mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 12:46:55 +07:00
f458995b9a
The Broadcom Starfighter2 is almost entirely register compatible with B53, yet for historical reasons came up first in the tree and is now being updated to utilize b53_common.c to the fullest extent possible. A few things need to be adjusted to allow that: - the switch "core" registers currently operate on a 32-bit address, whereas b53 passes a page + reg pair to offset from, so we need to convert that, thankfully there is a generic formula to do that - the link managemenent is not self contained with the B53/CORE register set, but instead is in the SWITCH_REG block which is part of the integration glue logic, so we keep that entirely custom here because this really is part of the existing bcm_sf2 implementation - there are additional power management constraints on the port's memories that make us keep the port_enable/disable callbacks custom for now, also, we support tagging whereas b53_common does not support that yet All the VLAN and bridge code is entirely identical though so, avoid duplicating it. Other things will be migrated in the future like EEE and possibly Wake-on-LAN. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1919 lines
48 KiB
C
1919 lines
48 KiB
C
/*
|
|
* Broadcom Starfighter 2 DSA switch driver
|
|
*
|
|
* Copyright (C) 2014, Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/phy_fixed.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_net.h>
|
|
#include <linux/of_mdio.h>
|
|
#include <net/dsa.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/brcmphy.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <net/switchdev.h>
|
|
#include <linux/platform_data/b53.h>
|
|
|
|
#include "bcm_sf2.h"
|
|
#include "bcm_sf2_regs.h"
|
|
#include "b53/b53_priv.h"
|
|
#include "b53/b53_regs.h"
|
|
|
|
/* String, offset, and register size in bytes if different from 4 bytes */
|
|
static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
|
|
{ "TxOctets", 0x000, 8 },
|
|
{ "TxDropPkts", 0x020 },
|
|
{ "TxQPKTQ0", 0x030 },
|
|
{ "TxBroadcastPkts", 0x040 },
|
|
{ "TxMulticastPkts", 0x050 },
|
|
{ "TxUnicastPKts", 0x060 },
|
|
{ "TxCollisions", 0x070 },
|
|
{ "TxSingleCollision", 0x080 },
|
|
{ "TxMultipleCollision", 0x090 },
|
|
{ "TxDeferredCollision", 0x0a0 },
|
|
{ "TxLateCollision", 0x0b0 },
|
|
{ "TxExcessiveCollision", 0x0c0 },
|
|
{ "TxFrameInDisc", 0x0d0 },
|
|
{ "TxPausePkts", 0x0e0 },
|
|
{ "TxQPKTQ1", 0x0f0 },
|
|
{ "TxQPKTQ2", 0x100 },
|
|
{ "TxQPKTQ3", 0x110 },
|
|
{ "TxQPKTQ4", 0x120 },
|
|
{ "TxQPKTQ5", 0x130 },
|
|
{ "RxOctets", 0x140, 8 },
|
|
{ "RxUndersizePkts", 0x160 },
|
|
{ "RxPausePkts", 0x170 },
|
|
{ "RxPkts64Octets", 0x180 },
|
|
{ "RxPkts65to127Octets", 0x190 },
|
|
{ "RxPkts128to255Octets", 0x1a0 },
|
|
{ "RxPkts256to511Octets", 0x1b0 },
|
|
{ "RxPkts512to1023Octets", 0x1c0 },
|
|
{ "RxPkts1024toMaxPktsOctets", 0x1d0 },
|
|
{ "RxOversizePkts", 0x1e0 },
|
|
{ "RxJabbers", 0x1f0 },
|
|
{ "RxAlignmentErrors", 0x200 },
|
|
{ "RxFCSErrors", 0x210 },
|
|
{ "RxGoodOctets", 0x220, 8 },
|
|
{ "RxDropPkts", 0x240 },
|
|
{ "RxUnicastPkts", 0x250 },
|
|
{ "RxMulticastPkts", 0x260 },
|
|
{ "RxBroadcastPkts", 0x270 },
|
|
{ "RxSAChanges", 0x280 },
|
|
{ "RxFragments", 0x290 },
|
|
{ "RxJumboPkt", 0x2a0 },
|
|
{ "RxSymblErr", 0x2b0 },
|
|
{ "InRangeErrCount", 0x2c0 },
|
|
{ "OutRangeErrCount", 0x2d0 },
