mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 18:21:32 +07:00
efd7ed0f5f
Sparse reports a warning at efx_ef10_try_update_nic_stats_vf() warning: context imbalance in efx_ef10_try_update_nic_stats_vf() - unexpected unlock The root cause is the missing annotation at efx_ef10_try_update_nic_stats_vf() Add the missing _must_hold(&efx->stats_lock) annotation Signed-off-by: Jules Irenge <jbi.octave@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
4263 lines
125 KiB
C
4263 lines
125 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2012-2013 Solarflare Communications Inc.
|
|
*/
|
|
|
|
#include "net_driver.h"
|
|
#include "rx_common.h"
|
|
#include "ef10_regs.h"
|
|
#include "io.h"
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "mcdi_port_common.h"
|
|
#include "mcdi_functions.h"
|
|
#include "nic.h"
|
|
#include "mcdi_filters.h"
|
|
#include "workarounds.h"
|
|
#include "selftest.h"
|
|
#include "ef10_sriov.h"
|
|
#include <linux/in.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
/* Hardware control for EF10 architecture including 'Huntington'. */
|
|
|
|
#define EFX_EF10_DRVGEN_EV 7
|
|
enum {
|
|
EFX_EF10_TEST = 1,
|
|
EFX_EF10_REFILL,
|
|
};
|
|
|
|
/* VLAN list entry */
|
|
struct efx_ef10_vlan {
|
|
struct list_head list;
|
|
u16 vid;
|
|
};
|
|
|
|
static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
|
|
|
|
static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t reg;
|
|
|
|
efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
|
|
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
|
|
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
|
|
}
|
|
|
|
/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
|
|
* I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
|
|
* bar; PFs use BAR 0/1 for memory.
|
|
*/
|
|
static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
|
|
{
|
|
switch (efx->pci_dev->device) {
|
|
case 0x0b03: /* SFC9250 PF */
|
|
return 0;
|
|
default:
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/* All VFs use BAR 0/1 for memory */
|
|
static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
|
|
{
|
|
int bar;
|
|
|
|
bar = efx->type->mem_bar(efx);
|
|
return resource_size(&efx->pci_dev->resource[bar]);
|
|
}
|
|
|
|
static bool efx_ef10_is_vf(struct efx_nic *efx)
|
|
{
|
|
return efx->type->is_vf;
|
|
}
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
static int efx_ef10_get_vf_index(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
|
|
sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < sizeof(outbuf))
|
|
return -EIO;
|
|
|
|
nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"unable to read datapath firmware capabilities\n");
|
|
return -EIO;
|
|
}
|
|
|
|
nic_data->datapath_caps =
|
|
MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
|
|
|
|
if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
|
|
nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_V2_OUT_FLAGS2);
|
|
nic_data->piobuf_size = MCDI_WORD(outbuf,
|
|
GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
|
|
} else {
|
|
nic_data->datapath_caps2 = 0;
|
|
nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
|
|
}
|
|
|
|
/* record the DPCPU firmware IDs to determine VEB vswitching support.
|
|
*/
|
|
nic_data->rx_dpcpu_fw_id =
|
|
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
|
|
nic_data->tx_dpcpu_fw_id =
|
|
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
|
|
|
|
if (!(nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"current firmware does not support an RX prefix\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
|
|
u8 vi_window_mode = MCDI_BYTE(outbuf,
|
|
GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
|
|
|
|
rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
|
|
if (rc)
|
|
return rc;
|
|
} else {
|
|
/* keep default VI stride */
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"firmware did not report VI window mode, assuming vi_stride = %u\n",
|
|
efx->vi_stride);
|
|
}
|
|
|
|
if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
|
|
efx->num_mac_stats = MCDI_WORD(outbuf,
|
|
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"firmware reports num_mac_stats = %u\n",
|
|
efx->num_mac_stats);
|
|
} else {
|
|
/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"firmware did not report num_mac_stats, assuming %u\n",
|
|
efx->num_mac_stats);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_ef10_read_licensed_features(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
|
|
MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
|
|
return;
|
|
|
|
nic_data->licensed_features = MCDI_QWORD(outbuf,
|
|
LICENSING_V3_OUT_LICENSED_FEATURES);
|
|
}
|
|
|
|
static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
|
|
int rc;
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
|
|
outbuf, sizeof(outbuf), NULL);
|
|
if (rc)
|
|
return rc;
|
|
rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
|
|
return rc > 0 ? rc : -ERANGE;
|
|
}
|
|
|
|
static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
unsigned int implemented;
|
|
unsigned int enabled;
|
|
int rc;
|
|
|
|
nic_data->workaround_35388 = false;
|
|
nic_data->workaround_61265 = false;
|
|
|
|
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
|
|
|
|
if (rc == -ENOSYS) {
|
|
/* Firmware without GET_WORKAROUNDS - not a problem. */
|
|
rc = 0;
|
|
} else if (rc == 0) {
|
|
/* Bug61265 workaround is always enabled if implemented. */
|
|
if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
|
|
nic_data->workaround_61265 = true;
|
|
|
|
if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
|
|
nic_data->workaround_35388 = true;
|
|
} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
|
|
/* Workaround is implemented but not enabled.
|
|
* Try to enable it.
|
|
*/
|
|
rc = efx_mcdi_set_workaround(efx,
|
|
MC_CMD_WORKAROUND_BUG35388,
|
|
true, NULL);
|
|
if (rc == 0)
|
|
nic_data->workaround_35388 = true;
|
|
/* If we failed to set the workaround just carry on. */
|
|
rc = 0;
|
|
}
|
|
}
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"workaround for bug 35388 is %sabled\n",
|
|
nic_data->workaround_35388 ? "en" : "dis");
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"workaround for bug 61265 is %sabled\n",
|
|
nic_data->workaround_61265 ? "en" : "dis");
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ef10_process_timer_config(struct efx_nic *efx,
|
|
const efx_dword_t *data)
|
|
{
|
|
unsigned int max_count;
|
|
|
|
if (EFX_EF10_WORKAROUND_61265(efx)) {
|
|
efx->timer_quantum_ns = MCDI_DWORD(data,
|
|
GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
|
|
efx->timer_max_ns = MCDI_DWORD(data,
|
|
GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
|
|
} else if (EFX_EF10_WORKAROUND_35388(efx)) {
|
|
efx->timer_quantum_ns = MCDI_DWORD(data,
|
|
GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
|
|
max_count = MCDI_DWORD(data,
|
|
GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
|
|
efx->timer_max_ns = max_count * efx->timer_quantum_ns;
|
|
} else {
|
|
efx->timer_quantum_ns = MCDI_DWORD(data,
|
|
GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
|
|
max_count = MCDI_DWORD(data,
|
|
GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
|
|
efx->timer_max_ns = max_count * efx->timer_quantum_ns;
|
|
}
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"got timer properties from MC: quantum %u ns; max %u ns\n",
|
|
efx->timer_quantum_ns, efx->timer_max_ns);
|
|
}
|
|
|
|
static int efx_ef10_get_timer_config(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
|
|
int rc;
|
|
|
|
rc = efx_ef10_get_timer_workarounds(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
|
|
outbuf, sizeof(outbuf), NULL);
|
|
|
|
if (rc == 0) {
|
|
efx_ef10_process_timer_config(efx, outbuf);
|
|
} else if (rc == -ENOSYS || rc == -EPERM) {
|
|
/* Not available - fall back to Huntington defaults. */
|
|
unsigned int quantum;
|
|
|
|
rc = efx_ef10_get_sysclk_freq(efx);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
quantum = 1536000 / rc; /* 1536 cycles */
|
|
efx->timer_quantum_ns = quantum;
|
|
efx->timer_max_ns = efx->type->timer_period_max * quantum;
|
|
rc = 0;
|
|
} else {
|
|
efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
|
|
MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
|
|
NULL, 0, rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
|
|
return -EIO;
|
|
|
|
ether_addr_copy(mac_address,
|
|
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
|
|
size_t outlen;
|
|
int num_addrs, rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
|
|
EVB_PORT_ID_ASSIGNED);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
|
|
sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
|
|
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
|
|
return -EIO;
|
|
|
|
num_addrs = MCDI_DWORD(outbuf,
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
|
|
|
|
WARN_ON(num_addrs != 1);
|
|
|
|
ether_addr_copy(mac_address,
|
|
MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n",
|
|
((efx->mcdi->fn_flags) &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
|
|
? 1 : 0);
|
|
}
|
|
|
|
static ssize_t efx_ef10_show_primary_flag(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct efx_nic *efx = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n",
|
|
((efx->mcdi->fn_flags) &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
|
|
? 1 : 0);
|
|
}
|
|
|
|
static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_ef10_vlan *vlan;
|
|
|
|
WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
|
|
|
|
list_for_each_entry(vlan, &nic_data->vlan_list, list) {
|
|
if (vlan->vid == vid)
|
|
return vlan;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_ef10_vlan *vlan;
|
|
int rc;
|
|
|
|
mutex_lock(&nic_data->vlan_lock);
|
|
|
|
vlan = efx_ef10_find_vlan(efx, vid);
|
|
if (vlan) {
|
|
/* We add VID 0 on init. 8021q adds it on module init
|
|
* for all interfaces with VLAN filtring feature.
|
|
*/
|
|
if (vid == 0)
|
|
goto done_unlock;
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"VLAN %u already added\n", vid);
|
|
rc = -EALREADY;
|
|
goto fail_exist;
|
|
}
|
|
|
|
rc = -ENOMEM;
|
|
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
|
|
if (!vlan)
|
|
goto fail_alloc;
|
|
|
|
vlan->vid = vid;
|
|
|
|
list_add_tail(&vlan->list, &nic_data->vlan_list);
|
|
|
|
if (efx->filter_state) {
|
|
mutex_lock(&efx->mac_lock);
|
|
down_write(&efx->filter_sem);
|
|
rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
|
|
up_write(&efx->filter_sem);
|
|
mutex_unlock(&efx->mac_lock);
|
|
if (rc)
|
|
goto fail_filter_add_vlan;
|
|
}
|
|
|
|
done_unlock:
|
|
mutex_unlock(&nic_data->vlan_lock);
|
|
return 0;
|
|
|
|
fail_filter_add_vlan:
|
|
list_del(&vlan->list);
|
|
kfree(vlan);
|
|
fail_alloc:
|
|
fail_exist:
|
|
mutex_unlock(&nic_data->vlan_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
|
|
struct efx_ef10_vlan *vlan)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
|
|
|
|
if (efx->filter_state) {
|
|
down_write(&efx->filter_sem);
|
|
efx_mcdi_filter_del_vlan(efx, vlan->vid);
|
|
up_write(&efx->filter_sem);
|
|
}
|
|
|
|
list_del(&vlan->list);
|
|
kfree(vlan);
|
|
}
|
|
|
|
static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_ef10_vlan *vlan;
|
|
int rc = 0;
|
|
|
|
/* 8021q removes VID 0 on module unload for all interfaces
|
|
* with VLAN filtering feature. We need to keep it to receive
|
|
* untagged traffic.
|
|
*/
|
|
if (vid == 0)
|
|
return 0;
|
|
|
|
mutex_lock(&nic_data->vlan_lock);
|
|
|
|
vlan = efx_ef10_find_vlan(efx, vid);
|
|
if (!vlan) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"VLAN %u to be deleted not found\n", vid);
|
|
rc = -ENOENT;
|
|
} else {
|
|
efx_ef10_del_vlan_internal(efx, vlan);
|
|
}
|
|
|
|
mutex_unlock(&nic_data->vlan_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_ef10_vlan *vlan, *next_vlan;
|
|
|
|
mutex_lock(&nic_data->vlan_lock);
|
|
list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
|
|
efx_ef10_del_vlan_internal(efx, vlan);
|
|
mutex_unlock(&nic_data->vlan_lock);
|
|
}
|
|
|
|
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
|
|
NULL);
|
|
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
|
|
|
|
static int efx_ef10_probe(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data;
|
|
int i, rc;
|
|
|
|
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
|
|
if (!nic_data)
|
|
return -ENOMEM;
|
|
efx->nic_data = nic_data;
|
|
|
|
/* we assume later that we can copy from this buffer in dwords */
|
|
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
|
|
|
|
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
|
|
8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
/* Get the MC's warm boot count. In case it's rebooting right
|
|
* now, be prepared to retry.
|
|
*/
|
|
i = 0;
|
|
for (;;) {
|
|
rc = efx_ef10_get_warm_boot_count(efx);
|
|
if (rc >= 0)
|
|
break;
|
|
if (++i == 5)
|
|
goto fail2;
|
|
ssleep(1);
|
|
}
|
|
nic_data->warm_boot_count = rc;
|
|
|
|
efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
|
|
|
|
efx->vport_id = EVB_PORT_ID_ASSIGNED;
|
|
|
|
/* In case we're recovering from a crash (kexec), we want to
|
|
* cancel any outstanding request by the previous user of this
|
|
* function. We send a special message using the least
|
|
* significant bits of the 'high' (doorbell) register.
|
|
*/
|
|
_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
|
|
|
|
rc = efx_mcdi_init(efx);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
mutex_init(&nic_data->udp_tunnels_lock);
|
|
|
|
/* Reset (most) configuration for this function */
|
|
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
|
|
if (rc)
|
|
goto fail3;
|
|
|
|
/* Enable event logging */
|
|
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
|
|
if (rc)
|
|
goto fail3;
|
|
|
|
rc = device_create_file(&efx->pci_dev->dev,
|
|
&dev_attr_link_control_flag);
|
|
if (rc)
|
|
goto fail3;
|
|
|
|
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
|
|
if (rc)
|
|
goto fail4;
|
|
|
|
rc = efx_get_pf_index(efx, &nic_data->pf_index);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
rc = efx_ef10_init_datapath_caps(efx);
|
|
if (rc < 0)
|
|
goto fail5;
|
|
|
|
efx_ef10_read_licensed_features(efx);
|
|
|
|
/* We can have one VI for each vi_stride-byte region.
|
|
* However, until we use TX option descriptors we need two TX queues
|
|
* per channel.
