linux_dsm_epyc7002/drivers/net/dsa/bcm_sf2.c
Florian Fainelli f4ae9c0840 net: dsa: bcm_sf2: Add support for CFP statistics
Return CFP policer statistics (Green, Yellow or Red) as part of the
standard ethtool statistics. This helps debug when CFP rules may not be
hit (0 counter).

Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-08 22:11:07 -08:00

1266 lines
33 KiB
C

/*
* Broadcom Starfighter 2 DSA switch driver
*
* Copyright (C) 2014, Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/phylink.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <net/dsa.h>
#include <linux/ethtool.h>
#include <linux/if_bridge.h>
#include <linux/brcmphy.h>
#include <linux/etherdevice.h>
#include <linux/platform_data/b53.h>
#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"
#include "b53/b53_priv.h"
#include "b53/b53_regs.h"
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int i;
u32 reg, offset;
if (priv->type == BCM7445_DEVICE_ID)
offset = CORE_STS_OVERRIDE_IMP;
else
offset = CORE_STS_OVERRIDE_IMP2;
/* Enable the port memories */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg &= ~P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
reg = core_readl(priv, CORE_IMP_CTL);
reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
reg &= ~(RX_DIS | TX_DIS);
core_writel(priv, reg, CORE_IMP_CTL);
/* Enable forwarding */
core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
/* Enable IMP port in dumb mode */
reg = core_readl(priv, CORE_SWITCH_CTRL);
reg |= MII_DUMB_FWDG_EN;
core_writel(priv, reg, CORE_SWITCH_CTRL);
/* Configure Traffic Class to QoS mapping, allow each priority to map
* to a different queue number
*/
reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
reg |= i << (PRT_TO_QID_SHIFT * i);
core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));
b53_brcm_hdr_setup(ds, port);
/* Force link status for IMP port */
reg = core_readl(priv, offset);
reg |= (MII_SW_OR | LINK_STS);
core_writel(priv, reg, offset);
}
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
reg = reg_readl(priv, REG_SPHY_CNTRL);
if (enable) {
reg |= PHY_RESET;
reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | IDDQ_GLOBAL_PWR | CK25_DIS);
reg_writel(priv, reg, REG_SPHY_CNTRL);
udelay(21);
reg = reg_readl(priv, REG_SPHY_CNTRL);
reg &= ~PHY_RESET;
} else {
reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
reg_writel(priv, reg, REG_SPHY_CNTRL);
mdelay(1);
reg |= CK25_DIS;
}
reg_writel(priv, reg, REG_SPHY_CNTRL);
/* Use PHY-driven LED signaling */
if (!enable) {
reg = reg_readl(priv, REG_LED_CNTRL(0));
reg |= SPDLNK_SRC_SEL;
reg_writel(priv, reg, REG_LED_CNTRL(0));
}
}
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
int port)
{
unsigned int off;
switch (port) {
case 7:
off = P7_IRQ_OFF;
break;
case 0:
/* Port 0 interrupts are located on the first bank */
intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
return;
default:
off = P_IRQ_OFF(port);
break;
}
intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
}
static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
int port)
{
unsigned int off;
switch (port) {
case 7:
off = P7_IRQ_OFF;
break;
case 0:
/* Port 0 interrupts are located on the first bank */
intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
return;
default:
off = P_IRQ_OFF(port);
break;
}
intrl2_1_mask_set(priv, P_IRQ_MASK(off));
intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
}
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int i;
u32 reg;
/* Clear the memory power down */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg &= ~P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
/* Enable learning */
reg = core_readl(priv, CORE_DIS_LEARN);
reg &= ~BIT(port);
core_writel(priv, reg, CORE_DIS_LEARN);
/* Enable Broadcom tags for that port if requested */
if (priv->brcm_tag_mask & BIT(port))
b53_brcm_hdr_setup(ds, port);
/* Configure Traffic Class to QoS mapping, allow each priority to map
* to a different queue number
*/
reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
reg |= i << (PRT_TO_QID_SHIFT * i);
core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));
/* Re-enable the GPHY and re-apply workarounds */
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
bcm_sf2_gphy_enable_set(ds, true);
if (phy) {
/* if phy_stop() has been called before, phy
* will be in halted state, and phy_start()
* will call resume.
*
* the resume path does not configure back
* autoneg settings, and since we hard reset
* the phy manually here, we need to reset the
* state machine also.
