mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
cf33c1ee52
This patch try to fix the building error on MIPS. The reason is MIPS has already defined the PTR macro, which conflicts with the PTR macro in include/uapi/linux/bcache.h. [fixed by mlyle: corrected a line-length issue] Cc: stable@vger.kernel.org Signed-off-by: Huacai Chen <chenhc@lemote.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
627 lines
15 KiB
C
627 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
*
|
|
* Uses a block device as cache for other block devices; optimized for SSDs.
|
|
* All allocation is done in buckets, which should match the erase block size
|
|
* of the device.
|
|
*
|
|
* Buckets containing cached data are kept on a heap sorted by priority;
|
|
* bucket priority is increased on cache hit, and periodically all the buckets
|
|
* on the heap have their priority scaled down. This currently is just used as
|
|
* an LRU but in the future should allow for more intelligent heuristics.
|
|
*
|
|
* Buckets have an 8 bit counter; freeing is accomplished by incrementing the
|
|
* counter. Garbage collection is used to remove stale pointers.
|
|
*
|
|
* Indexing is done via a btree; nodes are not necessarily fully sorted, rather
|
|
* as keys are inserted we only sort the pages that have not yet been written.
|
|
* When garbage collection is run, we resort the entire node.
|
|
*
|
|
* All configuration is done via sysfs; see Documentation/bcache.txt.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "extents.h"
|
|
#include "writeback.h"
|
|
|
|
static void sort_key_next(struct btree_iter *iter,
|
|
struct btree_iter_set *i)
|
|
{
|
|
i->k = bkey_next(i->k);
|
|
|
|
if (i->k == i->end)
|
|
*i = iter->data[--iter->used];
|
|
}
|
|
|
|
static bool bch_key_sort_cmp(struct btree_iter_set l,
|
|
struct btree_iter_set r)
|
|
{
|
|
int64_t c = bkey_cmp(l.k, r.k);
|
|
|
|
return c ? c > 0 : l.k < r.k;
|
|
}
|
|
|
|
static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(c, k, i)) {
|
|
struct cache *ca = PTR_CACHE(c, k, i);
|
|
size_t bucket = PTR_BUCKET_NR(c, k, i);
|
|
size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
|
|
|
|
if (KEY_SIZE(k) + r > c->sb.bucket_size ||
|
|
bucket < ca->sb.first_bucket ||
|
|
bucket >= ca->sb.nbuckets)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Common among btree and extent ptrs */
|
|
|
|
static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(c, k, i)) {
|
|
struct cache *ca = PTR_CACHE(c, k, i);
|
|
size_t bucket = PTR_BUCKET_NR(c, k, i);
|
|
size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
|
|
|
|
if (KEY_SIZE(k) + r > c->sb.bucket_size)
|
|
return "bad, length too big";
|
|
if (bucket < ca->sb.first_bucket)
|
|
return "bad, short offset";
|
|
if (bucket >= ca->sb.nbuckets)
|
|
return "bad, offset past end of device";
|
|
if (ptr_stale(c, k, i))
|
|
return "stale";
|
|
}
|
|
|
|
if (!bkey_cmp(k, &ZERO_KEY))
|
|
return "bad, null key";
|
|
if (!KEY_PTRS(k))
|
|
return "bad, no pointers";
|
|
if (!KEY_SIZE(k))
|
|
return "zeroed key";
|
|
return "";
|
|
}
|
|
|
|
void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
|
|
{
|
|
unsigned i = 0;
|
|
char *out = buf, *end = buf + size;
|
|
|
|
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
|
|
|
|
p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
if (i)
|
|
p(", ");
|
|
|
|
if (PTR_DEV(k, i) == PTR_CHECK_DEV)
|
|
p("check dev");
|
|
else
|
|
p("%llu:%llu gen %llu", PTR_DEV(k, i),
|
|
PTR_OFFSET(k, i), PTR_GEN(k, i));
|
|
}
|
|
|
|
p("]");
|
|
|
|
if (KEY_DIRTY(k))
|
|
p(" dirty");
|
|
if (KEY_CSUM(k))
|
|
