id_to;
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
id_from, id_to);
list_for_each_entry(dev, device_list, list) {
if (id_from == dev->proximity_domain) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
props->iolink_type = iolink->io_interface_type;
if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
props->weight = 20;
else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
props->weight = 15 * iolink->num_hops_xgmi;
else
props->weight = node_distance(id_from, id_to);
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->io_link_count++;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
break;
}
}
/* CPU topology is created before GPUs are detected, so CPU->GPU
* links are not built at that time. If a PCIe type is discovered, it
* means a GPU is detected and we are adding GPU->CPU to the topology.
* At this time, also add the corresponded CPU->GPU link if GPU
* is large bar.
* For xGMI, we only added the link with one direction in the crat
* table, add corresponded reversed direction link now.
*/
if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
to_dev = kfd_topology_device_by_proximity_domain(id_to);
if (!to_dev)
return -ENODEV;
/* same everything but the other direction */
props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
props2->node_from = id_to;
props2->node_to = id_from;
props2->kobj = NULL;
to_dev->io_link_count++;
to_dev->node_props.io_links_count++;
list_add_tail(&props2->list, &to_dev->io_link_props);
}
return 0;
}
/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
* present in the device_list
* @sub_type_hdr - subtype section of crat_image
* @device_list - list of topology devices present in this crat_image
*/
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
struct list_head *device_list)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu, device_list);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem, device_list);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache, device_list);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink, device_list);
break;
default:
pr_warn("Unknown subtype %d in CRAT\n",
sub_type_hdr->type);
}
return ret;
}
/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
* create a kfd_topology_device and add in to device_list. Also parse
* CRAT subtypes and attach it to appropriate kfd_topology_device
* @crat_image - input image containing CRAT
* @device_list - [OUT] list of kfd_topology_device generated after
* parsing crat_image
* @proximity_domain - Proximity domain of the first device in the table
*
* Return - 0 if successful else -ve value
*/
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
uint32_t proximity_domain)
{
struct kfd_topology_device *top_dev = NULL;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret = 0;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
if (!list_empty(device_list)) {
pr_warn("Error device list should be empty\n");
return -EINVAL;
}
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device(device_list);
if (!top_dev)
break;
top_dev->proximity_domain = proximity_domain++;
}
if (!top_dev) {
ret = -ENOMEM;
goto err;
}
memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
top_dev->oem_revision = crat_table->oem_revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr, device_list);
if (ret)
break;
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
err:
if (ret)
kfd_release_topology_device_list(device_list);
return ret;
}
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_pcache(struct crat_subtype_cache *pcache,
struct kfd_gpu_cache_info *pcache_info,
struct kfd_cu_info *cu_info,
int mem_available,
int cu_bitmask,
int cache_type, unsigned int cu_processor_id,
int cu_block)
{
unsigned int cu_sibling_map_mask;
int first_active_cu;
/* First check if enough memory is available */
if (sizeof(struct crat_subtype_cache) > mem_available)
return -ENOMEM;
cu_sibling_map_mask = cu_bitmask;
cu_sibling_map_mask >>= cu_block;
cu_sibling_map_mask &=
((1 << pcache_info[cache_type].num_cu_shared) - 1);
first_active_cu = ffs(cu_sibling_map_mask);
/* CU could be inactive. In case of shared cache find the first active
* CU. and incase of non-shared cache check if the CU is inactive. If
* inactive active skip it
*/
if (first_active_cu) {
memset(pcache, 0, sizeof(struct crat_subtype_cache));
pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
pcache->length = sizeof(struct crat_subtype_cache);
pcache->flags = pcache_info[cache_type].flags;
pcache->processor_id_low = cu_processor_id
+ (first_active_cu - 1);
pcache->cache_level = pcache_info[cache_type].cache_level;
pcache->cache_size = pcache_info[cache_type].cache_size;
/* Sibling map is w.r.t processor_id_low, so shift out
* inactive CU
*/
cu_sibling_map_mask =
cu_sibling_map_mask >> (first_active_cu - 1);
pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
pcache->sibling_map[1] =
(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
pcache->sibling_map[2] =
(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
pcache->sibling_map[3] =
(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
return 0;
}
return 1;
}
/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
* tables
*
* @kdev - [IN] GPU device
* @gpu_processor_id - [IN] GPU processor ID to which these caches
* associate
* @available_size - [IN] Amount of memory available in pcache
* @cu_info - [IN] Compute Unit info obtained from KGD
* @pcache - [OUT] memory into which cache data is to be filled in.
* @size_filled - [OUT] amount of data used up in pcache.