|
|
*/
|
|
efx->max_channels = min_t(unsigned int,
|
|
EFX_MAX_CHANNELS,
|
|
efx_ef10_mem_map_size(efx) /
|
|
(efx->vi_stride * EFX_TXQ_TYPES));
|
|
efx->max_tx_channels = efx->max_channels;
|
|
if (WARN_ON(efx->max_channels == 0)) {
|
|
rc = -EIO;
|
|
goto fail5;
|
|
}
|
|
|
|
efx->rx_packet_len_offset =
|
|
ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
|
|
|
|
if (nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
|
|
efx->net_dev->hw_features |= NETIF_F_RXFCS;
|
|
|
|
rc = efx_mcdi_port_get_number(efx);
|
|
if (rc < 0)
|
|
goto fail5;
|
|
efx->port_num = rc;
|
|
|
|
rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
rc = efx_ef10_get_timer_config(efx);
|
|
if (rc < 0)
|
|
goto fail5;
|
|
|
|
rc = efx_mcdi_mon_probe(efx);
|
|
if (rc && rc != -EPERM)
|
|
goto fail5;
|
|
|
|
efx_ptp_defer_probe_with_channel(efx);
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
|
|
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
|
|
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
|
|
|
|
efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
|
|
} else
|
|
#endif
|
|
ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
|
|
|
|
INIT_LIST_HEAD(&nic_data->vlan_list);
|
|
mutex_init(&nic_data->vlan_lock);
|
|
|
|
/* Add unspecified VID to support VLAN filtering being disabled */
|
|
rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
|
|
if (rc)
|
|
goto fail_add_vid_unspec;
|
|
|
|
/* If VLAN filtering is enabled, we need VID 0 to get untagged
|
|
* traffic. It is added automatically if 8021q module is loaded,
|
|
* but we can't rely on it since module may be not loaded.
|
|
*/
|
|
rc = efx_ef10_add_vlan(efx, 0);
|
|
if (rc)
|
|
goto fail_add_vid_0;
|
|
|
|
return 0;
|
|
|
|
fail_add_vid_0:
|
|
efx_ef10_cleanup_vlans(efx);
|
|
fail_add_vid_unspec:
|
|
mutex_destroy(&nic_data->vlan_lock);
|
|
efx_ptp_remove(efx);
|
|
efx_mcdi_mon_remove(efx);
|
|
fail5:
|
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
|
|
fail4:
|
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
|
|
fail3:
|
|
efx_mcdi_detach(efx);
|
|
|
|
mutex_lock(&nic_data->udp_tunnels_lock);
|
|
memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
|
|
(void)efx_ef10_set_udp_tnl_ports(efx, true);
|
|
mutex_unlock(&nic_data->udp_tunnels_lock);
|
|
mutex_destroy(&nic_data->udp_tunnels_lock);
|
|
|
|
efx_mcdi_fini(efx);
|
|
fail2:
|
|
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
|
|
fail1:
|
|
kfree(nic_data);
|
|
efx->nic_data = NULL;
|
|
return rc;
|
|
}
|
|
|
|
#ifdef EFX_USE_PIO
|
|
|
|
static void efx_ef10_free_piobufs(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
|
|
unsigned int i;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
|
|
|
|
for (i = 0; i < nic_data->n_piobufs; i++) {
|
|
MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
|
|
nic_data->piobuf_handle[i]);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
WARN_ON(rc);
|
|
}
|
|
|
|
nic_data->n_piobufs = 0;
|
|
}
|
|
|
|
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
|
|
unsigned int i;
|
|
size_t outlen;
|
|
int rc = 0;
|
|
|
|
BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc) {
|
|
/* Don't display the MC error if we didn't have space
|
|
* for a VF.
|
|
*/
|
|
if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
|
|
efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
|
|
0, outbuf, outlen, rc);
|
|
break;
|
|
}
|
|
if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
|
|
rc = -EIO;
|
|
break;
|
|
}
|
|
nic_data->piobuf_handle[i] =
|
|
MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"allocated PIO buffer %u handle %x\n", i,
|
|
nic_data->piobuf_handle[i]);
|
|
}
|
|
|
|
nic_data->n_piobufs = i;
|
|
if (rc)
|
|
efx_ef10_free_piobufs(efx);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_link_piobufs(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
unsigned int offset, index;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
|
|
BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
|
|
|
|
/* Link a buffer to each VI in the write-combining mapping */
|
|
for (index = 0; index < nic_data->n_piobufs; ++index) {
|
|
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
|
|
nic_data->piobuf_handle[index]);
|
|
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
|
|
nic_data->pio_write_vi_base + index);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
|
|
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
|
|
NULL, 0, NULL);
|
|
if (rc) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"failed to link VI %u to PIO buffer %u (%d)\n",
|
|
nic_data->pio_write_vi_base + index, index,
|
|
rc);
|
|
goto fail;
|
|
}
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"linked VI %u to PIO buffer %u\n",
|
|
nic_data->pio_write_vi_base + index, index);
|
|
}
|
|
|
|
/* Link a buffer to each TX queue */
|
|
efx_for_each_channel(channel, efx) {
|
|
/* Extra channels, even those with TXQs (PTP), do not require
|
|
* PIO resources.
|
|
*/
|
|
if (!channel->type->want_pio ||
|
|
channel->channel >= efx->xdp_channel_offset)
|
|
continue;
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
/* We assign the PIO buffers to queues in
|
|
* reverse order to allow for the following
|
|
* special case.
|
|
*/
|
|
offset = ((efx->tx_channel_offset + efx->n_tx_channels -
|
|
tx_queue->channel->channel - 1) *
|
|
efx_piobuf_size);
|
|
index = offset / nic_data->piobuf_size;
|
|
offset = offset % nic_data->piobuf_size;
|
|
|
|
/* When the host page size is 4K, the first
|
|
* host page in the WC mapping may be within
|
|
* the same VI page as the last TX queue. We
|
|
* can only link one buffer to each VI.
|
|
*/
|
|
if (tx_queue->queue == nic_data->pio_write_vi_base) {
|
|
BUG_ON(index != 0);
|
|
rc = 0;
|
|
} else {
|
|
MCDI_SET_DWORD(inbuf,
|
|
LINK_PIOBUF_IN_PIOBUF_HANDLE,
|
|
nic_data->piobuf_handle[index]);
|
|
MCDI_SET_DWORD(inbuf,
|
|
LINK_PIOBUF_IN_TXQ_INSTANCE,
|
|
tx_queue->queue);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
|
|
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
if (rc) {
|
|
/* This is non-fatal; the TX path just
|
|
* won't use PIO for this queue
|
|
*/
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"failed to link VI %u to PIO buffer %u (%d)\n",
|
|
tx_queue->queue, index, rc);
|
|
tx_queue->piobuf = NULL;
|
|
} else {
|
|
tx_queue->piobuf =
|
|
nic_data->pio_write_base +
|
|
index * efx->vi_stride + offset;
|
|
tx_queue->piobuf_offset = offset;
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"linked VI %u to PIO buffer %u offset %x addr %p\n",
|
|
tx_queue->queue, index,
|
|
tx_queue->piobuf_offset,
|
|
tx_queue->piobuf);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
/* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
|
|
* buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
|
|
*/
|
|
BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
|
|
while (index--) {
|
|
MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
|
|
nic_data->pio_write_vi_base + index);
|
|
efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
|
|
inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
|
|
NULL, 0, NULL);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
/* All our existing PIO buffers went away */
|
|
efx_for_each_channel(channel, efx)
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
tx_queue->piobuf = NULL;
|
|
}
|
|
|
|
#else /* !EFX_USE_PIO */
|
|
|
|
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
|
|
{
|
|
return n == 0 ? 0 : -ENOBUFS;
|
|
}
|
|
|
|
static int efx_ef10_link_piobufs(struct efx_nic *efx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void efx_ef10_free_piobufs(struct efx_nic *efx)
|
|
{
|
|
}
|
|
|
|
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
|
|
{
|
|
}
|
|
|
|
#endif /* EFX_USE_PIO */
|
|
|
|
static void efx_ef10_remove(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
struct efx_ef10_nic_data *nic_data_pf;
|
|
struct pci_dev *pci_dev_pf;
|
|
struct efx_nic *efx_pf;
|
|
struct ef10_vf *vf;
|
|
|
|
if (efx->pci_dev->is_virtfn) {
|
|
pci_dev_pf = efx->pci_dev->physfn;
|
|
if (pci_dev_pf) {
|
|
efx_pf = pci_get_drvdata(pci_dev_pf);
|
|
nic_data_pf = efx_pf->nic_data;
|
|
vf = nic_data_pf->vf + nic_data->vf_index;
|
|
vf->efx = NULL;
|
|
} else
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Could not get the PF id from VF\n");
|
|
}
|
|
#endif
|
|
|
|
efx_ef10_cleanup_vlans(efx);
|
|
mutex_destroy(&nic_data->vlan_lock);
|
|
|
|
efx_ptp_remove(efx);
|
|
|
|
efx_mcdi_mon_remove(efx);
|
|
|
|
efx_mcdi_rx_free_indir_table(efx);
|
|
|
|
if (nic_data->wc_membase)
|
|
iounmap(nic_data->wc_membase);
|
|
|
|
rc = efx_mcdi_free_vis(efx);
|
|
WARN_ON(rc != 0);
|
|
|
|
if (!nic_data->must_restore_piobufs)
|
|
efx_ef10_free_piobufs(efx);
|
|
|
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
|
|
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
|
|
|
|
efx_mcdi_detach(efx);
|
|
|
|
memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
|
|
mutex_lock(&nic_data->udp_tunnels_lock);
|
|
(void)efx_ef10_set_udp_tnl_ports(efx, true);
|
|
mutex_unlock(&nic_data->udp_tunnels_lock);
|
|
|
|
mutex_destroy(&nic_data->udp_tunnels_lock);
|
|
|
|
efx_mcdi_fini(efx);
|
|
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
|
|
kfree(nic_data);
|
|
}
|
|
|
|
static int efx_ef10_probe_pf(struct efx_nic *efx)
|
|
{
|
|
return efx_ef10_probe(efx);
|
|
}
|
|
|
|
int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
|
|
u32 *port_flags, u32 *vadaptor_flags,
|
|
unsigned int *vlan_tags)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
if (nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
|
|
MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
|
|
port_id);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (outlen < sizeof(outbuf)) {
|
|
rc = -EIO;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (port_flags)
|
|
*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
|
|
if (vadaptor_flags)
|
|
*vadaptor_flags =
|
|
MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
|
|
if (vlan_tags)
|
|
*vlan_tags =
|
|
MCDI_DWORD(outbuf,
|
|
VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
|
|
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
|
|
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
int efx_ef10_vport_add_mac(struct efx_nic *efx,
|
|
unsigned int port_id, u8 *mac)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
|
|
ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
|
|
|
|
return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
|
|
sizeof(inbuf), NULL, 0, NULL);
|
|
}
|
|
|
|
int efx_ef10_vport_del_mac(struct efx_nic *efx,
|
|
unsigned int port_id, u8 *mac)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
|
|
ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
|
|
|
|
return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
|
|
sizeof(inbuf), NULL, 0, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
static int efx_ef10_probe_vf(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
struct pci_dev *pci_dev_pf;
|
|
|
|
/* If the parent PF has no VF data structure, it doesn't know about this
|
|
* VF so fail probe. The VF needs to be re-created. This can happen
|
|
* if the PF driver is unloaded while the VF is assigned to a guest.
|
|
*/
|
|
pci_dev_pf = efx->pci_dev->physfn;
|
|
if (pci_dev_pf) {
|
|
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
|
|
struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
|
|
|
|
if (!nic_data_pf->vf) {
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"The VF cannot link to its parent PF; "
|
|
"please destroy and re-create the VF\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
rc = efx_ef10_probe(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = efx_ef10_get_vf_index(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
if (efx->pci_dev->is_virtfn) {
|
|
if (efx->pci_dev->physfn) {
|
|
struct efx_nic *efx_pf =
|
|
pci_get_drvdata(efx->pci_dev->physfn);
|
|
struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
nic_data_p->vf[nic_data->vf_index].efx = efx;
|
|
nic_data_p->vf[nic_data->vf_index].pci_dev =
|
|
efx->pci_dev;
|
|
} else
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Could not get the PF id from VF\n");
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
efx_ef10_remove(efx);
|
|
return rc;
|
|
}
|
|
#else
|
|
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int efx_ef10_alloc_vis(struct efx_nic *efx,
|
|
unsigned int min_vis, unsigned int max_vis)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
|
|
&nic_data->n_allocated_vis);
|
|
}
|
|
|
|
/* Note that the failure path of this function does not free
|
|
* resources, as this will be done by efx_ef10_remove().
|
|
*/
|
|
static int efx_ef10_dimension_resources(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
unsigned int uc_mem_map_size, wc_mem_map_size;
|
|
unsigned int min_vis = max(EFX_TXQ_TYPES,
|
|
efx_separate_tx_channels ? 2 : 1);
|
|
unsigned int channel_vis, pio_write_vi_base, max_vis;
|
|
void __iomem *membase;
|
|
int rc;
|
|
|
|
channel_vis = max(efx->n_channels,
|
|
((efx->n_tx_channels + efx->n_extra_tx_channels) *
|
|
EFX_TXQ_TYPES) +
|
|
efx->n_xdp_channels * efx->xdp_tx_per_channel);
|
|
|
|
#ifdef EFX_USE_PIO
|
|
/* Try to allocate PIO buffers if wanted and if the full
|
|
* number of PIO buffers would be sufficient to allocate one
|
|
* copy-buffer per TX channel. Failure is non-fatal, as there
|
|
* are only a small number of PIO buffers shared between all
|
|
* functions of the controller.
|
|
*/
|
|
if (efx_piobuf_size != 0 &&
|
|
nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
|
|
efx->n_tx_channels) {
|
|
unsigned int n_piobufs =
|
|
DIV_ROUND_UP(efx->n_tx_channels,
|
|
nic_data->piobuf_size / efx_piobuf_size);
|
|
|
|
rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
|
|
if (rc == -ENOSPC)
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"out of PIO buffers; cannot allocate more\n");
|
|
else if (rc == -EPERM)
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"not permitted to allocate PIO buffers\n");
|
|
else if (rc)
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to allocate PIO buffers (%d)\n", rc);
|
|
else
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"allocated %u PIO buffers\n", n_piobufs);
|
|
}
|
|
#else
|
|
nic_data->n_piobufs = 0;
|
|
#endif
|
|
|
|
/* PIO buffers should be mapped with write-combining enabled,
|
|
* and we want to make single UC and WC mappings rather than
|
|
* several of each (in fact that's the only option if host
|
|
* page size is >4K). So we may allocate some extra VIs just
|
|
* for writing PIO buffers through.
|
|
*
|
|
* The UC mapping contains (channel_vis - 1) complete VIs and the
|
|
* first 4K of the next VI. Then the WC mapping begins with
|
|
* the remainder of this last VI.
|
|
*/
|
|
uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
|
|
ER_DZ_TX_PIOBUF);
|
|
if (nic_data->n_piobufs) {
|
|
/* pio_write_vi_base rounds down to give the number of complete
|
|
* VIs inside the UC mapping.
