mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
579f82901f
This is a patch to improve swap readahead algorithm. It's from Hugh and I slightly changed it. Hugh's original changelog: swapin readahead does a blind readahead, whether or not the swapin is sequential. This may be ok on harddisk, because large reads have relatively small costs, and if the readahead pages are unneeded they can be reclaimed easily - though, what if their allocation forced reclaim of useful pages? But on SSD devices large reads are more expensive than small ones: if the readahead pages are unneeded, reading them in caused significant overhead. This patch adds very simplistic random read detection. Stealing the PageReadahead technique from Konstantin Khlebnikov's patch, avoiding the vma/anon_vma sophistications of Shaohua Li's patch, swapin_nr_pages() simply looks at readahead's current success rate, and narrows or widens its readahead window accordingly. There is little science to its heuristic: it's about as stupid as can be whilst remaining effective. The table below shows elapsed times (in centiseconds) when running a single repetitive swapping load across a 1000MB mapping in 900MB ram with 1GB swap (the harddisk tests had taken painfully too long when I used mem=500M, but SSD shows similar results for that). Vanilla is the 3.6-rc7 kernel on which I started; Shaohua denotes his Sep 3 patch in mmotm and linux-next; HughOld denotes my Oct 1 patch which Shaohua showed to be defective; HughNew this Nov 14 patch, with page_cluster as usual at default of 3 (8-page reads); HughPC4 this same patch with page_cluster 4 (16-page reads); HughPC0 with page_cluster 0 (1-page reads: no readahead). HDD for swapping to harddisk, SSD for swapping to VertexII SSD. Seq for sequential access to the mapping, cycling five times around; Rand for the same number of random touches. Anon for a MAP_PRIVATE anon mapping; Shmem for a MAP_SHARED anon mapping, equivalent to tmpfs. One weakness of Shaohua's vma/anon_vma approach was that it did not optimize Shmem: seen below. Konstantin's approach was perhaps mistuned, 50% slower on Seq: did not compete and is not shown below. HDD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0 Seq Anon 73921 76210 75611 76904 78191 121542 Seq Shmem 73601 73176 73855 72947 74543 118322 Rand Anon 895392 831243 871569 845197 846496 841680 Rand Shmem 1058375 1053486 827935 764955 764376 756489 SSD Vanilla Shaohua HughOld HughNew HughPC4 HughPC0 Seq Anon 24634 24198 24673 25107 21614 70018 Seq Shmem 24959 24932 25052 25703 22030 69678 Rand Anon 43014 26146 28075 25989 26935 25901 Rand Shmem 45349 45215 28249 24268 24138 24332 These tests are, of course, two extremes of a very simple case: under heavier mixed loads I've not yet observed any consistent improvement or degradation, and wider testing would be welcome. Shaohua Li: Test shows Vanilla is slightly better in sequential workload than Hugh's patch. I observed with Hugh's patch sometimes the readahead size is shrinked too fast (from 8 to 1 immediately) in sequential workload if there is no hit. And in such case, continuing doing readahead is good actually. I don't prepare a sophisticated algorithm for the sequential workload because so far we can't guarantee sequential accessed pages are swap out sequentially. So I slightly change Hugh's heuristic - don't shrink readahead size too fast. Here is my test result (unit second, 3 runs average): Vanilla Hugh New Seq 356 370 360 Random 4525 2447 2444 Attached graph is the swapin/swapout throughput I collected with 'vmstat 2'. The first part is running a random workload (till around 1200 of the x-axis) and the second part is running a sequential workload. swapin and swapout throughput are almost identical in steady state in both workloads. These are expected behavior. while in Vanilla, swapin is much bigger than swapout especially in random workload (because wrong readahead). Original patches by: Shaohua Li and Konstantin Khlebnikov. [fengguang.wu@intel.com: swapin_nr_pages() can be static] Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
533 lines
16 KiB
C
533 lines
16 KiB
C
/*
|
|
* Macros for manipulating and testing page->flags
|
|
*/
|
|
|
|
#ifndef PAGE_FLAGS_H
|
|
#define PAGE_FLAGS_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/mmdebug.h>
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
#include <linux/mm_types.h>
|
|
#include <generated/bounds.h>
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
|
|
|
/*
|
|
* Various page->flags bits:
|
|
*
|
|
* PG_reserved is set for special pages, which can never be swapped out. Some
|
|
* of them might not even exist (eg empty_bad_page)...