* @num_of_entries - [OUT] number of caches added
*/
static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
int gpu_processor_id,
int available_size,
struct kfd_cu_info *cu_info,
struct crat_subtype_cache *pcache,
int *size_filled,
int *num_of_entries)
{
struct kfd_gpu_cache_info *pcache_info;
int num_of_cache_types = 0;
int i, j, k;
int ct = 0;
int mem_available = available_size;
unsigned int cu_processor_id;
int ret;
switch (kdev->device_info->asic_family) {
case CHIP_KAVERI:
pcache_info = kaveri_cache_info;
num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
break;
case CHIP_HAWAII:
pcache_info = hawaii_cache_info;
num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
break;
case CHIP_CARRIZO:
pcache_info = carrizo_cache_info;
num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
break;
case CHIP_TONGA:
pcache_info = tonga_cache_info;
num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
break;
case CHIP_FIJI:
pcache_info = fiji_cache_info;
num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
break;
case CHIP_POLARIS10:
pcache_info = polaris10_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
break;
case CHIP_POLARIS11:
pcache_info = polaris11_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
break;
case CHIP_POLARIS12:
pcache_info = polaris12_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
break;
case CHIP_VEGAM:
pcache_info = vegam_cache_info;
num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
break;
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
case CHIP_ARCTURUS:
pcache_info = vega10_cache_info;
num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
break;
case CHIP_RAVEN:
pcache_info = raven_cache_info;
num_of_cache_types = ARRAY_SIZE(raven_cache_info);
break;
case CHIP_RENOIR:
pcache_info = renoir_cache_info;
num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
break;
case CHIP_NAVI10:
case CHIP_NAVI12:
case CHIP_NAVI14:
pcache_info = navi10_cache_info;
num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
break;
default:
return -EINVAL;
}
*size_filled = 0;
*num_of_entries = 0;
/* For each type of cache listed in the kfd_gpu_cache_info table,
* go through all available Compute Units.
* The [i,j,k] loop will
* if kfd_gpu_cache_info.num_cu_shared = 1
* will parse through all available CU
* If (kfd_gpu_cache_info.num_cu_shared != 1)
* then it will consider only one CU from
* the shared unit
*/
for (ct = 0; ct < num_of_cache_types; ct++) {
cu_processor_id = gpu_processor_id;
for (i = 0; i < cu_info->num_shader_engines; i++) {
for (j = 0; j < cu_info->num_shader_arrays_per_engine;
j++) {
for (k = 0; k < cu_info->num_cu_per_sh;
k += pcache_info[ct].num_cu_shared) {
ret = fill_in_pcache(pcache,
pcache_info,
cu_info,
mem_available,
cu_info->cu_bitmap[i % 4][j + i / 4],
ct,
cu_processor_id,
k);
if (ret < 0)
break;
if (!ret) {
pcache++;
(*num_of_entries)++;
mem_available -=
sizeof(*pcache);
(*size_filled) +=
sizeof(*pcache);
}
/* Move to next CU block */
cu_processor_id +=
pcache_info[ct].num_cu_shared;
}
}
}
}
pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
return 0;
}
/*
* kfd_create_crat_image_acpi - Allocates memory for CRAT image and
* copies CRAT from ACPI (if available).
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
* crat_image will be NULL
* @size: [OUT] size of crat_image
*
* Return 0 if successful else return error code
*/
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
{
struct acpi_table_header *crat_table;
acpi_status status;
void *pcrat_image;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Fetch the CRAT table from ACPI */
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_warn("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
if (ignore_crat) {
pr_info("CRAT table disabled by module option\n");
return -ENODATA;
}
pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*crat_image = pcrat_image;
*size = crat_table->length;
return 0;
}
/* Memory required to create Virtual CRAT.
* Since there is no easy way to predict the amount of memory required, the
* following amount are allocated for CPU and GPU Virtual CRAT. This is
* expected to cover all known conditions. But to be safe additional check
* is put in the code to ensure we don't overwrite.