|
|
*/
|
|
pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
|
|
wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
|
|
nic_data->n_piobufs) *
|
|
efx->vi_stride) -
|
|
uc_mem_map_size);
|
|
max_vis = pio_write_vi_base + nic_data->n_piobufs;
|
|
} else {
|
|
pio_write_vi_base = 0;
|
|
wc_mem_map_size = 0;
|
|
max_vis = channel_vis;
|
|
}
|
|
|
|
/* In case the last attached driver failed to free VIs, do it now */
|
|
rc = efx_mcdi_free_vis(efx);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (nic_data->n_allocated_vis < channel_vis) {
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Could not allocate enough VIs to satisfy RSS"
|
|
" requirements. Performance may not be optimal.\n");
|
|
/* We didn't get the VIs to populate our channels.
|
|
* We could keep what we got but then we'd have more
|
|
* interrupts than we need.
|
|
* Instead calculate new max_channels and restart
|
|
*/
|
|
efx->max_channels = nic_data->n_allocated_vis;
|
|
efx->max_tx_channels =
|
|
nic_data->n_allocated_vis / EFX_TXQ_TYPES;
|
|
|
|
efx_mcdi_free_vis(efx);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* If we didn't get enough VIs to map all the PIO buffers, free the
|
|
* PIO buffers
|
|
*/
|
|
if (nic_data->n_piobufs &&
|
|
nic_data->n_allocated_vis <
|
|
pio_write_vi_base + nic_data->n_piobufs) {
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"%u VIs are not sufficient to map %u PIO buffers\n",
|
|
nic_data->n_allocated_vis, nic_data->n_piobufs);
|
|
efx_ef10_free_piobufs(efx);
|
|
}
|
|
|
|
/* Shrink the original UC mapping of the memory BAR */
|
|
membase = ioremap(efx->membase_phys, uc_mem_map_size);
|
|
if (!membase) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"could not shrink memory BAR to %x\n",
|
|
uc_mem_map_size);
|
|
return -ENOMEM;
|
|
}
|
|
iounmap(efx->membase);
|
|
efx->membase = membase;
|
|
|
|
/* Set up the WC mapping if needed */
|
|
if (wc_mem_map_size) {
|
|
nic_data->wc_membase = ioremap_wc(efx->membase_phys +
|
|
uc_mem_map_size,
|
|
wc_mem_map_size);
|
|
if (!nic_data->wc_membase) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"could not allocate WC mapping of size %x\n",
|
|
wc_mem_map_size);
|
|
return -ENOMEM;
|
|
}
|
|
nic_data->pio_write_vi_base = pio_write_vi_base;
|
|
nic_data->pio_write_base =
|
|
nic_data->wc_membase +
|
|
(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
|
|
uc_mem_map_size);
|
|
|
|
rc = efx_ef10_link_piobufs(efx);
|
|
if (rc)
|
|
efx_ef10_free_piobufs(efx);
|
|
}
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
|
|
&efx->membase_phys, efx->membase, uc_mem_map_size,
|
|
nic_data->wc_membase, wc_mem_map_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_init_nic(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
if (nic_data->must_check_datapath_caps) {
|
|
rc = efx_ef10_init_datapath_caps(efx);
|
|
if (rc)
|
|
return rc;
|
|
nic_data->must_check_datapath_caps = false;
|
|
}
|
|
|
|
if (efx->must_realloc_vis) {
|
|
/* We cannot let the number of VIs change now */
|
|
rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
|
|
nic_data->n_allocated_vis);
|
|
if (rc)
|
|
return rc;
|
|
efx->must_realloc_vis = false;
|
|
}
|
|
|
|
if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
|
|
rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
|
|
if (rc == 0) {
|
|
rc = efx_ef10_link_piobufs(efx);
|
|
if (rc)
|
|
efx_ef10_free_piobufs(efx);
|
|
}
|
|
|
|
/* Log an error on failure, but this is non-fatal.
|
|
* Permission errors are less important - we've presumably
|
|
* had the PIO buffer licence removed.
|
|
*/
|
|
if (rc == -EPERM)
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"not permitted to restore PIO buffers\n");
|
|
else if (rc)
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"failed to restore PIO buffers (%d)\n", rc);
|
|
nic_data->must_restore_piobufs = false;
|
|
}
|
|
|
|
/* don't fail init if RSS setup doesn't work */
|
|
rc = efx->type->rx_push_rss_config(efx, false,
|
|
efx->rss_context.rx_indir_table, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
unsigned int i;
|
|
#endif
|
|
|
|
/* All our allocations have been reset */
|
|
efx->must_realloc_vis = true;
|
|
efx_mcdi_filter_table_reset_mc_allocations(efx);
|
|
nic_data->must_restore_piobufs = true;
|
|
efx_ef10_forget_old_piobufs(efx);
|
|
efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
|
|
|
|
/* Driver-created vswitches and vports must be re-created */
|
|
nic_data->must_probe_vswitching = true;
|
|
efx->vport_id = EVB_PORT_ID_ASSIGNED;
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
if (nic_data->vf)
|
|
for (i = 0; i < efx->vf_count; i++)
|
|
nic_data->vf[i].vport_id = 0;
|
|
#endif
|
|
}
|
|
|
|
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
|
|
{
|
|
if (reason == RESET_TYPE_MC_FAILURE)
|
|
return RESET_TYPE_DATAPATH;
|
|
|
|
return efx_mcdi_map_reset_reason(reason);
|
|
}
|
|
|
|
static int efx_ef10_map_reset_flags(u32 *flags)
|
|
{
|
|
enum {
|
|
EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
|
|
ETH_RESET_SHARED_SHIFT),
|
|
EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
|
|
ETH_RESET_OFFLOAD | ETH_RESET_MAC |
|
|
ETH_RESET_PHY | ETH_RESET_MGMT) <<
|
|
ETH_RESET_SHARED_SHIFT)
|
|
};
|
|
|
|
/* We assume for now that our PCI function is permitted to
|
|
* reset everything.
|
|
*/
|
|
|
|
if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
|
|
*flags &= ~EF10_RESET_MC;
|
|
return RESET_TYPE_WORLD;
|
|
}
|
|
|
|
if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
|
|
*flags &= ~EF10_RESET_PORT;
|
|
return RESET_TYPE_ALL;
|
|
}
|
|
|
|
/* no invisible reset implemented */
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
|
|
{
|
|
int rc = efx_mcdi_reset(efx, reset_type);
|
|
|
|
/* Unprivileged functions return -EPERM, but need to return success
|
|
* here so that the datapath is brought back up.
|
|
*/
|
|
if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
|
|
rc = 0;
|
|
|
|
/* If it was a port reset, trigger reallocation of MC resources.
|
|
* Note that on an MC reset nothing needs to be done now because we'll
|
|
* detect the MC reset later and handle it then.
|
|
* For an FLR, we never get an MC reset event, but the MC has reset all
|
|
* resources assigned to us, so we have to trigger reallocation now.
|
|
*/
|
|
if ((reset_type == RESET_TYPE_ALL ||
|
|
reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
|
|
efx_ef10_table_reset_mc_allocations(efx);
|
|
return rc;
|
|
}
|
|
|
|
#define EF10_DMA_STAT(ext_name, mcdi_name) \
|
|
[EF10_STAT_ ## ext_name] = \
|
|
{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
|
|
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
|
|
[EF10_STAT_ ## int_name] = \
|
|
{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
|
|
#define EF10_OTHER_STAT(ext_name) \
|
|
[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
|
|
#define GENERIC_SW_STAT(ext_name) \
|
|
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
|
|
|
|
static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
|
|
EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
|
|
EF10_DMA_STAT(port_tx_packets, TX_PKTS),
|
|
EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
|
|
EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
|
|
EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
|
|
EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
|
|
EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
|
|
EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
|
|
EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
|
|
EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
|
|
EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
|
|
EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
|
|
EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
|
|
EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
|
|
EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
|
|
EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
|
|
EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
|
|
EF10_OTHER_STAT(port_rx_good_bytes),
|
|
EF10_OTHER_STAT(port_rx_bad_bytes),
|
|
EF10_DMA_STAT(port_rx_packets, RX_PKTS),
|
|
EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
|
|
EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
|
|
EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
|
|
EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
|
|
EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
|
|
EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
|
|
EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
|
|
EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
|
|
EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
|
|
EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
|
|
EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
|
|
EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
|
|
EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
|
|
EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
|
|
EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
|
|
EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
|
|
EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
|
|
EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
|
|
EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
|
|
EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
|
|
EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
|
|
GENERIC_SW_STAT(rx_nodesc_trunc),
|
|
GENERIC_SW_STAT(rx_noskb_drops),
|
|
EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
|
|
EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
|
|
EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
|
|
EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
|
|
EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
|
|
EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
|
|
EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
|
|
EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
|
|
EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
|
|
EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
|
|
EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
|
|
EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
|
|
EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
|
|
EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
|
|
EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
|
|
EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
|
|
EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
|
|
EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
|
|
EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
|
|
EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
|
|
EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
|
|
EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
|
|
EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
|
|
EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
|
|
EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
|
|
EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
|
|
EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
|
|
EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
|
|
EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
|
|
EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
|
|
EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
|
|
EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
|
|
EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
|
|
EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
|
|
EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
|
|
EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
|
|
EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
|
|
EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
|
|
EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
|
|
EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
|
|
EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
|
|
EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
|
|
EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
|
|
EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
|
|
EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
|
|
EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
|
|
EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
|
|
EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
|
|
EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
|
|
EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
|
|
EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
|
|
EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
|
|
};
|
|
|
|
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
|
|
(1ULL << EF10_STAT_port_tx_packets) | \
|
|
(1ULL << EF10_STAT_port_tx_pause) | \
|
|
(1ULL << EF10_STAT_port_tx_unicast) | \
|
|
(1ULL << EF10_STAT_port_tx_multicast) | \
|
|
(1ULL << EF10_STAT_port_tx_broadcast) | \
|
|
(1ULL << EF10_STAT_port_rx_bytes) | \
|
|
(1ULL << \
|
|
EF10_STAT_port_rx_bytes_minus_good_bytes) | \
|
|
(1ULL << EF10_STAT_port_rx_good_bytes) | \
|
|
(1ULL << EF10_STAT_port_rx_bad_bytes) | \
|
|
(1ULL << EF10_STAT_port_rx_packets) | \
|
|
(1ULL << EF10_STAT_port_rx_good) | \
|
|
(1ULL << EF10_STAT_port_rx_bad) | \
|
|
(1ULL << EF10_STAT_port_rx_pause) | \
|
|
(1ULL << EF10_STAT_port_rx_control) | \
|
|
(1ULL << EF10_STAT_port_rx_unicast) | \
|
|
(1ULL << EF10_STAT_port_rx_multicast) | \
|
|
(1ULL << EF10_STAT_port_rx_broadcast) | \
|
|
(1ULL << EF10_STAT_port_rx_lt64) | \
|
|
(1ULL << EF10_STAT_port_rx_64) | \
|
|
(1ULL << EF10_STAT_port_rx_65_to_127) | \
|
|
(1ULL << EF10_STAT_port_rx_128_to_255) | \
|
|
(1ULL << EF10_STAT_port_rx_256_to_511) | \
|
|
(1ULL << EF10_STAT_port_rx_512_to_1023) |\
|
|
(1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
|
|
(1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
|
|
(1ULL << EF10_STAT_port_rx_gtjumbo) | \
|
|
(1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
|
|
(1ULL << EF10_STAT_port_rx_overflow) | \
|
|
(1ULL << EF10_STAT_port_rx_nodesc_drops) |\
|
|
(1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
|
|
(1ULL << GENERIC_STAT_rx_noskb_drops))
|
|
|
|
/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
|
|
* For a 10G/40G switchable port we do not expose these because they might
|
|
* not include all the packets they should.
|
|
* On 8000 series NICs these statistics are always provided.
|
|
*/
|
|
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
|
|
(1ULL << EF10_STAT_port_tx_lt64) | \
|
|
(1ULL << EF10_STAT_port_tx_64) | \
|
|
(1ULL << EF10_STAT_port_tx_65_to_127) |\
|
|
(1ULL << EF10_STAT_port_tx_128_to_255) |\
|
|
(1ULL << EF10_STAT_port_tx_256_to_511) |\
|
|
(1ULL << EF10_STAT_port_tx_512_to_1023) |\
|
|
(1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
|
|
(1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
|
|
|
|
/* These statistics are only provided by the 40G MAC. For a 10G/40G
|
|
* switchable port we do expose these because the errors will otherwise
|
|
* be silent.
|
|
*/
|
|
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
|
|
(1ULL << EF10_STAT_port_rx_length_error))
|
|
|
|
/* These statistics are only provided if the firmware supports the
|
|
* capability PM_AND_RXDP_COUNTERS.
|
|
*/
|
|
#define HUNT_PM_AND_RXDP_STAT_MASK ( \
|
|
(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
|
|
(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
|
|
(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
|
|
(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
|
|
(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
|
|
(1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
|
|
(1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
|
|
(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
|
|
(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
|
|
(1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
|
|
(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
|
|
(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
|
|
|
|
/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
|
|
* indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
|
|
* MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
|
|
* These bits are in the second u64 of the raw mask.
|
|
*/
|
|
#define EF10_FEC_STAT_MASK ( \
|
|
(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
|
|
(1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
|
|
(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
|
|
(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
|
|
(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
|
|
(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
|
|
|
|
/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
|
|
* indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
|
|
* MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
|
|
* These bits are in the second u64 of the raw mask.
|
|
*/
|
|
#define EF10_CTPIO_STAT_MASK ( \
|
|
(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_success - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_poison - 64)) | \
|
|
(1ULL << (EF10_STAT_ctpio_erase - 64)))
|
|
|
|
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
|
|
{
|
|
u64 raw_mask = HUNT_COMMON_STAT_MASK;
|
|
u32 port_caps = efx_mcdi_phy_get_caps(efx);
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!(efx->mcdi->fn_flags &
|
|
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
|
|
return 0;
|
|
|
|
if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
|
|
raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
|
|
/* 8000 series have everything even at 40G */
|
|
if (nic_data->datapath_caps2 &
|
|
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
|
|
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
|
|
} else {
|
|
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
|
|
}
|
|
|
|
if (nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
|
|
raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
|
|
|
|
return raw_mask;
|
|
}
|
|
|
|
static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
u64 raw_mask[2];
|
|
|
|
raw_mask[0] = efx_ef10_raw_stat_mask(efx);
|
|
|
|
/* Only show vadaptor stats when EVB capability is present */
|
|
if (nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
|
|
raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
|
|
raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
|
|
} else {
|
|
raw_mask[1] = 0;
|
|
}
|
|
/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
|
|
if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
|
|
raw_mask[1] |= EF10_FEC_STAT_MASK;
|
|
|
|
/* CTPIO stats appear in V3. Only show them on devices that actually
|
|
* support CTPIO. Although this driver doesn't use CTPIO others might,
|
|
* and we may be reporting the stats for the underlying port.