|
|
{ "EEELpiEvent", 0x2e0 },
|
|
{ "EEELpiDuration", 0x2f0 },
|
|
{ "RxDiscard", 0x300, 8 },
|
|
{ "TxQPKTQ6", 0x320 },
|
|
{ "TxQPKTQ7", 0x330 },
|
|
{ "TxPkts64Octets", 0x340 },
|
|
{ "TxPkts65to127Octets", 0x350 },
|
|
{ "TxPkts128to255Octets", 0x360 },
|
|
{ "TxPkts256to511Ocets", 0x370 },
|
|
{ "TxPkts512to1023Ocets", 0x380 },
|
|
{ "TxPkts1024toMaxPktOcets", 0x390 },
|
|
};
|
|
|
|
#define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
|
|
|
|
static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
|
|
int port, uint8_t *data)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
|
|
}
|
|
|
|
static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
const struct bcm_sf2_hw_stats *s;
|
|
unsigned int i;
|
|
u64 val = 0;
|
|
u32 offset;
|
|
|
|
mutex_lock(&priv->stats_mutex);
|
|
|
|
/* Now fetch the per-port counters */
|
|
for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
|
|
s = &bcm_sf2_mib[i];
|
|
|
|
/* Do a latched 64-bit read if needed */
|
|
offset = s->reg + CORE_P_MIB_OFFSET(port);
|
|
if (s->sizeof_stat == 8)
|
|
val = core_readq(priv, offset);
|
|
else
|
|
val = core_readl(priv, offset);
|
|
|
|
data[i] = (u64)val;
|
|
}
|
|
|
|
mutex_unlock(&priv->stats_mutex);
|
|
}
|
|
|
|
static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
return BCM_SF2_STATS_SIZE;
|
|
}
|
|
|
|
static enum dsa_tag_protocol bcm_sf2_sw_get_tag_protocol(struct dsa_switch *ds)
|
|
{
|
|
return DSA_TAG_PROTO_BRCM;
|
|
}
|
|
|
|
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
/* Enable the IMP Port to be in the same VLAN as the other ports
|
|
* on a per-port basis such that we only have Port i and IMP in
|
|
* the same VLAN.
|
|
*/
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
if (!((1 << i) & ds->enabled_port_mask))
|
|
continue;
|
|
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg |= (1 << cpu_port);
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
}
|
|
}
|
|
|
|
static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u32 reg, val;
|
|
|
|
/* Enable the port memories */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg &= ~P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
|
|
/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
|
|
reg = core_readl(priv, CORE_IMP_CTL);
|
|
reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
|
|
reg &= ~(RX_DIS | TX_DIS);
|
|
core_writel(priv, reg, CORE_IMP_CTL);
|
|
|
|
/* Enable forwarding */
|
|
core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
|
|
|
|
/* Enable IMP port in dumb mode */
|
|
reg = core_readl(priv, CORE_SWITCH_CTRL);
|
|
reg |= MII_DUMB_FWDG_EN;
|
|
core_writel(priv, reg, CORE_SWITCH_CTRL);
|
|
|
|
/* Resolve which bit controls the Broadcom tag */
|
|
switch (port) {
|
|
case 8:
|
|
val = BRCM_HDR_EN_P8;
|
|
break;
|
|
case 7:
|
|
val = BRCM_HDR_EN_P7;
|
|
break;
|
|
case 5:
|
|
val = BRCM_HDR_EN_P5;
|
|
break;
|
|
default:
|
|
val = 0;
|
|
break;
|
|
}
|
|
|
|
/* Enable Broadcom tags for IMP port */
|
|
reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
|
|
reg |= val;
|
|
core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
|
|
|
|
/* Enable reception Broadcom tag for CPU TX (switch RX) to
|
|
* allow us to tag outgoing frames
|
|
*/
|
|
reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
|
|
|
|
/* Enable transmission of Broadcom tags from the switch (CPU RX) to
|
|