p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
|
|
#undef p
|
|
}
|
|
|
|
static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(keys, struct btree, keys);
|
|
unsigned j;
|
|
char buf[80];
|
|
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
printk(" %s", buf);
|
|
|
|
for (j = 0; j < KEY_PTRS(k); j++) {
|
|
size_t n = PTR_BUCKET_NR(b->c, k, j);
|
|
printk(" bucket %zu", n);
|
|
|
|
if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
|
|
printk(" prio %i",
|
|
PTR_BUCKET(b->c, k, j)->prio);
|
|
}
|
|
|
|
printk(" %s\n", bch_ptr_status(b->c, k));
|
|
}
|
|
|
|
/* Btree ptrs */
|
|
|
|
bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
char buf[80];
|
|
|
|
if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
|
|
goto bad;
|
|
|
|
if (__ptr_invalid(c, k))
|
|
goto bad;
|
|
|
|
return false;
|
|
bad:
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
return __bch_btree_ptr_invalid(b->c, k);
|
|
}
|
|
|
|
static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
|
|
{
|
|
unsigned i;
|
|
char buf[80];
|
|
struct bucket *g;
|
|
|
|
if (mutex_trylock(&b->c->bucket_lock)) {
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(b->c, k, i)) {
|
|
g = PTR_BUCKET(b->c, k, i);
|
|
|
|
if (KEY_DIRTY(k) ||
|
|
g->prio != BTREE_PRIO ||
|
|
(b->c->gc_mark_valid &&
|
|
GC_MARK(g) != GC_MARK_METADATA))
|
|
goto err;
|
|
}
|
|
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
}
|
|
|
|
return false;
|
|
err:
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
btree_bug(b,
|
|
"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
|
|
buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
|
|
g->prio, g->gen, g->last_gc, GC_MARK(g));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
unsigned i;
|
|
|
|
if (!bkey_cmp(k, &ZERO_KEY) ||
|
|
!KEY_PTRS(k) ||
|
|
bch_ptr_invalid(bk, k))
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (!ptr_available(b->c, k, i) ||
|
|
ptr_stale(b->c, k, i))
|
|
return true;
|
|
|
|
if (expensive_debug_checks(b->c) &&
|
|
btree_ptr_bad_expensive(b, k))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
|
|
struct bkey *insert,
|
|
struct btree_iter *iter,
|
|
struct bkey *replace_key)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
|
|
if (!KEY_OFFSET(insert))
|
|
btree_current_write(b)->prio_blocked++;
|
|
|
|
return false;
|
|
}
|
|
|
|
const struct btree_keys_ops bch_btree_keys_ops = {
|
|
.sort_cmp = bch_key_sort_cmp,
|
|
.insert_fixup = bch_btree_ptr_insert_fixup,
|
|
.key_invalid = bch_btree_ptr_invalid,
|
|
.key_bad = bch_btree_ptr_bad,
|
|
.key_to_text = bch_extent_to_text,
|
|
.key_dump = bch_bkey_dump,
|
|
};
|
|
|
|
/* Extents */
|
|
|
|
/*
|
|
* Returns true if l > r - unless l == r, in which case returns true if l is
|
|
* older than r.
|
|
*
|
|
* Necessary for btree_sort_fixup() - if there are multiple keys that compare
|
|
* equal in different sets, we have to process them newest to oldest.
|
|
*/
|
|
static bool bch_extent_sort_cmp(struct btree_iter_set l,
|
|
struct btree_iter_set r)
|
|
{
|
|
int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
|
|
|
|
return c ? c > 0 : l.k < r.k;
|
|
}
|
|
|
|
static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
|
|
struct bkey *tmp)
|
|
{
|
|
while (iter->used > 1) {
|
|
struct btree_iter_set *top = iter->data, *i = top + 1;
|
|
|
|
if (iter->used > 2 &&
|
|
bch_extent_sort_cmp(i[0], i[1]))
|
|
i++;
|
|
|
|
if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
|
|
break;
|
|
|
|
if (!KEY_SIZE(i->k)) {
|
|
sort_key_next(iter, i);
|
|
heap_sift(iter, i - top, bch_extent_sort_cmp);
|
|
continue;
|
|
}
|
|
|
|