*/
phy->state = PHY_READY;
phy_init_hw(phy);
}
}
/* Enable MoCA port interrupts to get notified */
if (port == priv->moca_port)
bcm_sf2_port_intr_enable(priv, port);
/* Set per-queue pause threshold to 32 */
core_writel(priv, 32, CORE_TXQ_THD_PAUSE_QN_PORT(port));
/* Set ACB threshold to 24 */
for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) {
reg = acb_readl(priv, ACB_QUEUE_CFG(port *
SF2_NUM_EGRESS_QUEUES + i));
reg &= ~XOFF_THRESHOLD_MASK;
reg |= 24;
acb_writel(priv, reg, ACB_QUEUE_CFG(port *
SF2_NUM_EGRESS_QUEUES + i));
}
return b53_enable_port(ds, port, phy);
}
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
/* Disable learning while in WoL mode */
if (priv->wol_ports_mask & (1 << port)) {
reg = core_readl(priv, CORE_DIS_LEARN);
reg |= BIT(port);
core_writel(priv, reg, CORE_DIS_LEARN);
return;
}
if (port == priv->moca_port)
bcm_sf2_port_intr_disable(priv, port);
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(ds, false);
b53_disable_port(ds, port, phy);
/* Power down the port memory */
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
reg |= P_TXQ_PSM_VDD(port);
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
}
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
int regnum, u16 val)
{
int ret = 0;
u32 reg;
reg = reg_readl(priv, REG_SWITCH_CNTRL);
reg |= MDIO_MASTER_SEL;
reg_writel(priv, reg, REG_SWITCH_CNTRL);
/* Page << 8 | offset */
reg = 0x70;
reg <<= 2;
core_writel(priv, addr, reg);
/* Page << 8 | offset */
reg = 0x80 << 8 | regnum << 1;
reg <<= 2;
if (op)
ret = core_readl(priv, reg);
else
core_writel(priv, val, reg);
reg = reg_readl(priv, REG_SWITCH_CNTRL);
reg &= ~MDIO_MASTER_SEL;
reg_writel(priv, reg, REG_SWITCH_CNTRL);
return ret & 0xffff;
}
static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct bcm_sf2_priv *priv = bus->priv;
/* Intercept reads from Broadcom pseudo-PHY address, else, send
* them to our master MDIO bus controller
*/
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
else
return mdiobus_read_nested(priv->master_mii_bus, addr, regnum);
}
static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct bcm_sf2_priv *priv = bus->priv;
/* Intercept writes to the Broadcom pseudo-PHY address, else,
* send them to our master MDIO bus controller
*/
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
return bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
else
return mdiobus_write_nested(priv->master_mii_bus, addr,
regnum, val);
}
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
~priv->irq0_mask;
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
return IRQ_HANDLED;
}
static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
~priv->irq1_mask;
intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) {
priv->port_sts[7].link = true;
dsa_port_phylink_mac_change(ds, 7, true);
}
if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) {
priv->port_sts[7].link = false;
dsa_port_phylink_mac_change(ds, 7, false);
}
return IRQ_HANDLED;
}
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
unsigned int timeout = 1000;
u32 reg;
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
core_writel(priv, reg, CORE_WATCHDOG_CTRL);
do {
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
if (!(reg & SOFTWARE_RESET))
break;
usleep_range(1000, 2000);
} while (timeout-- > 0);
if (timeout == 0)
return -ETIMEDOUT;
return 0;
}
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
intrl2_0_mask_set(priv, 0xffffffff);
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_1_mask_set(priv, 0xffffffff);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
}
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
struct device_node *dn)
{
struct device_node *port;
int mode;
unsigned int port_num;
priv->moca_port = -1;
for_each_available_child_of_node(dn, port) {
if (of_property_read_u32(port, "reg", &port_num))
continue;
/* Internal PHYs get assigned a specific 'phy-mode' property
* value: "internal" to help flag them before MDIO probing
* has completed, since they might be turned off at that
* time
*/
mode = of_get_phy_mode(port);
if (mode < 0)
continue;
if (mode == PHY_INTERFACE_MODE_INTERNAL)
priv->int_phy_mask |= 1 << port_num;
if (mode == PHY_INTERFACE_MODE_MOCA)
priv->moca_port = port_num;
if (of_property_read_bool(port, "brcm,use-bcm-hdr"))
priv->brcm_tag_mask |= 1 << port_num;
}
}
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
struct device_node *dn;
static int index;
int err;
/* Find our integrated MDIO bus node */
dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
priv->master_mii_bus = of_mdio_find_bus(dn);
if (!priv->master_mii_bus)
return -EPROBE_DEFER;
get_device(&priv->master_mii_bus->dev);
priv->master_mii_dn = dn;
priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!priv->slave_mii_bus)
return -ENOMEM;
priv->slave_mii_bus->priv = priv;
priv->slave_mii_bus->name = "sf2 slave mii";
priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
index++);
priv->slave_mii_bus->dev.of_node = dn;
/* Include the pseudo-PHY address to divert reads towards our
* workaround. This is only required for 7445D0, since 7445E0
* disconnects the internal switch pseudo-PHY such that we can use the
* regular SWITCH_MDIO master controller instead.