* allow delivering frames to the per-port net_devices
|
|
*/
|
|
reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
|
|
|
|
/* Force link status for IMP port */
|
|
reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
|
|
reg |= (MII_SW_OR | LINK_STS);
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
|
|
}
|
|
|
|
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_EEE_EN_CTRL);
|
|
if (enable)
|
|
reg |= 1 << port;
|
|
else
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_EEE_EN_CTRL);
|
|
}
|
|
|
|
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u32 reg;
|
|
|
|
reg = reg_readl(priv, REG_SPHY_CNTRL);
|
|
if (enable) {
|
|
reg |= PHY_RESET;
|
|
reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
udelay(21);
|
|
reg = reg_readl(priv, REG_SPHY_CNTRL);
|
|
reg &= ~PHY_RESET;
|
|
} else {
|
|
reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
mdelay(1);
|
|
reg |= CK25_DIS;
|
|
}
|
|
reg_writel(priv, reg, REG_SPHY_CNTRL);
|
|
|
|
/* Use PHY-driven LED signaling */
|
|
if (!enable) {
|
|
reg = reg_readl(priv, REG_LED_CNTRL(0));
|
|
reg |= SPDLNK_SRC_SEL;
|
|
reg_writel(priv, reg, REG_LED_CNTRL(0));
|
|
}
|
|
}
|
|
|
|
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
|
|
int port)
|
|
{
|
|
unsigned int off;
|
|
|
|
switch (port) {
|
|
case 7:
|
|
off = P7_IRQ_OFF;
|
|
break;
|
|
case 0:
|
|
/* Port 0 interrupts are located on the first bank */
|
|
intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
|
|
return;
|
|
default:
|
|
off = P_IRQ_OFF(port);
|
|
break;
|
|
}
|
|
|
|
intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
|
|
}
|
|
|
|
static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
|
|
int port)
|
|
{
|
|
unsigned int off;
|
|
|
|
switch (port) {
|
|
case 7:
|
|
off = P7_IRQ_OFF;
|
|
break;
|
|
case 0:
|
|
/* Port 0 interrupts are located on the first bank */
|
|
intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
|
|
intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
|
|
return;
|
|
default:
|
|
off = P_IRQ_OFF(port);
|
|
break;
|
|
}
|
|
|
|
intrl2_1_mask_set(priv, P_IRQ_MASK(off));
|
|
intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
|
|
}
|
|
|
|
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
s8 cpu_port = ds->dst[ds->index].cpu_port;
|
|
u32 reg;
|
|
|
|
/* Clear the memory power down */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg &= ~P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
|
|
/* Clear the Rx and Tx disable bits and set to no spanning tree */
|
|
core_writel(priv, 0, CORE_G_PCTL_PORT(port));
|
|
|
|
/* Re-enable the GPHY and re-apply workarounds */
|
|
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
|
|
bcm_sf2_gphy_enable_set(ds, true);
|
|
if (phy) {
|
|
/* if phy_stop() has been called before, phy
|
|
* will be in halted state, and phy_start()
|
|
* will call resume.
|
|
*
|
|
* the resume path does not configure back
|
|
* autoneg settings, and since we hard reset
|
|
* the phy manually here, we need to reset the
|
|
* state machine also.
|
|
*/
|
|
phy->state = PHY_READY;
|
|
phy_init_hw(phy);
|
|
}
|
|
}
|
|
|
|
/* Enable MoCA port interrupts to get notified */
|
|
if (port == priv->moca_port)
|
|
bcm_sf2_port_intr_enable(priv, port);
|
|
|
|
/* Set this port, and only this one to be in the default VLAN,
|
|
* if member of a bridge, restore its membership prior to
|
|
* bringing down this port.