if (top->k > i->k) {
|
|
if (bkey_cmp(top->k, i->k) >= 0)
|
|
sort_key_next(iter, i);
|
|
else
|
|
bch_cut_front(top->k, i->k);
|
|
|
|
heap_sift(iter, i - top, bch_extent_sort_cmp);
|
|
} else {
|
|
/* can't happen because of comparison func */
|
|
BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
|
|
|
|
if (bkey_cmp(i->k, top->k) < 0) {
|
|
bkey_copy(tmp, top->k);
|
|
|
|
bch_cut_back(&START_KEY(i->k), tmp);
|
|
bch_cut_front(i->k, top->k);
|
|
heap_sift(iter, 0, bch_extent_sort_cmp);
|
|
|
|
return tmp;
|
|
} else {
|
|
bch_cut_back(&START_KEY(i->k), top->k);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void bch_subtract_dirty(struct bkey *k,
|
|
struct cache_set *c,
|
|
uint64_t offset,
|
|
int sectors)
|
|
{
|
|
if (KEY_DIRTY(k))
|
|
bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
|
|
offset, -sectors);
|
|
}
|
|
|
|
static bool bch_extent_insert_fixup(struct btree_keys *b,
|
|
struct bkey *insert,
|
|
struct btree_iter *iter,
|
|
struct bkey *replace_key)
|
|
{
|
|
struct cache_set *c = container_of(b, struct btree, keys)->c;
|
|
|
|
uint64_t old_offset;
|
|
unsigned old_size, sectors_found = 0;
|
|
|
|
BUG_ON(!KEY_OFFSET(insert));
|
|
BUG_ON(!KEY_SIZE(insert));
|
|
|
|
while (1) {
|
|
struct bkey *k = bch_btree_iter_next(iter);
|
|
if (!k)
|
|
break;
|
|
|
|
if (bkey_cmp(&START_KEY(k), insert) >= 0) {
|
|
if (KEY_SIZE(k))
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
if (bkey_cmp(k, &START_KEY(insert)) <= 0)
|
|
continue;
|
|
|
|
old_offset = KEY_START(k);
|
|
old_size = KEY_SIZE(k);
|
|
|
|
/*
|
|
* We might overlap with 0 size extents; we can't skip these
|
|
* because if they're in the set we're inserting to we have to
|
|
* adjust them so they don't overlap with the key we're
|
|
* inserting. But we don't want to check them for replace
|
|
* operations.
|
|
*/
|
|
|
|
if (replace_key && KEY_SIZE(k)) {
|
|
/*
|
|
* k might have been split since we inserted/found the
|
|
* key we're replacing
|
|
*/
|
|
unsigned i;
|
|
uint64_t offset = KEY_START(k) -
|
|
KEY_START(replace_key);
|
|
|
|
/* But it must be a subset of the replace key */
|
|
if (KEY_START(k) < KEY_START(replace_key) ||
|
|
KEY_OFFSET(k) > KEY_OFFSET(replace_key))
|
|
goto check_failed;
|
|
|
|
/* We didn't find a key that we were supposed to */
|
|
if (KEY_START(k) > KEY_START(insert) + sectors_found)
|
|
goto check_failed;
|
|
|
|
if (!bch_bkey_equal_header(k, replace_key))
|
|
goto check_failed;
|
|
|
|
/* skip past gen */
|
|
offset <<= 8;
|
|
|
|
BUG_ON(!KEY_PTRS(replace_key));
|
|
|
|
for (i = 0; i < KEY_PTRS(replace_key); i++)
|
|
if (k->ptr[i] != replace_key->ptr[i] + offset)
|
|
goto check_failed;
|
|
|
|
sectors_found = KEY_OFFSET(k) - KEY_START(insert);
|
|
}
|
|
|
|
if (bkey_cmp(insert, k) < 0 &&
|
|
bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
|
|
/*
|
|
* We overlapped in the middle of an existing key: that
|
|
* means we have to split the old key. But we have to do
|
|
* slightly different things depending on whether the
|
|
* old key has been written out yet.
|
|
*/
|
|
|
|
struct bkey *top;
|
|
|
|
bch_subtract_dirty(k, c, KEY_START(insert),
|
|
KEY_SIZE(insert));
|
|
|
|
if (bkey_written(b, k)) {
|
|
/*
|
|
* We insert a new key to cover the top of the
|
|
* old key, and the old key is modified in place
|
|
* to represent the bottom split.
|
|
*
|
|
* It's completely arbitrary whether the new key
|
|
* is the top or the bottom, but it has to match
|
|
* up with what btree_sort_fixup() does - it
|
|
* doesn't check for this kind of overlap, it
|
|
* depends on us inserting a new key for the top
|
|
* here.