|
|
*/
|
|
if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
|
|
(nic_data->datapath_caps2 &
|
|
(1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
|
|
raw_mask[1] |= EF10_CTPIO_STAT_MASK;
|
|
|
|
#if BITS_PER_LONG == 64
|
|
BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
|
|
mask[0] = raw_mask[0];
|
|
mask[1] = raw_mask[1];
|
|
#else
|
|
BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
|
|
mask[0] = raw_mask[0] & 0xffffffff;
|
|
mask[1] = raw_mask[0] >> 32;
|
|
mask[2] = raw_mask[1] & 0xffffffff;
|
|
#endif
|
|
}
|
|
|
|
static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
|
|
{
|
|
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
|
|
|
|
efx_ef10_get_stat_mask(efx, mask);
|
|
return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
|
|
mask, names);
|
|
}
|
|
|
|
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
|
|
struct rtnl_link_stats64 *core_stats)
|
|
{
|
|
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
u64 *stats = nic_data->stats;
|
|
size_t stats_count = 0, index;
|
|
|
|
efx_ef10_get_stat_mask(efx, mask);
|
|
|
|
if (full_stats) {
|
|
for_each_set_bit(index, mask, EF10_STAT_COUNT) {
|
|
if (efx_ef10_stat_desc[index].name) {
|
|
*full_stats++ = stats[index];
|
|
++stats_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!core_stats)
|
|
return stats_count;
|
|
|
|
if (nic_data->datapath_caps &
|
|
1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
|
|
/* Use vadaptor stats. */
|
|
core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
|
|
stats[EF10_STAT_rx_multicast] +
|
|
stats[EF10_STAT_rx_broadcast];
|
|
core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
|
|
stats[EF10_STAT_tx_multicast] +
|
|
stats[EF10_STAT_tx_broadcast];
|
|
core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
|
|
stats[EF10_STAT_rx_multicast_bytes] +
|
|
stats[EF10_STAT_rx_broadcast_bytes];
|
|
core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
|
|
stats[EF10_STAT_tx_multicast_bytes] +
|
|
stats[EF10_STAT_tx_broadcast_bytes];
|
|
core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
|
|
stats[GENERIC_STAT_rx_noskb_drops];
|
|
core_stats->multicast = stats[EF10_STAT_rx_multicast];
|
|
core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
|
|
core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
|
|
core_stats->rx_errors = core_stats->rx_crc_errors;
|
|
core_stats->tx_errors = stats[EF10_STAT_tx_bad];
|
|
} else {
|
|
/* Use port stats. */
|
|
core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
|
|
core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
|
|
core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
|
|
core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
|
|
core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
|
|
stats[GENERIC_STAT_rx_nodesc_trunc] +
|
|
stats[GENERIC_STAT_rx_noskb_drops];
|
|
core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
|
|
core_stats->rx_length_errors =
|
|
stats[EF10_STAT_port_rx_gtjumbo] +
|
|
stats[EF10_STAT_port_rx_length_error];
|
|
core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
|
|
core_stats->rx_frame_errors =
|
|
stats[EF10_STAT_port_rx_align_error];
|
|
core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
|
|
core_stats->rx_errors = (core_stats->rx_length_errors +
|
|
core_stats->rx_crc_errors +
|
|
core_stats->rx_frame_errors);
|
|
}
|
|
|
|
return stats_count;
|
|
}
|
|
|
|
static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
|
|
__le64 generation_start, generation_end;
|
|
u64 *stats = nic_data->stats;
|
|
__le64 *dma_stats;
|
|
|
|
efx_ef10_get_stat_mask(efx, mask);
|
|
|
|
dma_stats = efx->stats_buffer.addr;
|
|
|
|
generation_end = dma_stats[efx->num_mac_stats - 1];
|
|
if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
|
|
return 0;
|
|
rmb();
|
|
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
|
|
stats, efx->stats_buffer.addr, false);
|
|
rmb();
|
|
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
|
|
if (generation_end != generation_start)
|
|
return -EAGAIN;
|
|
|
|
/* Update derived statistics */
|
|
efx_nic_fix_nodesc_drop_stat(efx,
|
|
&stats[EF10_STAT_port_rx_nodesc_drops]);
|
|
stats[EF10_STAT_port_rx_good_bytes] =
|
|
stats[EF10_STAT_port_rx_bytes] -
|
|
stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
|
|
efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
|
|
stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
|
|
efx_update_sw_stats(efx, stats);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
|
|
struct rtnl_link_stats64 *core_stats)
|
|
{
|
|
int retry;
|
|
|
|
/* If we're unlucky enough to read statistics during the DMA, wait
|
|
* up to 10ms for it to finish (typically takes <500us)
|
|
*/
|
|
for (retry = 0; retry < 100; ++retry) {
|
|
if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
|
|
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
|
|
}
|
|
|
|
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
|
|
__must_hold(&efx->stats_lock)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
|
|
__le64 generation_start, generation_end;
|
|
u64 *stats = nic_data->stats;
|
|
u32 dma_len = efx->num_mac_stats * sizeof(u64);
|
|
struct efx_buffer stats_buf;
|
|
__le64 *dma_stats;
|
|
int rc;
|
|
|
|
spin_unlock_bh(&efx->stats_lock);
|
|
|
|
if (in_interrupt()) {
|
|
/* If in atomic context, cannot update stats. Just update the
|
|
* software stats and return so the caller can continue.
|
|
*/
|
|
spin_lock_bh(&efx->stats_lock);
|
|
efx_update_sw_stats(efx, stats);
|
|
return 0;
|
|
}
|
|
|
|
efx_ef10_get_stat_mask(efx, mask);
|
|
|
|
rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
|
|
if (rc) {
|
|
spin_lock_bh(&efx->stats_lock);
|
|
return rc;
|
|
}
|
|
|
|
dma_stats = stats_buf.addr;
|
|
dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
|
|
|
|
MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
|
|
MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
|
|
MAC_STATS_IN_DMA, 1);
|
|
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
|
|
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
spin_lock_bh(&efx->stats_lock);
|
|
if (rc) {
|
|
/* Expect ENOENT if DMA queues have not been set up */
|
|
if (rc != -ENOENT || atomic_read(&efx->active_queues))
|
|
efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
|
|
sizeof(inbuf), NULL, 0, rc);
|
|
goto out;
|
|
}
|
|
|
|
generation_end = dma_stats[efx->num_mac_stats - 1];
|
|
if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
|
|
WARN_ON_ONCE(1);
|
|
goto out;
|
|
}
|
|
rmb();
|
|
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
|
|
stats, stats_buf.addr, false);
|
|
rmb();
|
|
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
|
|
if (generation_end != generation_start) {
|
|
rc = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
efx_update_sw_stats(efx, stats);
|
|
out:
|
|
efx_nic_free_buffer(efx, &stats_buf);
|
|
return rc;
|
|
}
|
|
|
|
static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
|
|
struct rtnl_link_stats64 *core_stats)
|
|
{
|
|
if (efx_ef10_try_update_nic_stats_vf(efx))
|
|
return 0;
|
|
|
|
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
|
|
}
|
|
|
|
static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned int mode, usecs;
|
|
efx_dword_t timer_cmd;
|
|
|
|
if (channel->irq_moderation_us) {
|
|
mode = 3;
|
|
usecs = channel->irq_moderation_us;
|
|
} else {
|
|
mode = 0;
|
|
usecs = 0;
|
|
}
|
|
|
|
if (EFX_EF10_WORKAROUND_61265(efx)) {
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
|
|
unsigned int ns = usecs * 1000;
|
|
|
|
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
|
|
channel->channel);
|
|
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
|
|
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
|
|
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
|
|
|
|
efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
|
|
inbuf, sizeof(inbuf), 0, NULL, 0);
|
|
} else if (EFX_EF10_WORKAROUND_35388(efx)) {
|
|
unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
|
|
|
|
EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
|
|
EFE_DD_EVQ_IND_TIMER_FLAGS,
|
|
ERF_DD_EVQ_IND_TIMER_MODE, mode,
|
|
ERF_DD_EVQ_IND_TIMER_VAL, ticks);
|
|
efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
|
|
channel->channel);
|
|
} else {
|
|
unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
|
|
|
|
EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
|
|
ERF_DZ_TC_TIMER_VAL, ticks,
|
|
ERF_FZ_TC_TMR_REL_VAL, ticks);
|
|
efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
|
|
channel->channel);
|
|
}
|
|
}
|
|
|
|
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
|
|
struct ethtool_wolinfo *wol) {}
|
|
|
|
static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
|
|
{
|
|
wol->supported = 0;
|
|
wol->wolopts = 0;
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
}
|
|
|
|
static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
|
|
{
|
|
if (type != 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void efx_ef10_mcdi_request(struct efx_nic *efx,
|
|
const efx_dword_t *hdr, size_t hdr_len,
|
|
const efx_dword_t *sdu, size_t sdu_len)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
u8 *pdu = nic_data->mcdi_buf.addr;
|
|
|
|
memcpy(pdu, hdr, hdr_len);
|
|
memcpy(pdu + hdr_len, sdu, sdu_len);
|
|
wmb();
|
|
|
|
/* The hardware provides 'low' and 'high' (doorbell) registers
|
|
* for passing the 64-bit address of an MCDI request to
|
|
* firmware. However the dwords are swapped by firmware. The
|
|
* least significant bits of the doorbell are then 0 for all
|
|
* MCDI requests due to alignment.
|
|
*/
|
|
_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
|
|
ER_DZ_MC_DB_LWRD);
|
|
_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
|
|
ER_DZ_MC_DB_HWRD);
|
|
}
|
|
|
|
static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
|
|
|
|
rmb();
|
|
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
|
|
}
|
|
|
|
static void
|
|
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
|
|
size_t offset, size_t outlen)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
const u8 *pdu = nic_data->mcdi_buf.addr;
|
|
|
|
memcpy(outbuf, pdu + offset, outlen);
|
|
}
|
|
|
|
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
/* All our allocations have been reset */
|
|
efx_ef10_table_reset_mc_allocations(efx);
|
|
|
|
/* The datapath firmware might have been changed */
|
|
nic_data->must_check_datapath_caps = true;
|
|
|
|
/* MAC statistics have been cleared on the NIC; clear the local
|
|
* statistic that we update with efx_update_diff_stat().
|
|
*/
|
|
nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
|
|
}
|
|
|
|
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
rc = efx_ef10_get_warm_boot_count(efx);
|
|
if (rc < 0) {
|
|
/* The firmware is presumably in the process of
|
|
* rebooting. However, we are supposed to report each
|
|
* reboot just once, so we must only do that once we
|
|
* can read and store the updated warm boot count.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (rc == nic_data->warm_boot_count)
|
|
return 0;
|
|
|
|
nic_data->warm_boot_count = rc;
|
|
efx_ef10_mcdi_reboot_detected(efx);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Handle an MSI interrupt
|
|
*
|
|
* Handle an MSI hardware interrupt. This routine schedules event
|
|
* queue processing. No interrupt acknowledgement cycle is necessary.
|
|
* Also, we never need to check that the interrupt is for us, since
|
|
* MSI interrupts cannot be shared.
|
|
*/
|
|
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct efx_msi_context *context = dev_id;
|
|
struct efx_nic *efx = context->efx;
|
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
|
|
|
|
if (likely(READ_ONCE(efx->irq_soft_enabled))) {
|
|
/* Note test interrupts */
|
|
if (context->index == efx->irq_level)
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
|
|
/* Schedule processing of the channel */
|
|
efx_schedule_channel_irq(efx->channel[context->index]);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct efx_nic *efx = dev_id;
|
|
bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
|
|
struct efx_channel *channel;
|
|
efx_dword_t reg;
|
|
u32 queues;
|
|
|
|
/* Read the ISR which also ACKs the interrupts */
|
|
efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
|
|
queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
|
|
|
|
if (queues == 0)
|
|
return IRQ_NONE;
|
|
|
|
if (likely(soft_enabled)) {
|
|
/* Note test interrupts */
|
|
if (queues & (1U << efx->irq_level))
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (queues & 1)
|
|
efx_schedule_channel_irq(channel);
|
|
queues >>= 1;
|
|
}
|
|
}
|
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int efx_ef10_irq_test_generate(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
|
|
|
|
if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
|
|
NULL) == 0)
|
|
return -ENOTSUPP;
|
|
|
|
BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
|
|
|
|
MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
|
|
return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
|
|
inbuf, sizeof(inbuf), NULL, 0, NULL);
|
|
}
|
|
|
|
static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
|
|
{
|
|
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
|
|
(tx_queue->ptr_mask + 1) *
|
|
sizeof(efx_qword_t),
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
/* This writes to the TX_DESC_WPTR and also pushes data */
|
|
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
|
|
const efx_qword_t *txd)
|
|
{
|
|
unsigned int write_ptr;
|
|
efx_oword_t reg;
|
|
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
|
EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
|
|
reg.qword[0] = *txd;
|
|
efx_writeo_page(tx_queue->efx, ®,
|
|
ER_DZ_TX_DESC_UPD, tx_queue->queue);
|
|
}
|
|
|
|
/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
|
|
*/
|
|
static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb,
|
|
bool *data_mapped)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
struct tcphdr *tcp;
|
|
struct iphdr *ip;
|
|
|
|
u16 ipv4_id;
|
|
u32 seqnum;
|
|
u32 mss;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
|
|
|
|
mss = skb_shinfo(skb)->gso_size;
|
|
|
|
if (unlikely(mss < 4)) {
|
|
WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ip = ip_hdr(skb);
|
|
if (ip->version == 4) {
|
|
/* Modify IPv4 header if needed. */
|
|
ip->tot_len = 0;
|
|
ip->check = 0;
|
|
ipv4_id = ntohs(ip->id);
|
|
} else {
|
|
/* Modify IPv6 header if needed. */
|
|
struct ipv6hdr *ipv6 = ipv6_hdr(skb);
|
|
|
|
ipv6->payload_len = 0;
|
|
ipv4_id = 0;
|
|
}
|
|
|
|
tcp = tcp_hdr(skb);
|
|
seqnum = ntohl(tcp->seq);
|
|
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
|
buffer->flags = EFX_TX_BUF_OPTION;
|
|
buffer->len = 0;
|
|
buffer->unmap_len = 0;
|
|
EFX_POPULATE_QWORD_5(buffer->option,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_OPTION_TYPE,
|
|
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
|
|
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
|
|
ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
|
|
);
|
|
++tx_queue->insert_count;
|
|
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
|
buffer->flags = EFX_TX_BUF_OPTION;
|
|
buffer->len = 0;
|
|
buffer->unmap_len = 0;
|
|
EFX_POPULATE_QWORD_4(buffer->option,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_OPTION_TYPE,
|
|
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
|
|
ESF_DZ_TX_TSO_TCP_MSS, mss
|
|
);
|
|
++tx_queue->insert_count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 efx_ef10_tso_versions(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
u32 tso_versions = 0;
|
|
|
|
if (nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
|
|
tso_versions |= BIT(1);
|
|
if (nic_data->datapath_caps2 &
|
|
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
|
|
tso_versions |= BIT(2);
|
|
return tso_versions;
|
|
}
|
|
|
|
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
|
{
|
|
bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
|
|
struct efx_channel *channel = tx_queue->channel;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct efx_ef10_nic_data *nic_data;
|
|
bool tso_v2 = false;
|
|
efx_qword_t *txd;
|
|
int rc;
|
|
|
|
nic_data = efx->nic_data;
|
|
|
|
/* Only attempt to enable TX timestamping if we have the license for it,
|
|
* otherwise TXQ init will fail
|
|
*/
|
|
if (!(nic_data->licensed_features &
|
|
(1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
|
|
tx_queue->timestamping = false;
|
|
/* Disable sync events on this channel. */
|
|
if (efx->type->ptp_set_ts_sync_events)
|
|
efx->type->ptp_set_ts_sync_events(efx, false, false);
|
|
}
|
|
|
|
/* TSOv2 is a limited resource that can only be configured on a limited
|
|
* number of queues. TSO without checksum offload is not really a thing,
|
|
* so we only enable it for those queues.