|
|
*
|
|
* The PG_private bitflag is set on pagecache pages if they contain filesystem
|
|
* specific data (which is normally at page->private). It can be used by
|
|
* private allocations for its own usage.
|
|
*
|
|
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
|
|
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
|
|
* is set before writeback starts and cleared when it finishes.
|
|
*
|
|
* PG_locked also pins a page in pagecache, and blocks truncation of the file
|
|
* while it is held.
|
|
*
|
|
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
|
|
* to become unlocked.
|
|
*
|
|
* PG_uptodate tells whether the page's contents is valid. When a read
|
|
* completes, the page becomes uptodate, unless a disk I/O error happened.
|
|
*
|
|
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
|
|
* file-backed pagecache (see mm/vmscan.c).
|
|
*
|
|
* PG_error is set to indicate that an I/O error occurred on this page.
|
|
*
|
|
* PG_arch_1 is an architecture specific page state bit. The generic code
|
|
* guarantees that this bit is cleared for a page when it first is entered into
|
|
* the page cache.
|
|
*
|
|
* PG_highmem pages are not permanently mapped into the kernel virtual address
|
|
* space, they need to be kmapped separately for doing IO on the pages. The
|
|
* struct page (these bits with information) are always mapped into kernel
|
|
* address space...
|
|
*
|
|
* PG_hwpoison indicates that a page got corrupted in hardware and contains
|
|
* data with incorrect ECC bits that triggered a machine check. Accessing is
|
|
* not safe since it may cause another machine check. Don't touch!
|
|
*/
|
|
|
|
/*
|
|
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
|
|
* locked- and dirty-page accounting.
|
|
*
|
|
* The page flags field is split into two parts, the main flags area
|
|
* which extends from the low bits upwards, and the fields area which
|
|
* extends from the high bits downwards.
|
|
*
|
|
* | FIELD | ... | FLAGS |
|
|
* N-1 ^ 0
|
|
* (NR_PAGEFLAGS)
|
|
*
|
|
* The fields area is reserved for fields mapping zone, node (for NUMA) and
|
|
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
|
|
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
|
|
*/
|
|
enum pageflags {
|
|
PG_locked, /* Page is locked. Don't touch. */
|
|
PG_error,
|
|
PG_referenced,
|
|
PG_uptodate,
|
|
PG_dirty,
|
|
PG_lru,
|
|
PG_active,
|
|
PG_slab,
|
|
PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
|
|
PG_arch_1,
|
|
PG_reserved,
|
|
PG_private, /* If pagecache, has fs-private data */
|
|
PG_private_2, /* If pagecache, has fs aux data */
|
|
PG_writeback, /* Page is under writeback */
|
|
#ifdef CONFIG_PAGEFLAGS_EXTENDED
|
|
PG_head, /* A head page */
|
|
PG_tail, /* A tail page */
|
|
#else
|
|
PG_compound, /* A compound page */
|
|
#endif
|
|
PG_swapcache, /* Swap page: swp_entry_t in private */
|
|
PG_mappedtodisk, /* Has blocks allocated on-disk */
|
|
PG_reclaim, /* To be reclaimed asap */
|
|
PG_swapbacked, /* Page is backed by RAM/swap */
|
|
PG_unevictable, /* Page is "unevictable" */
|
|
#ifdef CONFIG_MMU
|
|
PG_mlocked, /* Page is vma mlocked */
|
|
#endif
|
|
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
|
|
PG_uncached, /* Page has been mapped as uncached */
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
PG_hwpoison, /* hardware poisoned page. Don't touch */
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
PG_compound_lock,
|
|
#endif
|
|
__NR_PAGEFLAGS,
|
|
|
|
/* Filesystems */
|
|
PG_checked = PG_owner_priv_1,
|
|
|
|
/* Two page bits are conscripted by FS-Cache to maintain local caching
|
|
* state. These bits are set on pages belonging to the netfs's inodes
|
|
* when those inodes are being locally cached.