*
* Here we flag the pseudo PHY as needing special treatment and would
* otherwise make all other PHY read/writes go to the master MDIO bus
* controller that comes with this switch backed by the "mdio-unimac"
* driver.
*/
if (of_machine_is_compatible("brcm,bcm7445d0"))
priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
else
priv->indir_phy_mask = 0;
ds->phys_mii_mask = priv->indir_phy_mask;
ds->slave_mii_bus = priv->slave_mii_bus;
priv->slave_mii_bus->parent = ds->dev->parent;
priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;
err = of_mdiobus_register(priv->slave_mii_bus, dn);
if (err && dn)
of_node_put(dn);
return err;
}
static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
{
mdiobus_unregister(priv->slave_mii_bus);
of_node_put(priv->master_mii_dn);
}
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
/* The BCM7xxx PHY driver expects to find the integrated PHY revision
* in bits 15:8 and the patch level in bits 7:0 which is exactly what
* the REG_PHY_REVISION register layout is.
*/
return priv->hw_params.gphy_rev;
}
static void bcm_sf2_sw_validate(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
state->interface != PHY_INTERFACE_MODE_INTERNAL &&
state->interface != PHY_INTERFACE_MODE_MOCA) {
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
dev_err(ds->dev,
"Unsupported interface: %d\n", state->interface);
return;
}
/* Allow all the expected bits */
phylink_set(mask, Autoneg);
phylink_set_port_modes(mask);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
/* With the exclusion of MII and Reverse MII, we support Gigabit,
* including Half duplex
*/
if (state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
bitmap_and(supported, supported, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
bitmap_and(state->advertising, state->advertising, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
}
static void bcm_sf2_sw_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 id_mode_dis = 0, port_mode;
u32 reg, offset;
if (priv->type == BCM7445_DEVICE_ID)
offset = CORE_STS_OVERRIDE_GMIIP_PORT(port);
else
offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port);
switch (state->interface) {
case PHY_INTERFACE_MODE_RGMII:
id_mode_dis = 1;
/* fallthrough */
case PHY_INTERFACE_MODE_RGMII_TXID:
port_mode = EXT_GPHY;
break;
case PHY_INTERFACE_MODE_MII:
port_mode = EXT_EPHY;
break;
case PHY_INTERFACE_MODE_REVMII:
port_mode = EXT_REVMII;
break;
default:
/* all other PHYs: internal and MoCA */
goto force_link;
}
/* Clear id_mode_dis bit, and the existing port mode, let
* RGMII_MODE_EN bet set by mac_link_{up,down}
*/
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
reg &= ~ID_MODE_DIS;
reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
reg |= port_mode;
if (id_mode_dis)
reg |= ID_MODE_DIS;
if (state->pause & MLO_PAUSE_TXRX_MASK) {
if (state->pause & MLO_PAUSE_TX)
reg |= TX_PAUSE_EN;
reg |= RX_PAUSE_EN;
}
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
force_link:
/* Force link settings detected from the PHY */
reg = SW_OVERRIDE;
switch (state->speed) {
case SPEED_1000:
reg |= SPDSTS_1000 << SPEED_SHIFT;
break;
case SPEED_100:
reg |= SPDSTS_100 << SPEED_SHIFT;
break;
}
if (state->link)
reg |= LINK_STS;
if (state->duplex == DUPLEX_FULL)
reg |= DUPLX_MODE;
core_writel(priv, reg, offset);
}
static void bcm_sf2_sw_mac_link_set(struct dsa_switch *ds, int port,
phy_interface_t interface, bool link)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
if (!phy_interface_mode_is_rgmii(interface) &&
interface != PHY_INTERFACE_MODE_MII &&
interface != PHY_INTERFACE_MODE_REVMII)
return;
/* If the link is down, just disable the interface to conserve power */
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
if (link)
reg |= RGMII_MODE_EN;
else
reg &= ~RGMII_MODE_EN;
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
}
static void bcm_sf2_sw_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
bcm_sf2_sw_mac_link_set(ds, port, interface, false);
}
static void bcm_sf2_sw_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
struct ethtool_eee *p = &priv->dev->ports[port].eee;
bcm_sf2_sw_mac_link_set(ds, port, interface, true);
if (mode == MLO_AN_PHY && phydev)
p->eee_enabled = b53_eee_init(ds, port, phydev);
}
static void bcm_sf2_sw_fixed_state(struct dsa_switch *ds, int port,
struct phylink_link_state *status)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
status->link = false;
/* MoCA port is special as we do not get link status from CORE_LNKSTS,
* which means that we need to force the link at the port override
* level to get the data to flow. We do use what the interrupt handler
* did determine before.