|
|
* TSOv2 cannot be used with Hardware timestamping, and is never needed
|
|
* for XDP tx.
|
|
*/
|
|
if (csum_offload && (nic_data->datapath_caps2 &
|
|
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
|
|
!tx_queue->timestamping && !tx_queue->xdp_tx) {
|
|
tso_v2 = true;
|
|
netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
|
|
channel->channel);
|
|
}
|
|
|
|
rc = efx_mcdi_tx_init(tx_queue, tso_v2);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* A previous user of this TX queue might have set us up the
|
|
* bomb by writing a descriptor to the TX push collector but
|
|
* not the doorbell. (Each collector belongs to a port, not a
|
|
* queue or function, so cannot easily be reset.) We must
|
|
* attempt to push a no-op descriptor in its place.
|
|
*/
|
|
tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
|
|
tx_queue->insert_count = 1;
|
|
txd = efx_tx_desc(tx_queue, 0);
|
|
EFX_POPULATE_QWORD_5(*txd,
|
|
ESF_DZ_TX_DESC_IS_OPT, true,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
|
|
ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
|
|
ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
|
|
ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
|
|
tx_queue->write_count = 1;
|
|
|
|
if (tso_v2) {
|
|
tx_queue->handle_tso = efx_ef10_tx_tso_desc;
|
|
tx_queue->tso_version = 2;
|
|
} else if (nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
|
|
tx_queue->tso_version = 1;
|
|
}
|
|
|
|
wmb();
|
|
efx_ef10_push_tx_desc(tx_queue, txd);
|
|
|
|
return;
|
|
|
|
fail:
|
|
netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
|
|
tx_queue->queue);
|
|
}
|
|
|
|
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
|
|
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned int write_ptr;
|
|
efx_dword_t reg;
|
|
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
|
EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
|
|
efx_writed_page(tx_queue->efx, ®,
|
|
ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
|
|
}
|
|
|
|
#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
|
|
|
|
static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
|
|
dma_addr_t dma_addr, unsigned int len)
|
|
{
|
|
if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
|
|
/* If we need to break across multiple descriptors we should
|
|
* stop at a page boundary. This assumes the length limit is
|
|
* greater than the page size.
|
|
*/
|
|
dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
|
|
|
|
BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
|
|
len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned int old_write_count = tx_queue->write_count;
|
|
struct efx_tx_buffer *buffer;
|
|
unsigned int write_ptr;
|
|
efx_qword_t *txd;
|
|
|
|
tx_queue->xmit_more_available = false;
|
|
if (unlikely(tx_queue->write_count == tx_queue->insert_count))
|
|
return;
|
|
|
|
do {
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
|
buffer = &tx_queue->buffer[write_ptr];
|
|
txd = efx_tx_desc(tx_queue, write_ptr);
|
|
++tx_queue->write_count;
|
|
|
|
/* Create TX descriptor ring entry */
|
|
if (buffer->flags & EFX_TX_BUF_OPTION) {
|
|
*txd = buffer->option;
|
|
if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
|
|
/* PIO descriptor */
|
|
tx_queue->packet_write_count = tx_queue->write_count;
|
|
} else {
|
|
tx_queue->packet_write_count = tx_queue->write_count;
|
|
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
|
|
EFX_POPULATE_QWORD_3(
|
|
*txd,
|
|
ESF_DZ_TX_KER_CONT,
|
|
buffer->flags & EFX_TX_BUF_CONT,
|
|
ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
|
|
ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
|
|
}
|
|
} while (tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
wmb(); /* Ensure descriptors are written before they are fetched */
|
|
|
|
if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
|
|
txd = efx_tx_desc(tx_queue,
|
|
old_write_count & tx_queue->ptr_mask);
|
|
efx_ef10_push_tx_desc(tx_queue, txd);
|
|
++tx_queue->pushes;
|
|
} else {
|
|
efx_ef10_notify_tx_desc(tx_queue);
|
|
}
|
|
}
|
|
|
|
static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
unsigned int enabled, implemented;
|
|
bool want_workaround_26807;
|
|
int rc;
|
|
|
|
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
|
|
if (rc == -ENOSYS) {
|
|
/* GET_WORKAROUNDS was implemented before this workaround,
|
|
* thus it must be unavailable in this firmware.
|
|
*/
|
|
nic_data->workaround_26807 = false;
|
|
return 0;
|
|
}
|
|
if (rc)
|
|
return rc;
|
|
want_workaround_26807 =
|
|
implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
|
|
nic_data->workaround_26807 =
|
|
!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
|
|
|
|
if (want_workaround_26807 && !nic_data->workaround_26807) {
|
|
unsigned int flags;
|
|
|
|
rc = efx_mcdi_set_workaround(efx,
|
|
MC_CMD_WORKAROUND_BUG26807,
|
|
true, &flags);
|
|
if (!rc) {
|
|
if (flags &
|
|
1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"other functions on NIC have been reset\n");
|
|
|
|
/* With MCFW v4.6.x and earlier, the
|
|
* boot count will have incremented,
|
|
* so re-read the warm_boot_count
|
|
* value now to ensure this function
|
|
* doesn't think it has changed next
|
|
* time it checks.
|
|
*/
|
|
rc = efx_ef10_get_warm_boot_count(efx);
|
|
if (rc >= 0) {
|
|
nic_data->warm_boot_count = rc;
|
|
rc = 0;
|
|
}
|
|
}
|
|
nic_data->workaround_26807 = true;
|
|
} else if (rc == -EPERM) {
|
|
rc = 0;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_filter_table_probe(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
int rc = efx_ef10_probe_multicast_chaining(efx);
|
|
struct efx_mcdi_filter_vlan *vlan;
|
|
|
|
if (rc)
|
|
return rc;
|
|
rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
list_for_each_entry(vlan, &nic_data->vlan_list, list) {
|
|
rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
|
|
if (rc)
|
|
goto fail_add_vlan;
|
|
}
|
|
return 0;
|
|
|
|
fail_add_vlan:
|
|
efx_mcdi_filter_table_remove(efx);
|
|
return rc;
|
|
}
|
|
|
|
/* This creates an entry in the RX descriptor queue */
|
|
static inline void
|
|
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
|
|
{
|
|
struct efx_rx_buffer *rx_buf;
|
|
efx_qword_t *rxd;
|
|
|
|
rxd = efx_rx_desc(rx_queue, index);
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
EFX_POPULATE_QWORD_2(*rxd,
|
|
ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
|
|
ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
|
|
}
|
|
|
|
static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int write_count;
|
|
efx_dword_t reg;
|
|
|
|
/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
|
|
write_count = rx_queue->added_count & ~7;
|
|
if (rx_queue->notified_count == write_count)
|
|
return;
|
|
|
|
do
|
|
efx_ef10_build_rx_desc(
|
|
rx_queue,
|
|
rx_queue->notified_count & rx_queue->ptr_mask);
|
|
while (++rx_queue->notified_count != write_count);
|
|
|
|
wmb();
|
|
EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
|
|
write_count & rx_queue->ptr_mask);
|
|
efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
|
|
efx_rx_queue_index(rx_queue));
|
|
}
|
|
|
|
static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
|
|
|
|
static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
|
|
efx_qword_t event;
|
|
|
|
EFX_POPULATE_QWORD_2(event,
|
|
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
|
|
ESF_DZ_EV_DATA, EFX_EF10_REFILL);
|
|
|
|
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
|
|
|
|
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
|
|
* already swapped the data to little-endian order.
|
|
*/
|
|
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
|
|
sizeof(efx_qword_t));
|
|
|
|
efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
|
|
inbuf, sizeof(inbuf), 0,
|
|
efx_ef10_rx_defer_refill_complete, 0);
|
|
}
|
|
|
|
static void
|
|
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
|
|
int rc, efx_dword_t *outbuf,
|
|
size_t outlen_actual)
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
static int efx_ef10_ev_init(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ef10_nic_data *nic_data;
|
|
bool use_v2, cut_thru;
|
|
|
|
nic_data = efx->nic_data;
|
|
use_v2 = nic_data->datapath_caps2 &
|
|
1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
|
|
cut_thru = !(nic_data->datapath_caps &
|
|
1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
|
|
return efx_mcdi_ev_init(channel, cut_thru, use_v2);
|
|
}
|
|
|
|
static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
|
|
unsigned int rx_queue_label)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
netif_info(efx, hw, efx->net_dev,
|
|
"rx event arrived on queue %d labeled as queue %u\n",
|
|
efx_rx_queue_index(rx_queue), rx_queue_label);
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
}
|
|
|
|
static void
|
|
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
|
|
unsigned int actual, unsigned int expected)
|
|
{
|
|
unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
netif_info(efx, hw, efx->net_dev,
|
|
"dropped %d events (index=%d expected=%d)\n",
|
|
dropped, actual, expected);
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
}
|
|
|
|
/* partially received RX was aborted. clean up. */
|
|
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
|
|
{
|
|
unsigned int rx_desc_ptr;
|
|
|
|
netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
|
|
"scattered RX aborted (dropping %u buffers)\n",
|
|
rx_queue->scatter_n);
|
|
|
|
rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
|
|
|
|
efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
|
|
0, EFX_RX_PKT_DISCARD);
|
|
|
|
rx_queue->removed_count += rx_queue->scatter_n;
|
|
rx_queue->scatter_n = 0;
|
|
rx_queue->scatter_len = 0;
|
|
++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
|
|
}
|
|
|
|
static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
|
|
unsigned int n_packets,
|
|
unsigned int rx_encap_hdr,
|
|
unsigned int rx_l3_class,
|
|
unsigned int rx_l4_class,
|
|
const efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
bool handled = false;
|
|
|
|
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
|
|
if (!(efx->net_dev->features & NETIF_F_RXALL)) {
|
|
if (!efx->loopback_selftest)
|
|
channel->n_rx_eth_crc_err += n_packets;
|
|
return EFX_RX_PKT_DISCARD;
|
|
}
|
|
handled = true;
|
|
}
|
|
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
|
|
if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid class for RX_IPCKSUM_ERR: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
if (!efx->loopback_selftest)
|
|
*(rx_encap_hdr ?
|
|
&channel->n_rx_outer_ip_hdr_chksum_err :
|
|
&channel->n_rx_ip_hdr_chksum_err) += n_packets;
|
|
return 0;
|
|
}
|
|
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
|
|
if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
|
|
((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
|
|
(rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
|
|
rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid class for RX_TCPUDP_CKSUM_ERR: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
if (!efx->loopback_selftest)
|
|
*(rx_encap_hdr ?
|
|
&channel->n_rx_outer_tcp_udp_chksum_err :
|
|
&channel->n_rx_tcp_udp_chksum_err) += n_packets;
|
|
return 0;
|
|
}
|
|
if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
|
|
if (unlikely(!rx_encap_hdr))
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid class for RX_IP_INNER_CHKSUM_ERR: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
if (!efx->loopback_selftest)
|
|
channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
|
|
return 0;
|
|
}
|
|
if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
|
|
if (unlikely(!rx_encap_hdr))
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
|
|
rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
|
|
(rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
|
|
rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
if (!efx->loopback_selftest)
|
|
channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
|
|
return 0;
|
|
}
|
|
|
|
WARN_ON(!handled); /* No error bits were recognised */
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_handle_rx_event(struct efx_channel *channel,
|
|
const efx_qword_t *event)
|
|
{
|
|
unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
|
|
unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
|
|
unsigned int n_descs, n_packets, i;
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_rx_queue *rx_queue;
|
|
efx_qword_t errors;
|
|
bool rx_cont;
|
|
u16 flags = 0;
|
|
|
|
if (unlikely(READ_ONCE(efx->reset_pending)))
|
|
return 0;
|
|
|
|
/* Basic packet information */
|
|
rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
|
|
next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
|
|
rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
|
|
rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
|
|
rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
|
|
rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
|
|
rx_encap_hdr =
|
|
nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
|
|
EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
|
|
ESE_EZ_ENCAP_HDR_NONE;
|
|
|
|
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
|
|
netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
|
|
efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
|
|
|
|
n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
|
|
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
|
|
|
|
if (n_descs != rx_queue->scatter_n + 1) {
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
/* detect rx abort */
|
|
if (unlikely(n_descs == rx_queue->scatter_n)) {
|
|
if (rx_queue->scatter_n == 0 || rx_bytes != 0)
|
|
netdev_WARN(efx->net_dev,
|
|
"invalid RX abort: scatter_n=%u event="
|
|
EFX_QWORD_FMT "\n",
|
|
rx_queue->scatter_n,
|
|
EFX_QWORD_VAL(*event));
|
|
efx_ef10_handle_rx_abort(rx_queue);
|
|
return 0;
|
|
}
|
|
|
|
/* Check that RX completion merging is valid, i.e.
|
|
* the current firmware supports it and this is a
|
|
* non-scattered packet.