|
|
*/
|
|
PG_fscache = PG_private_2, /* page backed by cache */
|
|
|
|
/* XEN */
|
|
PG_pinned = PG_owner_priv_1,
|
|
PG_savepinned = PG_dirty,
|
|
|
|
/* SLOB */
|
|
PG_slob_free = PG_private,
|
|
};
|
|
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
|
|
/*
|
|
* Macros to create function definitions for page flags
|
|
*/
|
|
#define TESTPAGEFLAG(uname, lname) \
|
|
static inline int Page##uname(const struct page *page) \
|
|
{ return test_bit(PG_##lname, &page->flags); }
|
|
|
|
#define SETPAGEFLAG(uname, lname) \
|
|
static inline void SetPage##uname(struct page *page) \
|
|
{ set_bit(PG_##lname, &page->flags); }
|
|
|
|
#define CLEARPAGEFLAG(uname, lname) \
|
|
static inline void ClearPage##uname(struct page *page) \
|
|
{ clear_bit(PG_##lname, &page->flags); }
|
|
|
|
#define __SETPAGEFLAG(uname, lname) \
|
|
static inline void __SetPage##uname(struct page *page) \
|
|
{ __set_bit(PG_##lname, &page->flags); }
|
|
|
|
#define __CLEARPAGEFLAG(uname, lname) \
|
|
static inline void __ClearPage##uname(struct page *page) \
|
|
{ __clear_bit(PG_##lname, &page->flags); }
|
|
|
|
#define TESTSETFLAG(uname, lname) \
|
|
static inline int TestSetPage##uname(struct page *page) \
|
|
{ return test_and_set_bit(PG_##lname, &page->flags); }
|
|
|
|
#define TESTCLEARFLAG(uname, lname) \
|
|
static inline int TestClearPage##uname(struct page *page) \
|
|
{ return test_and_clear_bit(PG_##lname, &page->flags); }
|
|
|
|
#define __TESTCLEARFLAG(uname, lname) \
|
|
static inline int __TestClearPage##uname(struct page *page) \
|
|
{ return __test_and_clear_bit(PG_##lname, &page->flags); }
|
|
|
|
#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
|
|
SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
|
|
|
|
#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
|
|
__SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname)
|
|
|
|
#define PAGEFLAG_FALSE(uname) \
|
|
static inline int Page##uname(const struct page *page) \
|
|
{ return 0; }
|
|
|
|
#define TESTSCFLAG(uname, lname) \
|
|
TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
|
|
|
|
#define SETPAGEFLAG_NOOP(uname) \
|
|
static inline void SetPage##uname(struct page *page) { }
|
|
|
|
#define CLEARPAGEFLAG_NOOP(uname) \
|
|
static inline void ClearPage##uname(struct page *page) { }
|
|
|
|
#define __CLEARPAGEFLAG_NOOP(uname) \
|
|
static inline void __ClearPage##uname(struct page *page) { }
|
|
|
|
#define TESTCLEARFLAG_FALSE(uname) \
|
|
static inline int TestClearPage##uname(struct page *page) { return 0; }
|
|
|
|
#define __TESTCLEARFLAG_FALSE(uname) \
|
|
static inline int __TestClearPage##uname(struct page *page) { return 0; }
|
|
|
|
struct page; /* forward declaration */
|
|
|
|
TESTPAGEFLAG(Locked, locked)
|
|
PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
|
|
PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
|
|
PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
|
|
PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
|
|
PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
|
|
TESTCLEARFLAG(Active, active)
|
|
__PAGEFLAG(Slab, slab)
|
|
PAGEFLAG(Checked, checked) /* Used by some filesystems */
|
|
PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */
|
|
PAGEFLAG(SavePinned, savepinned); /* Xen */
|
|
PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
|
|
PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
|
|
|
|
__PAGEFLAG(SlobFree, slob_free)
|
|
|
|
/*
|
|
* Private page markings that may be used by the filesystem that owns the page
|
|
* for its own purposes.
|
|
* - PG_private and PG_private_2 cause releasepage() and co to be invoked
|
|
*/
|
|
PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
|
|
__CLEARPAGEFLAG(Private, private)
|
|
PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
|
|
PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
|
|
|
|
/*
|
|
* Only test-and-set exist for PG_writeback. The unconditional operators are
|
|
* risky: they bypass page accounting.
|
|
*/
|
|
TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
|
|
PAGEFLAG(MappedToDisk, mappedtodisk)
|
|
|
|
/* PG_readahead is only used for reads; PG_reclaim is only for writes */
|
|
PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
|
|
PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* Must use a macro here due to header dependency issues. page_zone() is not
|
|
* available at this point.