*
* For the other ports, we just force the link status, since this is
* a fixed PHY device.
*/
if (port == priv->moca_port) {
status->link = priv->port_sts[port].link;
/* For MoCA interfaces, also force a link down notification
* since some version of the user-space daemon (mocad) use
* cmd->autoneg to force the link, which messes up the PHY
* state machine and make it go in PHY_FORCING state instead.
*/
if (!status->link)
netif_carrier_off(ds->ports[port].slave);
status->duplex = DUPLEX_FULL;
} else {
status->link = true;
}
}
static void bcm_sf2_enable_acb(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
u32 reg;
/* Enable ACB globally */
reg = acb_readl(priv, ACB_CONTROL);
reg |= (ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
acb_writel(priv, reg, ACB_CONTROL);
reg &= ~(ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
reg |= ACB_EN | ACB_ALGORITHM;
acb_writel(priv, reg, ACB_CONTROL);
}
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int port;
bcm_sf2_intr_disable(priv);
/* Disable all ports physically present including the IMP
* port, the other ones have already been disabled during
* bcm_sf2_sw_setup
*/
for (port = 0; port < DSA_MAX_PORTS; port++) {
if (dsa_is_user_port(ds, port) || dsa_is_cpu_port(ds, port))
bcm_sf2_port_disable(ds, port, NULL);
}
return 0;
}
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
int ret;
ret = bcm_sf2_sw_rst(priv);
if (ret) {
pr_err("%s: failed to software reset switch\n", __func__);
return ret;
}
ret = bcm_sf2_cfp_resume(ds);
if (ret)
return ret;
if (priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(ds, true);
ds->ops->setup(ds);
return 0;
}
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct net_device *p = ds->ports[port].cpu_dp->master;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
struct ethtool_wolinfo pwol;
/* Get the parent device WoL settings */
p->ethtool_ops->get_wol(p, &pwol);
/* Advertise the parent device supported settings */
wol->supported = pwol.supported;
memset(&wol->sopass, 0, sizeof(wol->sopass));
if (pwol.wolopts & WAKE_MAGICSECURE)
memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
if (priv->wol_ports_mask & (1 << port))
wol->wolopts = pwol.wolopts;
else
wol->wolopts = 0;
}
static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *wol)
{
struct net_device *p = ds->ports[port].cpu_dp->master;
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
s8 cpu_port = ds->ports[port].cpu_dp->index;
struct ethtool_wolinfo pwol;
p->ethtool_ops->get_wol(p, &pwol);
if (wol->wolopts & ~pwol.supported)
return -EINVAL;
if (wol->wolopts)
priv->wol_ports_mask |= (1 << port);
else
priv->wol_ports_mask &= ~(1 << port);
/* If we have at least one port enabled, make sure the CPU port
* is also enabled. If the CPU port is the last one enabled, we disable
* it since this configuration does not make sense.