|
|
*/
|
|
if (!(nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
|
|
rx_queue->scatter_n != 0 || rx_cont) {
|
|
efx_ef10_handle_rx_bad_lbits(
|
|
rx_queue, next_ptr_lbits,
|
|
(rx_queue->removed_count +
|
|
rx_queue->scatter_n + 1) &
|
|
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
|
|
return 0;
|
|
}
|
|
|
|
/* Merged completion for multiple non-scattered packets */
|
|
rx_queue->scatter_n = 1;
|
|
rx_queue->scatter_len = 0;
|
|
n_packets = n_descs;
|
|
++channel->n_rx_merge_events;
|
|
channel->n_rx_merge_packets += n_packets;
|
|
flags |= EFX_RX_PKT_PREFIX_LEN;
|
|
} else {
|
|
++rx_queue->scatter_n;
|
|
rx_queue->scatter_len += rx_bytes;
|
|
if (rx_cont)
|
|
return 0;
|
|
n_packets = 1;
|
|
}
|
|
|
|
EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
|
|
ESF_DZ_RX_IPCKSUM_ERR, 1,
|
|
ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
|
|
ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
|
|
ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
|
|
EFX_AND_QWORD(errors, *event, errors);
|
|
if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
|
|
flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
|
|
rx_encap_hdr,
|
|
rx_l3_class, rx_l4_class,
|
|
event);
|
|
} else {
|
|
bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
|
|
rx_l4_class == ESE_FZ_L4_CLASS_UDP;
|
|
|
|
switch (rx_encap_hdr) {
|
|
case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
|
|
flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
|
|
if (tcpudp)
|
|
flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
|
|
break;
|
|
case ESE_EZ_ENCAP_HDR_GRE:
|
|
case ESE_EZ_ENCAP_HDR_NONE:
|
|
if (tcpudp)
|
|
flags |= EFX_RX_PKT_CSUMMED;
|
|
break;
|
|
default:
|
|
netdev_WARN(efx->net_dev,
|
|
"unknown encapsulation type: event="
|
|
EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*event));
|
|
}
|
|
}
|
|
|
|
if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
|
|
flags |= EFX_RX_PKT_TCP;
|
|
|
|
channel->irq_mod_score += 2 * n_packets;
|
|
|
|
/* Handle received packet(s) */
|
|
for (i = 0; i < n_packets; i++) {
|
|
efx_rx_packet(rx_queue,
|
|
rx_queue->removed_count & rx_queue->ptr_mask,
|
|
rx_queue->scatter_n, rx_queue->scatter_len,
|
|
flags);
|
|
rx_queue->removed_count += rx_queue->scatter_n;
|
|
}
|
|
|
|
rx_queue->scatter_n = 0;
|
|
rx_queue->scatter_len = 0;
|
|
|
|
return n_packets;
|
|
}
|
|
|
|
static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
|
|
{
|
|
u32 tstamp;
|
|
|
|
tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
|
|
tstamp <<= 16;
|
|
tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
|
|
|
|
return tstamp;
|
|
}
|
|
|
|
static void
|
|
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_tx_queue *tx_queue;
|
|
unsigned int tx_ev_desc_ptr;
|
|
unsigned int tx_ev_q_label;
|
|
unsigned int tx_ev_type;
|
|
u64 ts_part;
|
|
|
|
if (unlikely(READ_ONCE(efx->reset_pending)))
|
|
return;
|
|
|
|
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
|
|
return;
|
|
|
|
/* Get the transmit queue */
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
|
|
tx_queue = efx_channel_get_tx_queue(channel,
|
|
tx_ev_q_label % EFX_TXQ_TYPES);
|
|
|
|
if (!tx_queue->timestamping) {
|
|
/* Transmit completion */
|
|
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
|
|
efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
|
|
return;
|
|
}
|
|
|
|
/* Transmit timestamps are only available for 8XXX series. They result
|
|
* in up to three events per packet. These occur in order, and are:
|
|
* - the normal completion event (may be omitted)
|
|
* - the low part of the timestamp
|
|
* - the high part of the timestamp
|
|
*
|
|
* It's possible for multiple completion events to appear before the
|
|
* corresponding timestamps. So we can for example get:
|
|
* COMP N
|
|
* COMP N+1
|
|
* TS_LO N
|
|
* TS_HI N
|
|
* TS_LO N+1
|
|
* TS_HI N+1
|
|
*
|
|
* In addition it's also possible for the adjacent completions to be
|
|
* merged, so we may not see COMP N above. As such, the completion
|
|
* events are not very useful here.
|
|
*
|
|
* Each part of the timestamp is itself split across two 16 bit
|
|
* fields in the event.
|
|
*/
|
|
tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
|
|
|
|
switch (tx_ev_type) {
|
|
case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
|
|
/* Ignore this event - see above. */
|
|
break;
|
|
|
|
case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
|
|
ts_part = efx_ef10_extract_event_ts(event);
|
|
tx_queue->completed_timestamp_minor = ts_part;
|
|
break;
|
|
|
|
case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
|
|
ts_part = efx_ef10_extract_event_ts(event);
|
|
tx_queue->completed_timestamp_major = ts_part;
|
|
|
|
efx_xmit_done_single(tx_queue);
|
|
break;
|
|
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"channel %d unknown tx event type %d (data "
|
|
EFX_QWORD_FMT ")\n",
|
|
channel->channel, tx_ev_type,
|
|
EFX_QWORD_VAL(*event));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
int subcode;
|
|
|
|
subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
|
|
|
|
switch (subcode) {
|
|
case ESE_DZ_DRV_TIMER_EV:
|
|
case ESE_DZ_DRV_WAKE_UP_EV:
|
|
break;
|
|
case ESE_DZ_DRV_START_UP_EV:
|
|
/* event queue init complete. ok. */
|
|
break;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"channel %d unknown driver event type %d"
|
|
" (data " EFX_QWORD_FMT ")\n",
|
|
channel->channel, subcode,
|
|
EFX_QWORD_VAL(*event));
|
|
|
|
}
|
|
}
|
|
|
|
static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
u32 subcode;
|
|
|
|
subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
|
|
|
|
switch (subcode) {
|
|
case EFX_EF10_TEST:
|
|
channel->event_test_cpu = raw_smp_processor_id();
|
|
break;
|
|
case EFX_EF10_REFILL:
|
|
/* The queue must be empty, so we won't receive any rx
|
|
* events, so efx_process_channel() won't refill the
|
|
* queue. Refill it here
|
|
*/
|
|
efx_fast_push_rx_descriptors(&channel->rx_queue, true);
|
|
break;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"channel %d unknown driver event type %u"
|
|
" (data " EFX_QWORD_FMT ")\n",
|
|
channel->channel, (unsigned) subcode,
|
|
EFX_QWORD_VAL(*event));
|
|
}
|
|
}
|
|
|
|
static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
efx_qword_t event, *p_event;
|
|
unsigned int read_ptr;
|
|
int ev_code;
|
|
int spent = 0;
|
|
|
|
if (quota <= 0)
|
|
return spent;
|
|
|
|
read_ptr = channel->eventq_read_ptr;
|
|
|
|
for (;;) {
|
|
p_event = efx_event(channel, read_ptr);
|
|
event = *p_event;
|
|
|
|
if (!efx_event_present(&event))
|
|
break;
|
|
|
|
EFX_SET_QWORD(*p_event);
|
|
|
|
++read_ptr;
|
|
|
|
ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
|
|
|
|
netif_vdbg(efx, drv, efx->net_dev,
|
|
"processing event on %d " EFX_QWORD_FMT "\n",
|
|
channel->channel, EFX_QWORD_VAL(event));
|
|
|
|
switch (ev_code) {
|
|
case ESE_DZ_EV_CODE_MCDI_EV:
|
|
efx_mcdi_process_event(channel, &event);
|
|
break;
|
|
case ESE_DZ_EV_CODE_RX_EV:
|
|
spent += efx_ef10_handle_rx_event(channel, &event);
|
|
if (spent >= quota) {
|
|
/* XXX can we split a merged event to
|
|
* avoid going over-quota?
|
|
*/
|
|
spent = quota;
|
|
goto out;
|
|
}
|
|
break;
|
|
case ESE_DZ_EV_CODE_TX_EV:
|
|
efx_ef10_handle_tx_event(channel, &event);
|
|
break;
|
|
case ESE_DZ_EV_CODE_DRIVER_EV:
|
|
efx_ef10_handle_driver_event(channel, &event);
|
|
if (++spent == quota)
|
|
goto out;
|
|
break;
|
|
case EFX_EF10_DRVGEN_EV:
|
|
efx_ef10_handle_driver_generated_event(channel, &event);
|
|
break;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"channel %d unknown event type %d"
|
|
" (data " EFX_QWORD_FMT ")\n",
|
|
channel->channel, ev_code,
|
|
EFX_QWORD_VAL(event));
|
|
}
|
|
}
|
|
|
|
out:
|
|
channel->eventq_read_ptr = read_ptr;
|
|
return spent;
|
|
}
|
|
|
|
static void efx_ef10_ev_read_ack(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
efx_dword_t rptr;
|
|
|
|
if (EFX_EF10_WORKAROUND_35388(efx)) {
|
|
BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
|
|
(1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
|
|
BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
|
|
(1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
|
|
|
|
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
|
|
EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
|
|
ERF_DD_EVQ_IND_RPTR,
|
|
(channel->eventq_read_ptr &
|
|
channel->eventq_mask) >>
|
|
ERF_DD_EVQ_IND_RPTR_WIDTH);
|
|
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
|
|
channel->channel);
|
|
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
|
|
EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
|
|
ERF_DD_EVQ_IND_RPTR,
|
|
channel->eventq_read_ptr &
|
|
((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
|
|
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
|
|
channel->channel);
|
|
} else {
|
|
EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
|
|
channel->eventq_read_ptr &
|
|
channel->eventq_mask);
|
|
efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
|
|
}
|
|
}
|
|
|
|
static void efx_ef10_ev_test_generate(struct efx_channel *channel)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
|
|
struct efx_nic *efx = channel->efx;
|
|
efx_qword_t event;
|
|
int rc;
|
|
|
|
EFX_POPULATE_QWORD_2(event,
|
|
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
|
|
ESF_DZ_EV_DATA, EFX_EF10_TEST);
|
|
|
|
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
|
|
|
|
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
|
|
* already swapped the data to little-endian order.
|
|
*/
|
|
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
|
|
sizeof(efx_qword_t));
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
WARN_ON(true);
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
}
|
|
|
|
void efx_ef10_handle_drain_event(struct efx_nic *efx)
|
|
{
|
|
if (atomic_dec_and_test(&efx->active_queues))
|
|
wake_up(&efx->flush_wq);
|
|
|
|
WARN_ON(atomic_read(&efx->active_queues) < 0);
|
|
}
|
|
|
|
static int efx_ef10_fini_dmaq(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_channel *channel;
|
|
int pending;
|
|
|
|
/* If the MC has just rebooted, the TX/RX queues will have already been
|
|
* torn down, but efx->active_queues needs to be set to zero.
|
|
*/
|
|
if (efx->must_realloc_vis) {
|
|
atomic_set(&efx->active_queues, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Do not attempt to write to the NIC during EEH recovery */
|
|
if (efx->state != STATE_RECOVERY) {
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_mcdi_rx_fini(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_mcdi_tx_fini(tx_queue);
|
|
}
|
|
|
|
wait_event_timeout(efx->flush_wq,
|
|
atomic_read(&efx->active_queues) == 0,
|
|
msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
|
|
pending = atomic_read(&efx->active_queues);
|
|
if (pending) {
|
|
netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
|
|
pending);
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void efx_ef10_prepare_flr(struct efx_nic *efx)
|
|
{
|
|
atomic_set(&efx->active_queues, 0);
|
|
}
|
|
|
|
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
u8 mac_old[ETH_ALEN];
|
|
int rc, rc2;
|
|
|
|
/* Only reconfigure a PF-created vport */
|
|
if (is_zero_ether_addr(nic_data->vport_mac))
|
|
return 0;
|
|
|
|
efx_device_detach_sync(efx);
|
|
efx_net_stop(efx->net_dev);
|
|
down_write(&efx->filter_sem);
|
|
efx_mcdi_filter_table_remove(efx);
|
|
up_write(&efx->filter_sem);
|
|
|
|
rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
|
|
if (rc)
|
|
goto restore_filters;
|
|
|
|
ether_addr_copy(mac_old, nic_data->vport_mac);
|
|
rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
|
|
nic_data->vport_mac);
|
|
if (rc)
|
|
goto restore_vadaptor;
|
|
|
|
rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
|
|
efx->net_dev->dev_addr);
|
|
if (!rc) {
|
|
ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
|
|
} else {
|
|
rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
|
|
if (rc2) {
|
|
/* Failed to add original MAC, so clear vport_mac */
|
|
eth_zero_addr(nic_data->vport_mac);
|
|
goto reset_nic;
|
|
}
|
|
}
|
|
|
|
restore_vadaptor:
|
|
rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
|
|
if (rc2)
|
|
goto reset_nic;
|
|
restore_filters:
|
|
down_write(&efx->filter_sem);
|
|
rc2 = efx_ef10_filter_table_probe(efx);
|
|
up_write(&efx->filter_sem);
|
|
if (rc2)
|
|
goto reset_nic;
|
|
|
|
rc2 = efx_net_open(efx->net_dev);
|
|
if (rc2)
|
|
goto reset_nic;
|
|
|
|
efx_device_attach_if_not_resetting(efx);
|
|
|
|
return rc;
|
|
|
|
reset_nic:
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"Failed to restore when changing MAC address - scheduling reset\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
|
|
|
|
return rc ? rc : rc2;
|
|
}
|
|
|
|
static int efx_ef10_set_mac_address(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
|
|
bool was_enabled = efx->port_enabled;
|
|
int rc;
|
|
|
|
efx_device_detach_sync(efx);
|
|
efx_net_stop(efx->net_dev);
|
|
|
|
mutex_lock(&efx->mac_lock);
|
|
down_write(&efx->filter_sem);
|
|
efx_mcdi_filter_table_remove(efx);
|
|
|
|
ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
|
|
efx->net_dev->dev_addr);
|
|
MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
|
|
efx->vport_id);
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
|
|
sizeof(inbuf), NULL, 0, NULL);
|
|
|
|
efx_ef10_filter_table_probe(efx);
|
|
up_write(&efx->filter_sem);
|
|
mutex_unlock(&efx->mac_lock);
|
|
|
|
if (was_enabled)
|
|
efx_net_open(efx->net_dev);
|
|
efx_device_attach_if_not_resetting(efx);
|
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
|
|
|
|
if (rc == -EPERM) {
|
|
struct efx_nic *efx_pf;
|
|
|
|
/* Switch to PF and change MAC address on vport */
|
|
efx_pf = pci_get_drvdata(pci_dev_pf);
|
|
|
|
rc = efx_ef10_sriov_set_vf_mac(efx_pf,
|
|
nic_data->vf_index,
|
|
efx->net_dev->dev_addr);
|
|
} else if (!rc) {
|
|
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
|
|
struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
|
|
unsigned int i;
|
|
|
|
/* MAC address successfully changed by VF (with MAC
|
|
* spoofing) so update the parent PF if possible.
|
|
*/
|
|
for (i = 0; i < efx_pf->vf_count; ++i) {
|
|
struct ef10_vf *vf = nic_data->vf + i;
|
|
|
|
if (vf->efx == efx) {
|
|
ether_addr_copy(vf->mac,
|
|
efx->net_dev->dev_addr);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
} else
|
|
#endif
|
|
if (rc == -EPERM) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"Cannot change MAC address; use sfboot to enable"
|
|
" mac-spoofing on this interface\n");
|
|
} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
|
|
/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
|
|
* fall-back to the method of changing the MAC address on the
|
|
* vport. This only applies to PFs because such versions of
|
|
* MCFW do not support VFs.