*/
#define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE)
#define VCRAT_SIZE_FOR_GPU (4 * PAGE_SIZE)
/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_computeunit *sub_type_hdr)
{
const struct cpumask *cpumask;
*avail_size -= sizeof(struct crat_subtype_computeunit);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
cpumask = cpumask_of_node(numa_node_id);
/* Fill in CU data */
sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
sub_type_hdr->proximity_domain = proximity_domain;
sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
if (sub_type_hdr->processor_id_low == -1)
return -EINVAL;
sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
return 0;
}
/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_memory *sub_type_hdr)
{
uint64_t mem_in_bytes = 0;
pg_data_t *pgdat;
int zone_type;
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in Memory Subunit data */
/* Unlike si_meminfo, si_meminfo_node is not exported. So
* the following lines are duplicated from si_meminfo_node
* function
*/
pgdat = NODE_DATA(numa_node_id);
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
mem_in_bytes <<= PAGE_SHIFT;
sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
sub_type_hdr->proximity_domain = proximity_domain;
return 0;
}
#ifdef CONFIG_X86_64
static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
uint32_t *num_entries,
struct crat_subtype_iolink *sub_type_hdr)
{
int nid;
struct cpuinfo_x86 *c = &cpu_data(0);
uint8_t link_type;
if (c->x86_vendor == X86_VENDOR_AMD)
link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
else
link_type = CRAT_IOLINK_TYPE_QPI_1_1;
*num_entries = 0;
/* Create IO links from this node to other CPU nodes */
for_each_online_node(nid) {
if (nid == numa_node_id) /* node itself */
continue;
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in IO link data */
sub_type_hdr->proximity_domain_from = numa_node_id;
sub_type_hdr->proximity_domain_to = nid;
sub_type_hdr->io_interface_type = link_type;
(*num_entries)++;
sub_type_hdr++;
}
return 0;
}
#endif
/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for CPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct acpi_table_header *acpi_table;
acpi_status status;
struct crat_subtype_generic *sub_type_hdr;
int avail_size = *size;
int numa_node_id;
#ifdef CONFIG_X86_64
uint32_t entries = 0;
#endif
int ret = 0;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
return -EINVAL;
/* Fill in CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
crat_table->length = sizeof(struct crat_header);
status = acpi_get_table("DSDT", 0, &acpi_table);
if (status != AE_OK)
pr_warn("DSDT table not found for OEM information\n");
else {
crat_table->oem_revision = acpi_table->revision;
memcpy(crat_table->oem_id, acpi_table->oem_id,
CRAT_OEMID_LENGTH);
memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
}
crat_table->total_entries = 0;
crat_table->num_domains = 0;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
for_each_online_node(numa_node_id) {
if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
continue;
/* Fill in Subtype: Compute Unit */
ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_computeunit *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: Memory */
ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_memory *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: IO Link */
#ifdef CONFIG_X86_64
ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
&entries,
(struct crat_subtype_iolink *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += (sub_type_hdr->length * entries);
crat_table->total_entries += entries;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length * entries);
#else
pr_info("IO link not available for non x86 platforms\n");
#endif
crat_table->num_domains++;
}
/* TODO: Add cache Subtype for CPU.
* Currently, CPU cache information is available in function
* detect_cache_attributes(cpu) defined in the file
* ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
* exported and to get the same information the code needs to be
* duplicated.
*/
*size = crat_table->length;
pr_info("Virtual CRAT table created for CPU\n");
return 0;
}
static int kfd_fill_gpu_memory_affinity(int *avail_size,
struct kfd_dev *kdev, uint8_t type, uint64_t size,
struct crat_subtype_memory *sub_type_hdr,
uint32_t proximity_domain,
const struct kfd_local_mem_info *local_mem_info)
{
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
sub_type_hdr->proximity_domain = proximity_domain;
pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
type, size);
sub_type_hdr->length_low = lower_32_bits(size);
sub_type_hdr->length_high = upper_32_bits(size);
sub_type_hdr->width = local_mem_info->vram_width;
sub_type_hdr->visibility_type = type;
return 0;
}
/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
* to its NUMA node
* @avail_size: Available size in the memory
* @kdev - [IN] GPU device
* @sub_type_hdr: Memory into which io link info will be filled in
* @proximity_domain - proximity domain of the GPU node
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
struct kfd_dev *kdev,
struct crat_subtype_iolink *sub_type_hdr,
uint32_t proximity_domain)
{
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
if (kfd_dev_is_large_bar(kdev))
sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
/* Fill in IOLINK subtype.