|
|
*/
|
|
top = bch_bset_search(b, bset_tree_last(b),
|
|
insert);
|
|
bch_bset_insert(b, top, k);
|
|
} else {
|
|
BKEY_PADDED(key) temp;
|
|
bkey_copy(&temp.key, k);
|
|
bch_bset_insert(b, k, &temp.key);
|
|
top = bkey_next(k);
|
|
}
|
|
|
|
bch_cut_front(insert, top);
|
|
bch_cut_back(&START_KEY(insert), k);
|
|
bch_bset_fix_invalidated_key(b, k);
|
|
goto out;
|
|
}
|
|
|
|
if (bkey_cmp(insert, k) < 0) {
|
|
bch_cut_front(insert, k);
|
|
} else {
|
|
if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
|
|
old_offset = KEY_START(insert);
|
|
|
|
if (bkey_written(b, k) &&
|
|
bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
|
|
/*
|
|
* Completely overwrote, so we don't have to
|
|
* invalidate the binary search tree
|
|
*/
|
|
bch_cut_front(k, k);
|
|
} else {
|
|
__bch_cut_back(&START_KEY(insert), k);
|
|
bch_bset_fix_invalidated_key(b, k);
|
|
}
|
|
}
|
|
|
|
bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
|
|
}
|
|
|
|
check_failed:
|
|
if (replace_key) {
|
|
if (!sectors_found) {
|
|
return true;
|
|
} else if (sectors_found < KEY_SIZE(insert)) {
|
|
SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
|
|
(KEY_SIZE(insert) - sectors_found));
|
|
SET_KEY_SIZE(insert, sectors_found);
|
|
}
|
|
}
|
|
out:
|
|
if (KEY_DIRTY(insert))
|
|
bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
|
|
KEY_START(insert),
|
|
KEY_SIZE(insert));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
char buf[80];
|
|
|
|
if (!KEY_SIZE(k))
|
|
return true;
|
|
|
|
if (KEY_SIZE(k) > KEY_OFFSET(k))
|
|
goto bad;
|
|
|
|
if (__ptr_invalid(c, k))
|
|
goto bad;
|
|
|
|
return false;
|
|
bad:
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
return __bch_extent_invalid(b->c, k);
|
|
}
|
|
|
|
static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
|
|
unsigned ptr)
|
|
{
|
|
struct bucket *g = PTR_BUCKET(b->c, k, ptr);
|
|
char buf[80];
|
|
|
|
if (mutex_trylock(&b->c->bucket_lock)) {
|
|
if (b->c->gc_mark_valid &&
|
|
(!GC_MARK(g) ||
|
|
GC_MARK(g) == GC_MARK_METADATA ||
|
|
(GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
|
|
goto err;
|
|
|
|
if (g->prio == BTREE_PRIO)
|
|
goto err;
|
|
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
}
|
|
|
|
return false;
|
|
err:
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
btree_bug(b,
|
|
"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
|
|
buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
|
|
g->prio, g->gen, g->last_gc, GC_MARK(g));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
struct bucket *g;
|
|
unsigned i, stale;
|
|
|
|
if (!KEY_PTRS(k) ||
|
|
bch_extent_invalid(bk, k))
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (!ptr_available(b->c, k, i))
|
|
return true;
|
|
|
|
if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
|
|
return false;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
g = PTR_BUCKET(b->c, k, i);
|
|
stale = ptr_stale(b->c, k, i);
|
|
|
|
btree_bug_on(stale > 96, b,
|
|
"key too stale: %i, need_gc %u",
|
|
stale, b->c->need_gc);
|
|
|
|
btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
|
|
b, "stale dirty pointer");
|
|
|
|
if (stale)
|
|
return true;
|
|
|
|
if (expensive_debug_checks(b->c) &&
|
|
bch_extent_bad_expensive(b, k, i))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
|
|
{
|
|
return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
|
|
~((uint64_t)1 << 63);
|
|
}
|
|
|
|
static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
unsigned i;
|
|
|
|
if (key_merging_disabled(b->c))
|
|
return false;
|
|
|
|
for (i = 0; i < KEY_PTRS(l); i++)
|
|
if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
|
|
PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
|
|
return false;
|
|
|
|
/* Keys with no pointers aren't restricted to one bucket and could
|
|
* overflow KEY_SIZE
|
|
*/
|
|
if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
|
|
SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
|
|
SET_KEY_SIZE(l, USHRT_MAX);
|
|
|
|
bch_cut_front(l, r);
|
|
return false;
|
|
}
|
|
|
|
if (KEY_CSUM(l)) {
|
|
if (KEY_CSUM(r))
|
|
l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
|
|
else
|
|
SET_KEY_CSUM(l, 0);
|
|
}
|
|
|
|
SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
|
|
SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
|
|
|
|
return true;
|
|
}
|
|
|
|
const struct btree_keys_ops bch_extent_keys_ops = {
|
|
.sort_cmp = bch_extent_sort_cmp,
|
|
.sort_fixup = bch_extent_sort_fixup,
|
|
.insert_fixup = bch_extent_insert_fixup,
|
|
.key_invalid = bch_extent_invalid,
|
|
.key_bad = bch_extent_bad,
|
|
.key_merge = bch_extent_merge,
|
|
.key_to_text = bch_extent_to_text,
|
|
.key_dump = bch_bkey_dump,
|
|
.is_extents = true,
|
|
};
|