|
|
*/
|
|
#define PageHighMem(__p) is_highmem(page_zone(__p))
|
|
#else
|
|
PAGEFLAG_FALSE(HighMem)
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWAP
|
|
PAGEFLAG(SwapCache, swapcache)
|
|
#else
|
|
PAGEFLAG_FALSE(SwapCache)
|
|
SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache)
|
|
#endif
|
|
|
|
PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
|
|
TESTCLEARFLAG(Unevictable, unevictable)
|
|
|
|
#ifdef CONFIG_MMU
|
|
PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
|
|
TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
|
|
#else
|
|
PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked)
|
|
TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
|
|
PAGEFLAG(Uncached, uncached)
|
|
#else
|
|
PAGEFLAG_FALSE(Uncached)
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
PAGEFLAG(HWPoison, hwpoison)
|
|
TESTSCFLAG(HWPoison, hwpoison)
|
|
#define __PG_HWPOISON (1UL << PG_hwpoison)
|
|
#else
|
|
PAGEFLAG_FALSE(HWPoison)
|
|
#define __PG_HWPOISON 0
|
|
#endif
|
|
|
|
u64 stable_page_flags(struct page *page);
|
|
|
|
static inline int PageUptodate(struct page *page)
|
|
{
|
|
int ret = test_bit(PG_uptodate, &(page)->flags);
|
|
|
|
/*
|
|
* Must ensure that the data we read out of the page is loaded
|
|
* _after_ we've loaded page->flags to check for PageUptodate.
|
|
* We can skip the barrier if the page is not uptodate, because
|
|
* we wouldn't be reading anything from it.
|
|
*
|
|
* See SetPageUptodate() for the other side of the story.
|
|
*/
|
|
if (ret)
|
|
smp_rmb();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void __SetPageUptodate(struct page *page)
|
|
{
|
|
smp_wmb();
|
|
__set_bit(PG_uptodate, &(page)->flags);
|
|
}
|
|
|
|
static inline void SetPageUptodate(struct page *page)
|
|
{
|
|
/*
|
|
* Memory barrier must be issued before setting the PG_uptodate bit,
|
|
* so that all previous stores issued in order to bring the page
|
|
* uptodate are actually visible before PageUptodate becomes true.
|
|
*/
|
|
smp_wmb();
|
|
set_bit(PG_uptodate, &(page)->flags);
|
|
}
|
|
|
|
CLEARPAGEFLAG(Uptodate, uptodate)
|
|
|
|
extern void cancel_dirty_page(struct page *page, unsigned int account_size);
|
|
|
|
int test_clear_page_writeback(struct page *page);
|
|
int test_set_page_writeback(struct page *page);
|
|
|
|
static inline void set_page_writeback(struct page *page)
|
|
{
|
|
test_set_page_writeback(page);
|
|
}
|
|
|
|
#ifdef CONFIG_PAGEFLAGS_EXTENDED
|
|
/*
|
|
* System with lots of page flags available. This allows separate
|
|
* flags for PageHead() and PageTail() checks of compound pages so that bit
|
|
* tests can be used in performance sensitive paths. PageCompound is
|
|
* generally not used in hot code paths except arch/powerpc/mm/init_64.c
|
|
* and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
|
|
* and avoid handling those in real mode.
|
|
*/
|
|
__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
|
|
__PAGEFLAG(Tail, tail)
|
|
|
|
static inline int PageCompound(struct page *page)
|
|
{
|
|
return page->flags & ((1L << PG_head) | (1L << PG_tail));
|
|
|
|
}
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline void ClearPageCompound(struct page *page)
|
|
{
|
|
BUG_ON(!PageHead(page));
|
|
ClearPageHead(page);
|
|
}
|
|
#endif
|
|
#else
|
|
/*
|
|
* Reduce page flag use as much as possible by overlapping
|
|
* compound page flags with the flags used for page cache pages. Possible
|
|
* because PageCompound is always set for compound pages and not for
|
|
* pages on the LRU and/or pagecache.
|
|
*/
|
|
TESTPAGEFLAG(Compound, compound)
|
|
__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound)
|
|
|
|
/*
|
|
* PG_reclaim is used in combination with PG_compound to mark the
|
|
* head and tail of a compound page. This saves one page flag
|
|
* but makes it impossible to use compound pages for the page cache.
|
|
* The PG_reclaim bit would have to be used for reclaim or readahead
|
|
* if compound pages enter the page cache.