|
|
*/
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
reg &= ~PORT_VLAN_CTRL_MASK;
|
|
reg |= (1 << port);
|
|
reg |= priv->port_sts[port].vlan_ctl_mask;
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
bcm_sf2_imp_vlan_setup(ds, cpu_port);
|
|
|
|
/* If EEE was enabled, restore it */
|
|
if (priv->port_sts[port].eee.eee_enabled)
|
|
bcm_sf2_eee_enable_set(ds, port, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u32 off, reg;
|
|
|
|
if (priv->wol_ports_mask & (1 << port))
|
|
return;
|
|
|
|
if (port == priv->moca_port)
|
|
bcm_sf2_port_intr_disable(priv, port);
|
|
|
|
if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
|
|
bcm_sf2_gphy_enable_set(ds, false);
|
|
|
|
if (dsa_is_cpu_port(ds, port))
|
|
off = CORE_IMP_CTL;
|
|
else
|
|
off = CORE_G_PCTL_PORT(port);
|
|
|
|
reg = core_readl(priv, off);
|
|
reg |= RX_DIS | TX_DIS;
|
|
core_writel(priv, reg, off);
|
|
|
|
/* Power down the port memory */
|
|
reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
|
|
reg |= P_TXQ_PSM_VDD(port);
|
|
core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
|
|
}
|
|
|
|
/* Returns 0 if EEE was not enabled, or 1 otherwise
|
|
*/
|
|
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
|
|
struct phy_device *phy)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
int ret;
|
|
|
|
p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
|
|
|
|
ret = phy_init_eee(phy, 0);
|
|
if (ret)
|
|
return 0;
|
|
|
|
bcm_sf2_eee_enable_set(ds, port, true);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
|
|
e->eee_enabled = p->eee_enabled;
|
|
e->eee_active = !!(reg & (1 << port));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct ethtool_eee *p = &priv->port_sts[port].eee;
|
|
|
|
p->eee_enabled = e->eee_enabled;
|
|
|
|
if (!p->eee_enabled) {
|
|
bcm_sf2_eee_enable_set(ds, port, false);
|
|
} else {
|
|
p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
|
|
if (!p->eee_enabled)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_fast_age_op(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
|
|
reg |= EN_AGE_PORT | EN_AGE_VLAN | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
|
|
core_writel(priv, reg, CORE_FAST_AGE_CTRL);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_FAST_AGE_CTRL);
|
|
if (!(reg & FAST_AGE_STR_DONE))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
core_writel(priv, 0, CORE_FAST_AGE_CTRL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fast-ageing of ARL entries for a given port, equivalent to an ARL
|
|
* flush for that port.
|
|
*/
|
|
static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
|
core_writel(priv, port, CORE_FAST_AGE_PORT);
|
|
|
|
return bcm_sf2_fast_age_op(priv);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fast_age_vlan(struct bcm_sf2_priv *priv, u16 vid)
|
|
{
|
|
core_writel(priv, vid, CORE_FAST_AGE_VID);
|
|
|
|
return bcm_sf2_fast_age_op(priv);
|
|
}
|
|
|
|
static int bcm_sf2_vlan_op_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 10;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_VTBL_RWCTRL);
|
|
if (!(reg & ARLA_VTBL_STDN))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int bcm_sf2_vlan_op(struct bcm_sf2_priv *priv, u8 op)
|
|
{
|
|
core_writel(priv, ARLA_VTBL_STDN | op, CORE_ARLA_VTBL_RWCTRL);
|
|
|
|
return bcm_sf2_vlan_op_wait(priv);
|
|
}
|
|
|
|
static void bcm_sf2_set_vlan_entry(struct bcm_sf2_priv *priv, u16 vid,
|
|
struct bcm_sf2_vlan *vlan)
|
|
{
|
|
int ret;
|
|
|
|
core_writel(priv, vid & VTBL_ADDR_INDEX_MASK, CORE_ARLA_VTBL_ADDR);
|
|
core_writel(priv, vlan->untag << UNTAG_MAP_SHIFT | vlan->members,
|
|
CORE_ARLA_VTBL_ENTRY);
|
|
|
|
ret = bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_WRITE);
|
|
if (ret)
|
|
pr_err("failed to write VLAN entry\n");
|
|
}
|
|
|
|
static int bcm_sf2_get_vlan_entry(struct bcm_sf2_priv *priv, u16 vid,
|
|
struct bcm_sf2_vlan *vlan)
|
|
{
|
|
u32 entry;
|
|
int ret;
|
|
|
|
core_writel(priv, vid & VTBL_ADDR_INDEX_MASK, CORE_ARLA_VTBL_ADDR);
|
|
|
|
ret = bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
entry = core_readl(priv, CORE_ARLA_VTBL_ENTRY);
|
|
vlan->members = entry & FWD_MAP_MASK;
|
|
vlan->untag = (entry >> UNTAG_MAP_SHIFT) & UNTAG_MAP_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
|
|
struct net_device *bridge)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