|
|
*/
|
|
rc = efx_ef10_vport_set_mac_address(efx);
|
|
} else if (rc) {
|
|
efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
|
|
sizeof(inbuf), NULL, 0, rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
|
|
{
|
|
efx_mcdi_filter_sync_rx_mode(efx);
|
|
|
|
return efx_mcdi_set_mac(efx);
|
|
}
|
|
|
|
static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
|
|
{
|
|
efx_mcdi_filter_sync_rx_mode(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
|
|
|
|
MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
|
|
return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
/* MC BISTs follow a different poll mechanism to phy BISTs.
|
|
* The BIST is done in the poll handler on the MC, and the MCDI command
|
|
* will block until the BIST is done.
|
|
*/
|
|
static int efx_ef10_poll_bist(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
|
|
size_t outlen;
|
|
u32 result;
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
|
|
return -EIO;
|
|
|
|
result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
|
|
switch (result) {
|
|
case MC_CMD_POLL_BIST_PASSED:
|
|
netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
|
|
return 0;
|
|
case MC_CMD_POLL_BIST_TIMEOUT:
|
|
netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
|
|
return -EIO;
|
|
case MC_CMD_POLL_BIST_FAILED:
|
|
netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
|
|
return -EIO;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"BIST returned unknown result %u", result);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
|
|
{
|
|
int rc;
|
|
|
|
netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
|
|
|
|
rc = efx_ef10_start_bist(efx, bist_type);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return efx_ef10_poll_bist(efx);
|
|
}
|
|
|
|
static int
|
|
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
|
|
{
|
|
int rc, rc2;
|
|
|
|
efx_reset_down(efx, RESET_TYPE_WORLD);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
|
|
NULL, 0, NULL, 0, NULL);
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
|
|
tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
|
|
|
|
rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
|
|
|
|
out:
|
|
if (rc == -EPERM)
|
|
rc = 0;
|
|
rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
|
|
return rc ? rc : rc2;
|
|
}
|
|
|
|
#ifdef CONFIG_SFC_MTD
|
|
|
|
struct efx_ef10_nvram_type_info {
|
|
u16 type, type_mask;
|
|
u8 port;
|
|
const char *name;
|
|
};
|
|
|
|
static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
|
|
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
|
|
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
|
|
{ NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
|
|
{ NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
|
|
{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
|
|
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
|
|
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
|
|
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
|
|
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
|
|
{ NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
|
|
{ NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
|
|
{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
|
|
{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
|
|
{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
|
|
{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
|
|
{ NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
|
|
{ NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
|
|
{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
|
|
};
|
|
#define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
|
|
|
|
static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
|
|
struct efx_mcdi_mtd_partition *part,
|
|
unsigned int type,
|
|
unsigned long *found)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
|
|
const struct efx_ef10_nvram_type_info *info;
|
|
size_t size, erase_size, outlen;
|
|
int type_idx = 0;
|
|
bool protected;
|
|
int rc;
|
|
|
|
for (type_idx = 0; ; type_idx++) {
|
|
if (type_idx == EF10_NVRAM_PARTITION_COUNT)
|
|
return -ENODEV;
|
|
info = efx_ef10_nvram_types + type_idx;
|
|
if ((type & ~info->type_mask) == info->type)
|
|
break;
|
|
}
|
|
if (info->port != efx_port_num(efx))
|
|
return -ENODEV;
|
|
|
|
rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
|
|
if (rc)
|
|
return rc;
|
|
if (protected &&
|
|
(type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
|
|
type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
|
|
/* Hide protected partitions that don't provide defaults. */
|
|
return -ENODEV;
|
|
|
|
if (protected)
|
|
/* Protected partitions are read only. */
|
|
erase_size = 0;
|
|
|
|
/* If we've already exposed a partition of this type, hide this
|
|
* duplicate. All operations on MTDs are keyed by the type anyway,
|
|
* so we can't act on the duplicate.
|
|
*/
|
|
if (__test_and_set_bit(type_idx, found))
|
|
return -EEXIST;
|
|
|
|
part->nvram_type = type;
|
|
|
|
MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
|
|
return -EIO;
|
|
if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
|
|
(1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
|
|
part->fw_subtype = MCDI_DWORD(outbuf,
|
|
NVRAM_METADATA_OUT_SUBTYPE);
|
|
|
|
part->common.dev_type_name = "EF10 NVRAM manager";
|
|
part->common.type_name = info->name;
|
|
|
|
part->common.mtd.type = MTD_NORFLASH;
|
|
part->common.mtd.flags = MTD_CAP_NORFLASH;
|
|
part->common.mtd.size = size;
|
|
part->common.mtd.erasesize = erase_size;
|
|
/* sfc_status is read-only */
|
|
if (!erase_size)
|
|
part->common.mtd.flags |= MTD_NO_ERASE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_mtd_probe(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
|
|
DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
|
|
struct efx_mcdi_mtd_partition *parts;
|
|
size_t outlen, n_parts_total, i, n_parts;
|
|
unsigned int type;
|
|
int rc;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
|
|
return -EIO;
|
|
|
|
n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
|
|
if (n_parts_total >
|
|
MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
|
|
return -EIO;
|
|
|
|
parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
|
|
if (!parts)
|
|
return -ENOMEM;
|
|
|
|
n_parts = 0;
|
|
for (i = 0; i < n_parts_total; i++) {
|
|
type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
|
|
i);
|
|
rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
|
|
found);
|
|
if (rc == -EEXIST || rc == -ENODEV)
|
|
continue;
|
|
if (rc)
|
|
goto fail;
|
|
n_parts++;
|
|
}
|
|
|
|
rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
|
|
fail:
|
|
if (rc)
|
|
kfree(parts);
|
|
return rc;
|
|
}
|
|
|
|
#endif /* CONFIG_SFC_MTD */
|
|
|
|
static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
|
|
{
|
|
_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
|
|
}
|
|
|
|
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
|
|
u32 host_time) {}
|
|
|
|
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
|
|
bool temp)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
|
|
int rc;
|
|
|
|
if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
|
|
channel->sync_events_state == SYNC_EVENTS_VALID ||
|
|
(temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
|
|
return 0;
|
|
channel->sync_events_state = SYNC_EVENTS_REQUESTED;
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
|
|
channel->channel);
|
|
|
|
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
|
|
inbuf, sizeof(inbuf), NULL, 0, NULL);
|
|
|
|
if (rc != 0)
|
|
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
|
|
SYNC_EVENTS_DISABLED;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
|
|
bool temp)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
|
|
int rc;
|
|
|
|
if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
|
|
(temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
|
|
return 0;
|
|
if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
|
|
channel->sync_events_state = SYNC_EVENTS_DISABLED;
|
|
return 0;
|
|
}
|
|
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
|
|
SYNC_EVENTS_DISABLED;
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
|
|
MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
|
|
channel->channel);
|
|
|
|
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
|
|
inbuf, sizeof(inbuf), NULL, 0, NULL);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
|
|
bool temp)
|
|
{
|
|
int (*set)(struct efx_channel *channel, bool temp);
|
|
struct efx_channel *channel;
|
|
|
|
set = en ?
|
|
efx_ef10_rx_enable_timestamping :
|
|
efx_ef10_rx_disable_timestamping;
|
|
|
|
channel = efx_ptp_channel(efx);
|
|
if (channel) {
|
|
int rc = set(channel, temp);
|
|
if (en && rc != 0) {
|
|
efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
|
|
struct hwtstamp_config *init)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
|
|
struct hwtstamp_config *init)
|
|
{
|
|
int rc;
|
|
|
|
switch (init->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
efx_ef10_ptp_set_ts_sync_events(efx, false, false);
|
|
/* if TX timestamping is still requested then leave PTP on */
|
|
return efx_ptp_change_mode(efx,
|
|
init->tx_type != HWTSTAMP_TX_OFF, 0);
|
|
case HWTSTAMP_FILTER_ALL:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_NTP_ALL:
|
|
init->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
rc = efx_ptp_change_mode(efx, true, 0);
|
|
if (!rc)
|
|
rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
|
|
if (rc)
|
|
efx_ptp_change_mode(efx, false, 0);
|
|
return rc;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
}
|
|
|
|
static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
|
|
struct netdev_phys_item_id *ppid)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!is_valid_ether_addr(nic_data->port_id))
|
|
return -EOPNOTSUPP;
|
|
|
|
ppid->id_len = ETH_ALEN;
|
|
memcpy(ppid->id, nic_data->port_id, ppid->id_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
|
|
{
|
|
if (proto != htons(ETH_P_8021Q))
|
|
return -EINVAL;
|
|
|
|
return efx_ef10_add_vlan(efx, vid);
|
|
}
|
|
|
|
static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
|
|
{
|
|
if (proto != htons(ETH_P_8021Q))
|
|
return -EINVAL;
|
|
|
|
return efx_ef10_del_vlan(efx, vid);
|
|
}
|
|
|
|
/* We rely on the MCDI wiping out our TX rings if it made any changes to the
|
|
* ports table, ensuring that any TSO descriptors that were made on a now-
|
|
* removed tunnel port will be blown away and won't break things when we try
|
|
* to transmit them using the new ports table.
|
|
*/
|
|
static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
|
|
bool will_reset = false;
|
|
size_t num_entries = 0;
|
|
size_t inlen, outlen;
|
|
size_t i;
|
|
int rc;
|
|
efx_dword_t flags_and_num_entries;
|
|
|
|
WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
|
|
|
|
nic_data->udp_tunnels_dirty = false;
|
|
|
|
if (!(nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
|
|
efx_device_attach_if_not_resetting(efx);
|
|
return 0;
|
|
}
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
|
|
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
|
|
if (nic_data->udp_tunnels[i].count &&
|
|
nic_data->udp_tunnels[i].port) {
|
|
efx_dword_t entry;
|
|
|
|
EFX_POPULATE_DWORD_2(entry,
|
|
TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
|
|
ntohs(nic_data->udp_tunnels[i].port),
|
|
TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
|
|
nic_data->udp_tunnels[i].type);
|
|
*_MCDI_ARRAY_DWORD(inbuf,
|
|
SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
|
|
num_entries++) = entry;
|
|
}
|
|
}
|
|
|
|
BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
|
|
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
|
|
EFX_WORD_1_LBN);
|
|
BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
|
|
EFX_WORD_1_WIDTH);
|
|
EFX_POPULATE_DWORD_2(flags_and_num_entries,
|
|
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
|
|
!!unloading,
|
|
EFX_WORD_1, num_entries);
|
|
*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
|
|
flags_and_num_entries;
|
|
|
|
inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
|
|
inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
|
|
if (rc == -EIO) {
|
|
/* Most likely the MC rebooted due to another function also
|
|
* setting its tunnel port list. Mark the tunnel port list as
|
|
* dirty, so it will be pushed upon coming up from the reboot.
|
|
*/
|
|
nic_data->udp_tunnels_dirty = true;
|
|
return 0;
|
|
}
|
|
|
|
if (rc) {
|
|
/* expected not available on unprivileged functions */
|
|
if (rc != -EPERM)
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"Unable to set UDP tunnel ports; rc=%d.\n", rc);
|
|
} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
|
|
(1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Rebooting MC due to UDP tunnel port list change\n");
|
|
will_reset = true;
|
|
if (unloading)
|
|
/* Delay for the MC reset to complete. This will make
|
|
* unloading other functions a bit smoother. This is a
|
|
* race, but the other unload will work whichever way
|
|
* it goes, this just avoids an unnecessary error
|
|
* message.
|
|
*/
|
|
msleep(100);
|
|
}
|
|
if (!will_reset && !unloading) {
|
|
/* The caller will have detached, relying on the MC reset to
|
|
* trigger a re-attach. Since there won't be an MC reset, we
|
|
* have to do the attach ourselves.
|
|
*/
|
|
efx_device_attach_if_not_resetting(efx);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
int rc = 0;
|
|
|
|
mutex_lock(&nic_data->udp_tunnels_lock);
|
|
if (nic_data->udp_tunnels_dirty) {
|
|
/* Make sure all TX are stopped while we modify the table, else
|
|
* we might race against an efx_features_check().
|
|
*/
|
|
efx_device_detach_sync(efx);
|
|
rc = efx_ef10_set_udp_tnl_ports(efx, false);
|
|
}
|
|
mutex_unlock(&nic_data->udp_tunnels_lock);
|
|
return rc;
|
|
}
|
|
|
|
static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
|
|
__be16 port)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
|
|
if (!nic_data->udp_tunnels[i].count)
|
|
continue;
|
|
if (nic_data->udp_tunnels[i].port == port)
|
|
return &nic_data->udp_tunnels[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
|
|
struct efx_udp_tunnel tnl)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_udp_tunnel *match;
|
|
char typebuf[8];
|
|
size_t i;
|
|
int rc;
|
|
|
|
if (!(nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
|
|
return 0;
|
|
|
|
efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
|
|
netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
|
|
typebuf, ntohs(tnl.port));
|
|
|
|
mutex_lock(&nic_data->udp_tunnels_lock);
|
|
/* Make sure all TX are stopped while we add to the table, else we
|
|
* might race against an efx_features_check().
|
|
*/
|
|
efx_device_detach_sync(efx);
|
|
|
|
match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
|
|
if (match != NULL) {
|
|
if (match->type == tnl.type) {
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"Referencing existing tunnel entry\n");
|
|
match->count++;
|
|
/* No need to cause an MCDI update */
|
|
rc = 0;
|
|
goto unlock_out;
|
|
}
|
|
efx_get_udp_tunnel_type_name(match->type,
|
|
typebuf, sizeof(typebuf));
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"UDP port %d is already in use by %s\n",
|
|
ntohs(tnl.port), typebuf);
|
|
rc = -EEXIST;
|
|
goto unlock_out;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
|
|
if (!nic_data->udp_tunnels[i].count) {
|
|
nic_data->udp_tunnels[i] = tnl;
|
|
nic_data->udp_tunnels[i].count = 1;
|
|
rc = efx_ef10_set_udp_tnl_ports(efx, false);
|
|
goto unlock_out;
|
|
}
|
|
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
|
|
typebuf, ntohs(tnl.port));
|
|
|
|
rc = -ENOMEM;
|
|
|
|
unlock_out:
|
|
mutex_unlock(&nic_data->udp_tunnels_lock);
|
|
return rc;
|
|
}
|
|
|
|
/* Called under the TX lock with the TX queue running, hence no-one can be
|
|
* in the middle of updating the UDP tunnels table. However, they could
|
|
* have tried and failed the MCDI, in which case they'll have set the dirty
|
|
* flag before dropping their locks.