* TODO: Fill-in other fields of iolink subtype
*/
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
sub_type_hdr->proximity_domain_from = proximity_domain;
#ifdef CONFIG_NUMA
if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
sub_type_hdr->proximity_domain_to = 0;
else
sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
#else
sub_type_hdr->proximity_domain_to = 0;
#endif
return 0;
}
static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
struct kfd_dev *kdev,
struct kfd_dev *peer_kdev,
struct crat_subtype_iolink *sub_type_hdr,
uint32_t proximity_domain_from,
uint32_t proximity_domain_to)
{
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
sub_type_hdr->proximity_domain_from = proximity_domain_from;
sub_type_hdr->proximity_domain_to = proximity_domain_to;
sub_type_hdr->num_hops_xgmi =
amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
return 0;
}
/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for GPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
size_t *size, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct crat_subtype_generic *sub_type_hdr;
struct kfd_local_mem_info local_mem_info;
struct kfd_topology_device *peer_dev;
struct crat_subtype_computeunit *cu;
struct kfd_cu_info cu_info;
int avail_size = *size;
uint32_t total_num_of_cu;
int num_of_cache_entries = 0;
int cache_mem_filled = 0;
uint32_t nid = 0;
int ret = 0;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
return -EINVAL;
/* Fill the CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
/* Change length as we add more subtypes*/
crat_table->length = sizeof(struct crat_header);
crat_table->num_domains = 1;
crat_table->total_entries = 0;
/* Fill in Subtype: Compute Unit
* First fill in the sub type header and then sub type data
*/
avail_size -= sizeof(struct crat_subtype_computeunit);
if (avail_size < 0)
return -ENOMEM;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill CU subtype data */
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
cu->proximity_domain = proximity_domain;
amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
cu->num_simd_per_cu = cu_info.simd_per_cu;
cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
cu->max_waves_simd = cu_info.max_waves_per_simd;
cu->wave_front_size = cu_info.wave_front_size;
cu->array_count = cu_info.num_shader_arrays_per_engine *
cu_info.num_shader_engines;
total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
cu->num_cu_per_array = cu_info.num_cu_per_sh;
cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
cu->num_banks = cu_info.num_shader_engines;
cu->lds_size_in_kb = cu_info.lds_size;
cu->hsa_capability = 0;
/* Check if this node supports IOMMU. During parsing this flag will
* translate to HSA_CAP_ATS_PRESENT
*/
if (!kfd_iommu_check_device(kdev))
cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
/* Fill in Subtype: Memory. Only on systems with large BAR (no
* private FB), report memory as public. On other systems
* report the total FB size (public+private) as a single
* private heap.
*/
amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
if (debug_largebar)
local_mem_info.local_mem_size_private = 0;
if (local_mem_info.local_mem_size_private == 0)
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
local_mem_info.local_mem_size_public,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
else
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
local_mem_info.local_mem_size_public +
local_mem_info.local_mem_size_private,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
if (ret < 0)
return ret;
crat_table->length += sizeof(struct crat_subtype_memory);
crat_table->total_entries++;
/* TODO: Fill in cache information. This information is NOT readily
* available in KGD
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
avail_size,
&cu_info,
(struct crat_subtype_cache *)sub_type_hdr,
&cache_mem_filled,
&num_of_cache_entries);
if (ret < 0)
return ret;
crat_table->length += cache_mem_filled;
crat_table->total_entries += num_of_cache_entries;
avail_size -= cache_mem_filled;
/* Fill in Subtype: IO_LINKS
* Only direct links are added here which is Link from GPU to
* to its NUMA node. Indirect links are added by userspace.
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
cache_mem_filled);
ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
/* Fill in Subtype: IO_LINKS
* Direct links from GPU to other GPUs through xGMI.
* We will loop GPUs that already be processed (with lower value
* of proximity_domain), add the link for the GPUs with same
* hive id (from this GPU to other GPU) . The reversed iolink
* (from other GPU to this GPU) will be added
* in kfd_parse_subtype_iolink.
*/
if (kdev->hive_id) {
for (nid = 0; nid < proximity_domain; ++nid) {
peer_dev = kfd_topology_device_by_proximity_domain(nid);
if (!peer_dev->gpu)
continue;
if (peer_dev->gpu->hive_id != kdev->hive_id)
continue;
sub_type_hdr = (typeof(sub_type_hdr))(
(char *)sub_type_hdr +
sizeof(struct crat_subtype_iolink));
ret = kfd_fill_gpu_xgmi_link_to_gpu(
&avail_size, kdev, peer_dev->gpu,
(struct crat_subtype_iolink *)sub_type_hdr,
proximity_domain, nid);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
}
}
*size = crat_table->length;
pr_info("Virtual CRAT table created for GPU\n");
return ret;
}
/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
* creates a Virtual CRAT (VCRAT) image
*
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: VCRAT image created because ACPI does not have a
* CRAT for this device
* @size: [OUT] size of virtual crat_image
* @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
* COMPUTE_UNIT_GPU - Create VCRAT for GPU
* (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
* -- this option is not currently implemented.
* The assumption is that all AMD APUs will have CRAT
* @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
*
* Return 0 if successful else return -ve value
*/
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
int flags, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
void *pcrat_image = NULL;
int ret = 0;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
* VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
* all the current conditions. A check is put not to overwrite beyond
* allocated size
*/
switch (flags) {
case COMPUTE_UNIT_CPU:
pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_CPU;
ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
break;
case COMPUTE_UNIT_GPU:
if (!kdev)
return -EINVAL;
pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_GPU;
ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
proximity_domain);
break;
case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
/* TODO: */
ret = -EINVAL;
pr_err("VCRAT not implemented for APU\n");
break;
default:
ret = -EINVAL;
}
if (!ret)
*crat_image = pcrat_image;
else
kfree(pcrat_image);
return ret;
}
/* kfd_destroy_crat_image
*
* @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
*
*/
void kfd_destroy_crat_image(void *crat_image)
{
kfree(crat_image);
}