s8 cpu_port = ds->dst->cpu_port;
|
|
unsigned int i;
|
|
u32 reg, p_ctl;
|
|
|
|
/* Make this port leave the all VLANs join since we will have proper
|
|
* VLAN entries from now on
|
|
*/
|
|
reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
|
|
reg &= ~BIT(port);
|
|
if ((reg & BIT(cpu_port)) == BIT(cpu_port))
|
|
reg &= ~BIT(cpu_port);
|
|
core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);
|
|
|
|
priv->port_sts[port].bridge_dev = bridge;
|
|
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
if (priv->port_sts[i].bridge_dev != bridge)
|
|
continue;
|
|
|
|
/* Add this local port to the remote port VLAN control
|
|
* membership and update the remote port bitmask
|
|
*/
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg |= 1 << port;
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
priv->port_sts[i].vlan_ctl_mask = reg;
|
|
|
|
p_ctl |= 1 << i;
|
|
}
|
|
|
|
/* Configure the local port VLAN control membership to include
|
|
* remote ports and update the local port bitmask
|
|
*/
|
|
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
|
|
priv->port_sts[port].vlan_ctl_mask = p_ctl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct net_device *bridge = priv->port_sts[port].bridge_dev;
|
|
s8 cpu_port = ds->dst->cpu_port;
|
|
unsigned int i;
|
|
u32 reg, p_ctl;
|
|
|
|
p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
|
|
|
|
for (i = 0; i < priv->hw_params.num_ports; i++) {
|
|
/* Don't touch the remaining ports */
|
|
if (priv->port_sts[i].bridge_dev != bridge)
|
|
continue;
|
|
|
|
reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
|
|
reg &= ~(1 << port);
|
|
core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
|
|
priv->port_sts[port].vlan_ctl_mask = reg;
|
|
|
|
/* Prevent self removal to preserve isolation */
|
|
if (port != i)
|
|
p_ctl &= ~(1 << i);
|
|
}
|
|
|
|
core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
|
|
priv->port_sts[port].vlan_ctl_mask = p_ctl;
|
|
priv->port_sts[port].bridge_dev = NULL;
|
|
|
|
/* Make this port join all VLANs without VLAN entries */
|
|
reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
|
|
reg |= BIT(port);
|
|
if (!(reg & BIT(cpu_port)))
|
|
reg |= BIT(cpu_port);
|
|
core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);
|
|
}
|
|
|
|
static void bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
|
|
u8 state)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u8 hw_state, cur_hw_state;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
|
|
cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
hw_state = G_MISTP_DIS_STATE;
|
|
break;
|
|
case BR_STATE_LISTENING:
|
|
hw_state = G_MISTP_LISTEN_STATE;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
hw_state = G_MISTP_LEARN_STATE;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
hw_state = G_MISTP_FWD_STATE;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
hw_state = G_MISTP_BLOCK_STATE;
|
|
break;
|
|
default:
|
|
pr_err("%s: invalid STP state: %d\n", __func__, state);
|
|
return;
|
|
}
|
|
|
|
/* Fast-age ARL entries if we are moving a port from Learning or
|
|
* Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
|
|
* state (hw_state)
|
|
*/
|
|
if (cur_hw_state != hw_state) {
|
|
if (cur_hw_state >= G_MISTP_LEARN_STATE &&
|
|
hw_state <= G_MISTP_LISTEN_STATE) {
|
|
if (bcm_sf2_sw_fast_age_port(ds, port)) {
|
|
pr_err("%s: fast-ageing failed\n", __func__);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
reg = core_readl(priv, CORE_G_PCTL_PORT(port));
|
|
reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
|
|
reg |= hw_state;
|
|
core_writel(priv, reg, CORE_G_PCTL_PORT(port));
|
|
}
|
|
|
|
/* Address Resolution Logic routines */
|
|
static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 10;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_RWCTL);
|
|
if (!(reg & ARL_STRTDN))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
|
|
{
|
|
u32 cmd;
|
|
|
|
if (op > ARL_RW)
|
|
return -EINVAL;
|
|
|
|
cmd = core_readl(priv, CORE_ARLA_RWCTL);
|
|
cmd &= ~IVL_SVL_SELECT;
|
|
cmd |= ARL_STRTDN;
|
|
if (op)
|
|
cmd |= ARL_RW;
|
|
else
|
|
cmd &= ~ARL_RW;
|
|
core_writel(priv, cmd, CORE_ARLA_RWCTL);
|
|
|
|
return bcm_sf2_arl_op_wait(priv);
|
|
}
|
|
|
|
static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
|
|