|
|
*/
|
|
static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!(nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
|
|
return false;
|
|
|
|
if (nic_data->udp_tunnels_dirty)
|
|
/* SW table may not match HW state, so just assume we can't
|
|
* use any UDP tunnel offloads.
|
|
*/
|
|
return false;
|
|
|
|
return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
|
|
}
|
|
|
|
static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
|
|
struct efx_udp_tunnel tnl)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
struct efx_udp_tunnel *match;
|
|
char typebuf[8];
|
|
int rc;
|
|
|
|
if (!(nic_data->datapath_caps &
|
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
|
|
return 0;
|
|
|
|
efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
|
|
netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
|
|
typebuf, ntohs(tnl.port));
|
|
|
|
mutex_lock(&nic_data->udp_tunnels_lock);
|
|
/* Make sure all TX are stopped while we remove from the table, else we
|
|
* might race against an efx_features_check().
|
|
*/
|
|
efx_device_detach_sync(efx);
|
|
|
|
match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
|
|
if (match != NULL) {
|
|
if (match->type == tnl.type) {
|
|
if (--match->count) {
|
|
/* Port is still in use, so nothing to do */
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"UDP tunnel port %d remains active\n",
|
|
ntohs(tnl.port));
|
|
rc = 0;
|
|
goto out_unlock;
|
|
}
|
|
rc = efx_ef10_set_udp_tnl_ports(efx, false);
|
|
goto out_unlock;
|
|
}
|
|
efx_get_udp_tunnel_type_name(match->type,
|
|
typebuf, sizeof(typebuf));
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"UDP port %d is actually in use by %s, not removing\n",
|
|
ntohs(tnl.port), typebuf);
|
|
}
|
|
rc = -ENOENT;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&nic_data->udp_tunnels_lock);
|
|
return rc;
|
|
}
|
|
|
|
/* EF10 may have multiple datapath firmware variants within a
|
|
* single version. Report which variants are running.
|
|
*/
|
|
static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
|
|
size_t len)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
return scnprintf(buf, len, " rx%x tx%x",
|
|
nic_data->rx_dpcpu_fw_id,
|
|
nic_data->tx_dpcpu_fw_id);
|
|
}
|
|
|
|
static unsigned int ef10_check_caps(const struct efx_nic *efx,
|
|
u8 flag,
|
|
u32 offset)
|
|
{
|
|
const struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
switch (offset) {
|
|
case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
|
|
return nic_data->datapath_caps & BIT_ULL(flag);
|
|
case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
|
|
return nic_data->datapath_caps2 & BIT_ULL(flag);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#define EF10_OFFLOAD_FEATURES \
|
|
(NETIF_F_IP_CSUM | \
|
|
NETIF_F_HW_VLAN_CTAG_FILTER | \
|
|
NETIF_F_IPV6_CSUM | \
|
|
NETIF_F_RXHASH | \
|
|
NETIF_F_NTUPLE)
|
|
|
|
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
|
|
.is_vf = true,
|
|
.mem_bar = efx_ef10_vf_mem_bar,
|
|
.mem_map_size = efx_ef10_mem_map_size,
|
|
.probe = efx_ef10_probe_vf,
|
|
.remove = efx_ef10_remove,
|
|
.dimension_resources = efx_ef10_dimension_resources,
|
|
.init = efx_ef10_init_nic,
|
|
.fini = efx_port_dummy_op_void,
|
|
.map_reset_reason = efx_ef10_map_reset_reason,
|
|
.map_reset_flags = efx_ef10_map_reset_flags,
|
|
.reset = efx_ef10_reset,
|
|
.probe_port = efx_mcdi_port_probe,
|
|
.remove_port = efx_mcdi_port_remove,
|
|
.fini_dmaq = efx_ef10_fini_dmaq,
|
|
.prepare_flr = efx_ef10_prepare_flr,
|
|
.finish_flr = efx_port_dummy_op_void,
|
|
.describe_stats = efx_ef10_describe_stats,
|
|
.update_stats = efx_ef10_update_stats_vf,
|
|
.start_stats = efx_port_dummy_op_void,
|
|
.pull_stats = efx_port_dummy_op_void,
|
|
.stop_stats = efx_port_dummy_op_void,
|
|
.set_id_led = efx_mcdi_set_id_led,
|
|
.push_irq_moderation = efx_ef10_push_irq_moderation,
|
|
.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
|
|
.check_mac_fault = efx_mcdi_mac_check_fault,
|
|
.reconfigure_port = efx_mcdi_port_reconfigure,
|
|
.get_wol = efx_ef10_get_wol_vf,
|
|
.set_wol = efx_ef10_set_wol_vf,
|
|
.resume_wol = efx_port_dummy_op_void,
|
|
.mcdi_request = efx_ef10_mcdi_request,
|
|
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
|
|
.mcdi_read_response = efx_ef10_mcdi_read_response,
|
|
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
|
|
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
|
|
.irq_enable_master = efx_port_dummy_op_void,
|
|
.irq_test_generate = efx_ef10_irq_test_generate,
|
|
.irq_disable_non_ev = efx_port_dummy_op_void,
|
|
.irq_handle_msi = efx_ef10_msi_interrupt,
|
|
.irq_handle_legacy = efx_ef10_legacy_interrupt,
|
|
.tx_probe = efx_ef10_tx_probe,
|
|
.tx_init = efx_ef10_tx_init,
|
|
.tx_remove = efx_mcdi_tx_remove,
|
|
.tx_write = efx_ef10_tx_write,
|
|
.tx_limit_len = efx_ef10_tx_limit_len,
|
|
.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
|
|
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
|
|
.rx_probe = efx_mcdi_rx_probe,
|
|
.rx_init = efx_mcdi_rx_init,
|
|
.rx_remove = efx_mcdi_rx_remove,
|
|
.rx_write = efx_ef10_rx_write,
|
|
.rx_defer_refill = efx_ef10_rx_defer_refill,
|
|
.ev_probe = efx_mcdi_ev_probe,
|
|
.ev_init = efx_ef10_ev_init,
|
|
.ev_fini = efx_mcdi_ev_fini,
|
|
.ev_remove = efx_mcdi_ev_remove,
|
|
.ev_process = efx_ef10_ev_process,
|
|
.ev_read_ack = efx_ef10_ev_read_ack,
|
|
.ev_test_generate = efx_ef10_ev_test_generate,
|
|
.filter_table_probe = efx_ef10_filter_table_probe,
|
|
.filter_table_restore = efx_mcdi_filter_table_restore,
|
|
.filter_table_remove = efx_mcdi_filter_table_remove,
|
|
.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
|
|
.filter_insert = efx_mcdi_filter_insert,
|
|
.filter_remove_safe = efx_mcdi_filter_remove_safe,
|
|
.filter_get_safe = efx_mcdi_filter_get_safe,
|
|
.filter_clear_rx = efx_mcdi_filter_clear_rx,
|
|
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
|
|
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
|
|
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
|
|
#endif
|
|
#ifdef CONFIG_SFC_MTD
|
|
.mtd_probe = efx_port_dummy_op_int,
|
|
#endif
|
|
.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
|
|
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
|
|
.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
|
|
.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
.vswitching_probe = efx_ef10_vswitching_probe_vf,
|
|
.vswitching_restore = efx_ef10_vswitching_restore_vf,
|
|
.vswitching_remove = efx_ef10_vswitching_remove_vf,
|
|
#endif
|
|
.get_mac_address = efx_ef10_get_mac_address_vf,
|
|
.set_mac_address = efx_ef10_set_mac_address,
|
|
|
|
.get_phys_port_id = efx_ef10_get_phys_port_id,
|
|
.revision = EFX_REV_HUNT_A0,
|
|
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
|
|
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
|
|
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
|
|
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
|
|
.can_rx_scatter = true,
|
|
.always_rx_scatter = true,
|
|
.min_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
|
|
.offload_features = EF10_OFFLOAD_FEATURES,
|
|
.mcdi_max_ver = 2,
|
|
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
|
|
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
|
|
1 << HWTSTAMP_FILTER_ALL,
|
|
.rx_hash_key_size = 40,
|
|
.check_caps = ef10_check_caps,
|
|
.print_additional_fwver = efx_ef10_print_additional_fwver,
|
|
};
|
|
|
|
const struct efx_nic_type efx_hunt_a0_nic_type = {
|
|
.is_vf = false,
|
|
.mem_bar = efx_ef10_pf_mem_bar,
|
|
.mem_map_size = efx_ef10_mem_map_size,
|
|
.probe = efx_ef10_probe_pf,
|
|
.remove = efx_ef10_remove,
|
|
.dimension_resources = efx_ef10_dimension_resources,
|
|
.init = efx_ef10_init_nic,
|
|
.fini = efx_port_dummy_op_void,
|
|
.map_reset_reason = efx_ef10_map_reset_reason,
|
|
.map_reset_flags = efx_ef10_map_reset_flags,
|
|
.reset = efx_ef10_reset,
|
|
.probe_port = efx_mcdi_port_probe,
|
|
.remove_port = efx_mcdi_port_remove,
|
|
.fini_dmaq = efx_ef10_fini_dmaq,
|
|
.prepare_flr = efx_ef10_prepare_flr,
|
|
.finish_flr = efx_port_dummy_op_void,
|
|
.describe_stats = efx_ef10_describe_stats,
|
|
.update_stats = efx_ef10_update_stats_pf,
|
|
.start_stats = efx_mcdi_mac_start_stats,
|
|
.pull_stats = efx_mcdi_mac_pull_stats,
|
|
.stop_stats = efx_mcdi_mac_stop_stats,
|
|
.set_id_led = efx_mcdi_set_id_led,
|
|
.push_irq_moderation = efx_ef10_push_irq_moderation,
|
|
.reconfigure_mac = efx_ef10_mac_reconfigure,
|
|
.check_mac_fault = efx_mcdi_mac_check_fault,
|
|
.reconfigure_port = efx_mcdi_port_reconfigure,
|
|
.get_wol = efx_ef10_get_wol,
|
|
.set_wol = efx_ef10_set_wol,
|
|
.resume_wol = efx_port_dummy_op_void,
|
|
.test_chip = efx_ef10_test_chip,
|
|
.test_nvram = efx_mcdi_nvram_test_all,
|
|
.mcdi_request = efx_ef10_mcdi_request,
|
|
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
|
|
.mcdi_read_response = efx_ef10_mcdi_read_response,
|
|
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
|
|
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
|
|
.irq_enable_master = efx_port_dummy_op_void,
|
|
.irq_test_generate = efx_ef10_irq_test_generate,
|
|
.irq_disable_non_ev = efx_port_dummy_op_void,
|
|
.irq_handle_msi = efx_ef10_msi_interrupt,
|
|
.irq_handle_legacy = efx_ef10_legacy_interrupt,
|
|
.tx_probe = efx_ef10_tx_probe,
|
|
.tx_init = efx_ef10_tx_init,
|
|
.tx_remove = efx_mcdi_tx_remove,
|
|
.tx_write = efx_ef10_tx_write,
|
|
.tx_limit_len = efx_ef10_tx_limit_len,
|
|
.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
|
|
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
|
|
.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
|
|
.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
|
|
.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
|
|
.rx_probe = efx_mcdi_rx_probe,
|
|
.rx_init = efx_mcdi_rx_init,
|
|
.rx_remove = efx_mcdi_rx_remove,
|
|
.rx_write = efx_ef10_rx_write,
|
|
.rx_defer_refill = efx_ef10_rx_defer_refill,
|
|
.ev_probe = efx_mcdi_ev_probe,
|
|
.ev_init = efx_ef10_ev_init,
|
|
.ev_fini = efx_mcdi_ev_fini,
|
|
.ev_remove = efx_mcdi_ev_remove,
|
|
.ev_process = efx_ef10_ev_process,
|
|
.ev_read_ack = efx_ef10_ev_read_ack,
|
|
.ev_test_generate = efx_ef10_ev_test_generate,
|
|
.filter_table_probe = efx_ef10_filter_table_probe,
|
|
.filter_table_restore = efx_mcdi_filter_table_restore,
|
|
.filter_table_remove = efx_mcdi_filter_table_remove,
|
|
.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
|
|
.filter_insert = efx_mcdi_filter_insert,
|
|
.filter_remove_safe = efx_mcdi_filter_remove_safe,
|
|
.filter_get_safe = efx_mcdi_filter_get_safe,
|
|
.filter_clear_rx = efx_mcdi_filter_clear_rx,
|
|
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
|
|
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
|
|
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
|
|
#endif
|
|
#ifdef CONFIG_SFC_MTD
|
|
.mtd_probe = efx_ef10_mtd_probe,
|
|
.mtd_rename = efx_mcdi_mtd_rename,
|
|
.mtd_read = efx_mcdi_mtd_read,
|
|
.mtd_erase = efx_mcdi_mtd_erase,
|
|
.mtd_write = efx_mcdi_mtd_write,
|
|
.mtd_sync = efx_mcdi_mtd_sync,
|
|
#endif
|
|
.ptp_write_host_time = efx_ef10_ptp_write_host_time,
|
|
.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
|
|
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
|
|
.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
|
|
.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
|
|
.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
|
|
.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
|
|
.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
|
|
.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
.sriov_configure = efx_ef10_sriov_configure,
|
|
.sriov_init = efx_ef10_sriov_init,
|
|
.sriov_fini = efx_ef10_sriov_fini,
|
|
.sriov_wanted = efx_ef10_sriov_wanted,
|
|
.sriov_reset = efx_ef10_sriov_reset,
|
|
.sriov_flr = efx_ef10_sriov_flr,
|
|
.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
|
|
.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
|
|
.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
|
|
.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
|
|
.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
|
|
.vswitching_probe = efx_ef10_vswitching_probe_pf,
|
|
.vswitching_restore = efx_ef10_vswitching_restore_pf,
|
|
.vswitching_remove = efx_ef10_vswitching_remove_pf,
|
|
#endif
|
|
.get_mac_address = efx_ef10_get_mac_address_pf,
|
|
.set_mac_address = efx_ef10_set_mac_address,
|
|
.tso_versions = efx_ef10_tso_versions,
|
|
|
|
.get_phys_port_id = efx_ef10_get_phys_port_id,
|
|
.revision = EFX_REV_HUNT_A0,
|
|
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
|
|
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
|
|
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
|
|
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
|
|
.can_rx_scatter = true,
|
|
.always_rx_scatter = true,
|
|
.option_descriptors = true,
|
|
.min_interrupt_mode = EFX_INT_MODE_LEGACY,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
|
|
.offload_features = EF10_OFFLOAD_FEATURES,
|
|
.mcdi_max_ver = 2,
|
|
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
|
|
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
|
|
1 << HWTSTAMP_FILTER_ALL,
|
|
.rx_hash_key_size = 40,
|
|
.check_caps = ef10_check_caps,
|
|
.print_additional_fwver = efx_ef10_print_additional_fwver,
|
|
};
|