*/
if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
priv->wol_ports_mask |= (1 << cpu_port);
else
priv->wol_ports_mask &= ~(1 << cpu_port);
return p->ethtool_ops->set_wol(p, wol);
}
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int port;
/* Enable all valid ports and disable those unused */
for (port = 0; port < priv->hw_params.num_ports; port++) {
/* IMP port receives special treatment */
if (dsa_is_user_port(ds, port))
bcm_sf2_port_setup(ds, port, NULL);
else if (dsa_is_cpu_port(ds, port))
bcm_sf2_imp_setup(ds, port);
else
bcm_sf2_port_disable(ds, port, NULL);
}
b53_configure_vlan(ds);
bcm_sf2_enable_acb(ds);
return 0;
}
/* The SWITCH_CORE register space is managed by b53 but operates on a page +
* register basis so we need to translate that into an address that the
* bus-glue understands.
*/
#define SF2_PAGE_REG_MKADDR(page, reg) ((page) << 10 | (reg) << 2)
static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg,
u8 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg,
u16 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg,
u32 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg,
u64 *val)
{
struct bcm_sf2_priv *priv = dev->priv;
*val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg,
u8 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg,
u16 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg,
u32 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg,
u64 value)
{
struct bcm_sf2_priv *priv = dev->priv;
core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
return 0;
}
static const struct b53_io_ops bcm_sf2_io_ops = {
.read8 = bcm_sf2_core_read8,
.read16 = bcm_sf2_core_read16,
.read32 = bcm_sf2_core_read32,
.read48 = bcm_sf2_core_read64,
.read64 = bcm_sf2_core_read64,
.write8 = bcm_sf2_core_write8,
.write16 = bcm_sf2_core_write16,
.write32 = bcm_sf2_core_write32,
.write48 = bcm_sf2_core_write64,
.write64 = bcm_sf2_core_write64,
};
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *data)
{
int cnt = b53_get_sset_count(ds, port, stringset);
b53_get_strings(ds, port, stringset, data);
bcm_sf2_cfp_get_strings(ds, port, stringset,
data + cnt * ETH_GSTRING_LEN);
}
static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
int cnt = b53_get_sset_count(ds, port, ETH_SS_STATS);
b53_get_ethtool_stats(ds, port, data);
bcm_sf2_cfp_get_ethtool_stats(ds, port, data + cnt);
}
static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds, int port,
int sset)
{
int cnt = b53_get_sset_count(ds, port, sset);
if (cnt < 0)
return cnt;
cnt += bcm_sf2_cfp_get_sset_count(ds, port, sset);
return cnt;
}
static const struct dsa_switch_ops bcm_sf2_ops = {
.get_tag_protocol = b53_get_tag_protocol,
.setup = bcm_sf2_sw_setup,
.get_strings = bcm_sf2_sw_get_strings,
.get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
.get_sset_count = bcm_sf2_sw_get_sset_count,
.get_ethtool_phy_stats = b53_get_ethtool_phy_stats,
.get_phy_flags = bcm_sf2_sw_get_phy_flags,
.phylink_validate = bcm_sf2_sw_validate,
.phylink_mac_config = bcm_sf2_sw_mac_config,
.phylink_mac_link_down = bcm_sf2_sw_mac_link_down,
.phylink_mac_link_up = bcm_sf2_sw_mac_link_up,
.phylink_fixed_state = bcm_sf2_sw_fixed_state,
.suspend = bcm_sf2_sw_suspend,
.resume = bcm_sf2_sw_resume,
.get_wol = bcm_sf2_sw_get_wol,
.set_wol = bcm_sf2_sw_set_wol,
.port_enable = bcm_sf2_port_setup,
.port_disable = bcm_sf2_port_disable,
.get_mac_eee = b53_get_mac_eee,
.set_mac_eee = b53_set_mac_eee,
.port_bridge_join = b53_br_join,
.port_bridge_leave = b53_br_leave,
.port_stp_state_set = b53_br_set_stp_state,
.port_fast_age = b53_br_fast_age,
.port_vlan_filtering = b53_vlan_filtering,
.port_vlan_prepare = b53_vlan_prepare,
