linux_dsm_epyc7002/drivers/md/raid10.h
Linus Torvalds 47f521ba18 Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
Pull MD update from Shaohua Li:
 "This update mostly includes bug fixes:

   - md-cluster now supports raid10 from Guoqing

   - raid5 PPL fixes from Artur

   - badblock regression fix from Bo

   - suspend hang related fixes from Neil

   - raid5 reshape fixes from Neil

   - raid1 freeze deadlock fix from Nate

   - memleak fixes from Zdenek

   - bitmap related fixes from Me and Tao

   - other fixes and cleanups"

* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md: (33 commits)
  md: free unused memory after bitmap resize
  md: release allocated bitset sync_set
  md/bitmap: clear BITMAP_WRITE_ERROR bit before writing it to sb
  md: be cautious about using ->curr_resync_completed for ->recovery_offset
  badblocks: fix wrong return value in badblocks_set if badblocks are disabled
  md: don't check MD_SB_CHANGE_CLEAN in md_allow_write
  md-cluster: update document for raid10
  md: remove redundant variable q
  raid1: remove obsolete code in raid1_write_request
  md-cluster: Use a small window for raid10 resync
  md-cluster: Suspend writes in RAID10 if within range
  md-cluster/raid10: set "do_balance = 0" if area is resyncing
  md: use lockdep_assert_held
  raid1: prevent freeze_array/wait_all_barriers deadlock
  md: use TASK_IDLE instead of blocking signals
  md: remove special meaning of ->quiesce(.., 2)
  md: allow metadata update while suspending.
  md: use mddev_suspend/resume instead of ->quiesce()
  md: move suspend_hi/lo handling into core md code
  md: don't call bitmap_create() while array is quiesced.
  ...
2017-11-14 16:07:26 -08:00

171 lines
4.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _RAID10_H
#define _RAID10_H
struct raid10_info {
struct md_rdev *rdev, *replacement;
sector_t head_position;
int recovery_disabled; /* matches
* mddev->recovery_disabled
* when we shouldn't try
* recovering this device.
*/
};
struct r10conf {
struct mddev *mddev;
struct raid10_info *mirrors;
struct raid10_info *mirrors_new, *mirrors_old;
spinlock_t device_lock;
/* geometry */
struct geom {
int raid_disks;
int near_copies; /* number of copies laid out
* raid0 style */
int far_copies; /* number of copies laid out
* at large strides across drives
*/
int far_offset; /* far_copies are offset by 1
* stripe instead of many
*/
sector_t stride; /* distance between far copies.
* This is size / far_copies unless
* far_offset, in which case it is
* 1 stripe.
*/
int far_set_size; /* The number of devices in a set,
* where a 'set' are devices that
* contain far/offset copies of
* each other.
*/
int chunk_shift; /* shift from chunks to sectors */
sector_t chunk_mask;
} prev, geo;
int copies; /* near_copies * far_copies.
* must be <= raid_disks
*/
sector_t dev_sectors; /* temp copy of
* mddev->dev_sectors */
sector_t reshape_progress;
sector_t reshape_safe;
unsigned long reshape_checkpoint;
sector_t offset_diff;
struct list_head retry_list;
/* A separate list of r1bio which just need raid_end_bio_io called.
* This mustn't happen for writes which had any errors if the superblock
* needs to be written.
*/
struct list_head bio_end_io_list;
/* queue pending writes and submit them on unplug */
struct bio_list pending_bio_list;
int pending_count;
spinlock_t resync_lock;
atomic_t nr_pending;
int nr_waiting;
int nr_queued;
int barrier;
int array_freeze_pending;
sector_t next_resync;
int fullsync; /* set to 1 if a full sync is needed,
* (fresh device added).
* Cleared when a sync completes.
*/
int have_replacement; /* There is at least one
* replacement device.
*/
wait_queue_head_t wait_barrier;
mempool_t *r10bio_pool;
mempool_t *r10buf_pool;
struct page *tmppage;
struct bio_set *bio_split;
/* When taking over an array from a different personality, we store
* the new thread here until we fully activate the array.
*/
struct md_thread *thread;
/*
* Keep track of cluster resync window to send to other nodes.
*/
sector_t cluster_sync_low;
sector_t cluster_sync_high;
};
/*
* this is our 'private' RAID10 bio.
*
* it contains information about what kind of IO operations were started
* for this RAID10 operation, and about their status:
*/
struct r10bio {
atomic_t remaining; /* 'have we finished' count,
* used from IRQ handlers
*/
sector_t sector; /* virtual sector number */
int sectors;
unsigned long state;
struct mddev *mddev;
/*
* original bio going to /dev/mdx
*/
struct bio *master_bio;
/*
* if the IO is in READ direction, then this is where we read
*/
int read_slot;
struct list_head retry_list;
/*
* if the IO is in WRITE direction, then multiple bios are used,
* one for each copy.
* When resyncing we also use one for each copy.
* When reconstructing, we use 2 bios, one for read, one for write.
* We choose the number when they are allocated.
* We sometimes need an extra bio to write to the replacement.
*/
struct r10dev {
struct bio *bio;
union {
struct bio *repl_bio; /* used for resync and
* writes */
struct md_rdev *rdev; /* used for reads
* (read_slot >= 0) */
};
sector_t addr;
int devnum;
} devs[0];
};
/* bits for r10bio.state */
enum r10bio_state {
R10BIO_Uptodate,
R10BIO_IsSync,
R10BIO_IsRecover,
R10BIO_IsReshape,
R10BIO_Degraded,
/* Set ReadError on bios that experience a read error
* so that raid10d knows what to do with them.
*/
R10BIO_ReadError,
/* If a write for this request means we can clear some
* known-bad-block records, we set this flag.
*/
R10BIO_MadeGood,
R10BIO_WriteError,
/* During a reshape we might be performing IO on the
* 'previous' part of the array, in which case this
* flag is set
*/
R10BIO_Previous,
/* failfast devices did receive failfast requests. */
R10BIO_FailFast,
};
#endif