u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
|
|
bool is_valid)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_arl_op_wait(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read the 4 bins */
|
|
for (i = 0; i < 4; i++) {
|
|
u64 mac_vid;
|
|
u32 fwd_entry;
|
|
|
|
mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
|
|
fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
|
|
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
|
|
|
|
if (ent->is_valid && is_valid) {
|
|
*idx = i;
|
|
return 0;
|
|
}
|
|
|
|
/* This is the MAC we just deleted */
|
|
if (!is_valid && (mac_vid & mac))
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
|
|
const unsigned char *addr, u16 vid, bool is_valid)
|
|
{
|
|
struct bcm_sf2_arl_entry ent;
|
|
u32 fwd_entry;
|
|
u64 mac, mac_vid = 0;
|
|
u8 idx = 0;
|
|
int ret;
|
|
|
|
/* Convert the array into a 64-bit MAC */
|
|
mac = bcm_sf2_mac_to_u64(addr);
|
|
|
|
/* Perform a read for the given MAC and VID */
|
|
core_writeq(priv, mac, CORE_ARLA_MAC);
|
|
core_writel(priv, vid, CORE_ARLA_VID);
|
|
|
|
/* Issue a read operation for this MAC */
|
|
ret = bcm_sf2_arl_rw_op(priv, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
|
|
/* If this is a read, just finish now */
|
|
if (op)
|
|
return ret;
|
|
|
|
/* We could not find a matching MAC, so reset to a new entry */
|
|
if (ret) {
|
|
fwd_entry = 0;
|
|
idx = 0;
|
|
}
|
|
|
|
memset(&ent, 0, sizeof(ent));
|
|
ent.port = port;
|
|
ent.is_valid = is_valid;
|
|
ent.vid = vid;
|
|
ent.is_static = true;
|
|
memcpy(ent.mac, addr, ETH_ALEN);
|
|
bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
|
|
|
|
core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
|
|
core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
|
|
|
|
ret = bcm_sf2_arl_rw_op(priv, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Re-read the entry to check */
|
|
return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We do not need to do anything specific here yet */
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
|
if (bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
|
|
pr_err("%s: failed to add MAC address\n", __func__);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
|
return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
|
|
}
|
|
|
|
static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned timeout = 1000;
|
|
u32 reg;
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
|
|
if (!(reg & ARLA_SRCH_STDN))
|
|
return 0;
|
|
|
|
if (reg & ARLA_SRCH_VLID)
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout--);
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
|
|
struct bcm_sf2_arl_entry *ent)
|
|
{
|
|
u64 mac_vid;
|
|
u32 fwd_entry;
|
|
|
|
mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
|
|
fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
|
|
bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
|
|
const struct bcm_sf2_arl_entry *ent,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
if (!ent->is_valid)
|
|
return 0;
|
|
|
|
if (port != ent->port)
|
|
return 0;
|
|
|
|
ether_addr_copy(fdb->addr, ent->mac);
|
|
fdb->vid = ent->vid;
|
|
fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
|
|
|
|
return cb(&fdb->obj);
|
|
}
|
|
|
|
static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct net_device *dev = ds->ports[port].netdev;
|
|
struct bcm_sf2_arl_entry results[2];
|
|
unsigned int count = 0;
|
|
int ret;
|
|
|
|
/* Start search operation */
|
|
core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
|
|
|
|
do {
|
|
ret = bcm_sf2_arl_search_wait(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read both entries, then return their values back */
|
|
bcm_sf2_arl_search_rd(priv, 0, &results[0]);
|
|
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bcm_sf2_arl_search_rd(priv, 1, &results[1]);
|
|
ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!results[0].is_valid && !results[1].is_valid)
|
|
break;
|
|
|
|
} while (count++ < CORE_ARLA_NUM_ENTRIES);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
reg = reg_readl(priv, REG_SWITCH_CNTRL);
|
|
reg |= MDIO_MASTER_SEL;
|
|
reg_writel(priv, reg, REG_SWITCH_CNTRL);
|
|
|
|
/* Page << 8 | offset */
|
|
reg = 0x70;
|
|
reg <<= 2;
|
|
core_writel(priv, addr, reg);
|
|
|
|
/* Page << 8 | offset */
|
|
reg = 0x80 << 8 | regnum << 1;