|
|
*
|
|
* PG_compound & PG_reclaim => Tail page
|
|
* PG_compound & ~PG_reclaim => Head page
|
|
*/
|
|
#define PG_head_mask ((1L << PG_compound))
|
|
#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
|
|
|
|
static inline int PageHead(struct page *page)
|
|
{
|
|
return ((page->flags & PG_head_tail_mask) == PG_head_mask);
|
|
}
|
|
|
|
static inline int PageTail(struct page *page)
|
|
{
|
|
return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
|
|
}
|
|
|
|
static inline void __SetPageTail(struct page *page)
|
|
{
|
|
page->flags |= PG_head_tail_mask;
|
|
}
|
|
|
|
static inline void __ClearPageTail(struct page *page)
|
|
{
|
|
page->flags &= ~PG_head_tail_mask;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline void ClearPageCompound(struct page *page)
|
|
{
|
|
BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
|
|
clear_bit(PG_compound, &page->flags);
|
|
}
|
|
#endif
|
|
|
|
#endif /* !PAGEFLAGS_EXTENDED */
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* PageHuge() only returns true for hugetlbfs pages, but not for
|
|
* normal or transparent huge pages.
|
|
*
|
|
* PageTransHuge() returns true for both transparent huge and
|
|
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
|
|
* called only in the core VM paths where hugetlbfs pages can't exist.
|
|
*/
|
|
static inline int PageTransHuge(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
return PageHead(page);
|
|
}
|
|
|
|
/*
|
|
* PageTransCompound returns true for both transparent huge pages
|
|
* and hugetlbfs pages, so it should only be called when it's known
|
|
* that hugetlbfs pages aren't involved.
|
|
*/
|
|
static inline int PageTransCompound(struct page *page)
|
|
{
|
|
return PageCompound(page);
|
|
}
|
|
|
|
/*
|
|
* PageTransTail returns true for both transparent huge pages
|
|
* and hugetlbfs pages, so it should only be called when it's known
|
|
* that hugetlbfs pages aren't involved.
|
|
*/
|
|
static inline int PageTransTail(struct page *page)
|
|
{
|
|
return PageTail(page);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int PageTransHuge(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int PageTransCompound(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int PageTransTail(struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If network-based swap is enabled, sl*b must keep track of whether pages
|
|
* were allocated from pfmemalloc reserves.
|
|
*/
|
|
static inline int PageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
return PageActive(page);
|
|
}
|
|
|
|
static inline void SetPageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
SetPageActive(page);
|
|
}
|
|
|
|
static inline void __ClearPageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
__ClearPageActive(page);
|
|
}
|
|
|
|
static inline void ClearPageSlabPfmemalloc(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageSlab(page), page);
|
|
ClearPageActive(page);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
#define __PG_MLOCKED (1 << PG_mlocked)
|
|
#else
|
|
#define __PG_MLOCKED 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define __PG_COMPOUND_LOCK (1 << PG_compound_lock)
|
|
#else
|
|
#define __PG_COMPOUND_LOCK 0
|
|
#endif
|
|
|
|
/*
|
|
* Flags checked when a page is freed. Pages being freed should not have
|
|
* these flags set. It they are, there is a problem.
|
|
*/
|
|
#define PAGE_FLAGS_CHECK_AT_FREE \
|
|
(1 << PG_lru | 1 << PG_locked | \
|
|
1 << PG_private | 1 << PG_private_2 | \
|
|
1 << PG_writeback | 1 << PG_reserved | \
|
|
1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
|
|
1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \
|
|
__PG_COMPOUND_LOCK)
|
|
|
|
/*
|
|
* Flags checked when a page is prepped for return by the page allocator.
|
|
* Pages being prepped should not have any flags set. It they are set,
|
|
* there has been a kernel bug or struct page corruption.
|
|
*/
|
|
#define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1)
|
|
|
|
#define PAGE_FLAGS_PRIVATE \
|
|
(1 << PG_private | 1 << PG_private_2)
|
|
/**
|
|
* page_has_private - Determine if page has private stuff
|
|
* @page: The page to be checked
|
|
*
|
|
* Determine if a page has private stuff, indicating that release routines
|
|
* should be invoked upon it.
|
|
*/
|
|
static inline int page_has_private(struct page *page)
|
|
{
|
|
return !!(page->flags & PAGE_FLAGS_PRIVATE);
|
|
}
|
|
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
|
|
|
#endif /* PAGE_FLAGS_H */
|