.port_vlan_add = b53_vlan_add,
.port_vlan_del = b53_vlan_del,
.port_fdb_dump = b53_fdb_dump,
.port_fdb_add = b53_fdb_add,
.port_fdb_del = b53_fdb_del,
.get_rxnfc = bcm_sf2_get_rxnfc,
.set_rxnfc = bcm_sf2_set_rxnfc,
.port_mirror_add = b53_mirror_add,
.port_mirror_del = b53_mirror_del,
};
struct bcm_sf2_of_data {
u32 type;
const u16 *reg_offsets;
unsigned int core_reg_align;
unsigned int num_cfp_rules;
};
/* Register offsets for the SWITCH_REG_* block */
static const u16 bcm_sf2_7445_reg_offsets[] = {
[REG_SWITCH_CNTRL] = 0x00,
[REG_SWITCH_STATUS] = 0x04,
[REG_DIR_DATA_WRITE] = 0x08,
[REG_DIR_DATA_READ] = 0x0C,
[REG_SWITCH_REVISION] = 0x18,
[REG_PHY_REVISION] = 0x1C,
[REG_SPHY_CNTRL] = 0x2C,
[REG_RGMII_0_CNTRL] = 0x34,
[REG_RGMII_1_CNTRL] = 0x40,
[REG_RGMII_2_CNTRL] = 0x4c,
[REG_LED_0_CNTRL] = 0x90,
[REG_LED_1_CNTRL] = 0x94,
[REG_LED_2_CNTRL] = 0x98,
};
static const struct bcm_sf2_of_data bcm_sf2_7445_data = {
.type = BCM7445_DEVICE_ID,
.core_reg_align = 0,
.reg_offsets = bcm_sf2_7445_reg_offsets,
.num_cfp_rules = 256,
};
static const u16 bcm_sf2_7278_reg_offsets[] = {
[REG_SWITCH_CNTRL] = 0x00,
[REG_SWITCH_STATUS] = 0x04,
[REG_DIR_DATA_WRITE] = 0x08,
[REG_DIR_DATA_READ] = 0x0c,
[REG_SWITCH_REVISION] = 0x10,
[REG_PHY_REVISION] = 0x14,
[REG_SPHY_CNTRL] = 0x24,
[REG_RGMII_0_CNTRL] = 0xe0,
[REG_RGMII_1_CNTRL] = 0xec,
[REG_RGMII_2_CNTRL] = 0xf8,
[REG_LED_0_CNTRL] = 0x40,
[REG_LED_1_CNTRL] = 0x4c,
[REG_LED_2_CNTRL] = 0x58,
};
static const struct bcm_sf2_of_data bcm_sf2_7278_data = {
.type = BCM7278_DEVICE_ID,
.core_reg_align = 1,
.reg_offsets = bcm_sf2_7278_reg_offsets,
.num_cfp_rules = 128,
};
static const struct of_device_id bcm_sf2_of_match[] = {
{ .compatible = "brcm,bcm7445-switch-v4.0",
.data = &bcm_sf2_7445_data
},
{ .compatible = "brcm,bcm7278-switch-v4.0",
.data = &bcm_sf2_7278_data
},
{ .compatible = "brcm,bcm7278-switch-v4.8",
.data = &bcm_sf2_7278_data
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm_sf2_of_match);
static int bcm_sf2_sw_probe(struct platform_device *pdev)
{
const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
struct device_node *dn = pdev->dev.of_node;
const struct of_device_id *of_id = NULL;
const struct bcm_sf2_of_data *data;
struct b53_platform_data *pdata;
struct dsa_switch_ops *ops;
struct bcm_sf2_priv *priv;
struct b53_device *dev;
struct dsa_switch *ds;
void __iomem **base;
struct resource *r;
unsigned int i;
u32 reg, rev;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL);
if (!ops)
return -ENOMEM;
dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv);
if (!dev)
return -ENOMEM;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
of_id = of_match_node(bcm_sf2_of_match, dn);
if (!of_id || !of_id->data)
return -EINVAL;
data = of_id->data;
/* Set SWITCH_REG register offsets and SWITCH_CORE align factor */
priv->type = data->type;
priv->reg_offsets = data->reg_offsets;
priv->core_reg_align = data->core_reg_align;
priv->num_cfp_rules = data->num_cfp_rules;
/* Auto-detection using standard registers will not work, so
* provide an indication of what kind of device we are for
* b53_common to work with
*/
pdata->chip_id = priv->type;
dev->pdata = pdata;
priv->dev = dev;
ds = dev->ds;
ds->ops = &bcm_sf2_ops;
/* Advertise the 8 egress queues */
ds->num_tx_queues = SF2_NUM_EGRESS_QUEUES;
dev_set_drvdata(&pdev->dev, priv);
spin_lock_init(&priv->indir_lock);
mutex_init(&priv->cfp.lock);
INIT_LIST_HEAD(&priv->cfp.rules_list);
/* CFP rule #0 cannot be used for specific classifications, flag it as
* permanently used
*/
set_bit(0, priv->cfp.used);
set_bit(0, priv->cfp.unique);
bcm_sf2_identify_ports(priv, dn->child);
priv->irq0 = irq_of_parse_and_map(dn, 0);
priv->irq1 = irq_of_parse_and_map(dn, 1);
base = &priv->core;
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
r = platform_get_resource(pdev, IORESOURCE_MEM, i);
*base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(*base)) {
pr_err("unable to find register: %s\n", reg_names[i]);
return PTR_ERR(*base);
}
base++;
}
ret = bcm_sf2_sw_rst(priv);
if (ret) {
pr_err("unable to software reset switch: %d\n", ret);
return ret;
}
bcm_sf2_gphy_enable_set(priv->dev->ds, true);
ret = bcm_sf2_mdio_register(ds);
if (ret) {
pr_err("failed to register MDIO bus\n");
return ret;
}
bcm_sf2_gphy_enable_set(priv->dev->ds, false);
ret = bcm_sf2_cfp_rst(priv);
if (ret) {
pr_err("failed to reset CFP\n");
goto out_mdio;
}
/* Disable all interrupts and request them */
bcm_sf2_intr_disable(priv);
ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
"switch_0", ds);
if (ret < 0) {
pr_err("failed to request switch_0 IRQ\n");
goto out_mdio;
}
ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
"switch_1", ds);
if (ret < 0) {
pr_err("failed to request switch_1 IRQ\n");
goto out_mdio;
}
/* Reset the MIB counters */
reg = core_readl(priv, CORE_GMNCFGCFG);
reg |= RST_MIB_CNT;
core_writel(priv, reg, CORE_GMNCFGCFG);
reg &= ~RST_MIB_CNT;
core_writel(priv, reg, CORE_GMNCFGCFG);
/* Get the maximum number of ports for this switch */
priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
if (priv->hw_params.num_ports > DSA_MAX_PORTS)
priv->hw_params.num_ports = DSA_MAX_PORTS;
/* Assume a single GPHY setup if we can't read that property */
if (of_property_read_u32(dn, "brcm,num-gphy",
&priv->hw_params.num_gphy))
priv->hw_params.num_gphy = 1;
rev = reg_readl(priv, REG_SWITCH_REVISION);
priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
SWITCH_TOP_REV_MASK;
priv->hw_params.core_rev = (rev & SF2_REV_MASK);
rev = reg_readl(priv, REG_PHY_REVISION);
priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
ret = b53_switch_register(dev);
if (ret)
goto out_mdio;
pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
priv->core, priv->irq0, priv->irq1);
return 0;
out_mdio:
bcm_sf2_mdio_unregister(priv);
return ret;
}
static int bcm_sf2_sw_remove(struct platform_device *pdev)
{
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
priv->wol_ports_mask = 0;
dsa_unregister_switch(priv->dev->ds);
bcm_sf2_cfp_exit(priv->dev->ds);
/* Disable all ports and interrupts */
bcm_sf2_sw_suspend(priv->dev->ds);
bcm_sf2_mdio_unregister(priv);
return 0;
}
static void bcm_sf2_sw_shutdown(struct platform_device *pdev)
{
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
/* For a kernel about to be kexec'd we want to keep the GPHY on for a
* successful MDIO bus scan to occur. If we did turn off the GPHY
* before (e.g: port_disable), this will also power it back on.
*
* Do not rely on kexec_in_progress, just power the PHY on.
*/
if (priv->hw_params.num_gphy == 1)
bcm_sf2_gphy_enable_set(priv->dev->ds, true);
}
#ifdef CONFIG_PM_SLEEP
static int bcm_sf2_suspend(struct device *dev)
{
struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
return dsa_switch_suspend(priv->dev->ds);
}
static int bcm_sf2_resume(struct device *dev)
{
struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
return dsa_switch_resume(priv->dev->ds);
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
bcm_sf2_suspend, bcm_sf2_resume);
static struct platform_driver bcm_sf2_driver = {
.probe = bcm_sf2_sw_probe,
.remove = bcm_sf2_sw_remove,
.shutdown = bcm_sf2_sw_shutdown,
.driver = {
.name = "brcm-sf2",
.of_match_table = bcm_sf2_of_match,
.pm = &bcm_sf2_pm_ops,
},
};
module_platform_driver(bcm_sf2_driver);
MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");