|
|
reg <<= 2;
|
|
|
|
if (op)
|
|
ret = core_readl(priv, reg);
|
|
else
|
|
core_writel(priv, val, reg);
|
|
|
|
reg = reg_readl(priv, REG_SWITCH_CNTRL);
|
|
reg &= ~MDIO_MASTER_SEL;
|
|
reg_writel(priv, reg, REG_SWITCH_CNTRL);
|
|
|
|
return ret & 0xffff;
|
|
}
|
|
|
|
static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
|
|
{
|
|
struct bcm_sf2_priv *priv = bus->priv;
|
|
|
|
/* Intercept reads from Broadcom pseudo-PHY address, else, send
|
|
* them to our master MDIO bus controller
|
|
*/
|
|
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
|
|
return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
|
|
else
|
|
return mdiobus_read(priv->master_mii_bus, addr, regnum);
|
|
}
|
|
|
|
static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
|
|
u16 val)
|
|
{
|
|
struct bcm_sf2_priv *priv = bus->priv;
|
|
|
|
/* Intercept writes to the Broadcom pseudo-PHY address, else,
|
|
* send them to our master MDIO bus controller
|
|
*/
|
|
if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
|
|
bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
|
|
else
|
|
mdiobus_write(priv->master_mii_bus, addr, regnum, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev_id;
|
|
|
|
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
|
|
~priv->irq0_mask;
|
|
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev_id;
|
|
|
|
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
|
|
~priv->irq1_mask;
|
|
intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
|
|
|
|
if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
|
|
priv->port_sts[7].link = 1;
|
|
if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
|
|
priv->port_sts[7].link = 0;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
|
|
reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
|
|
core_writel(priv, reg, CORE_WATCHDOG_CTRL);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_WATCHDOG_CTRL);
|
|
if (!(reg & SOFTWARE_RESET))
|
|
break;
|
|
|
|
usleep_range(1000, 2000);
|
|
} while (timeout-- > 0);
|
|
|
|
if (timeout == 0)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
|
|
{
|
|
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
|
|
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
|
|
intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
|
|
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
|
|
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
|
|
intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
|
|
}
|
|
|
|
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
|
|
struct device_node *dn)
|
|
{
|
|
struct device_node *port;
|
|
const char *phy_mode_str;
|
|
int mode;
|
|
unsigned int port_num;
|
|
int ret;
|
|
|
|
priv->moca_port = -1;
|
|
|
|
for_each_available_child_of_node(dn, port) {
|
|
if (of_property_read_u32(port, "reg", &port_num))
|
|
continue;
|
|
|
|
/* Internal PHYs get assigned a specific 'phy-mode' property
|
|
* value: "internal" to help flag them before MDIO probing
|
|
* has completed, since they might be turned off at that
|
|
* time
|
|
*/
|
|
mode = of_get_phy_mode(port);
|
|
if (mode < 0) {
|
|
ret = of_property_read_string(port, "phy-mode",
|
|
&phy_mode_str);
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
if (!strcasecmp(phy_mode_str, "internal"))
|
|
priv->int_phy_mask |= 1 << port_num;
|
|
}
|
|
|
|
if (mode == PHY_INTERFACE_MODE_MOCA)
|
|
priv->moca_port = port_num;
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct device_node *dn;
|
|
static int index;
|
|
int err;
|
|
|
|
/* Find our integrated MDIO bus node */
|
|
dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
|
|
priv->master_mii_bus = of_mdio_find_bus(dn);
|
|
if (!priv->master_mii_bus)
|
|
return -EPROBE_DEFER;
|
|
|
|
get_device(&priv->master_mii_bus->dev);
|
|
priv->master_mii_dn = dn;
|
|
|
|
priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
|
|
if (!priv->slave_mii_bus)
|
|
return -ENOMEM;
|
|
|
|
priv->slave_mii_bus->priv = priv;
|
|
priv->slave_mii_bus->name = "sf2 slave mii";
|
|
priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
|
|
priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
|
|
snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
|
|
index++);
|
|
priv->slave_mii_bus->dev.of_node = dn;
|
|
|
|
/* Include the pseudo-PHY address to divert reads towards our
|
|
* workaround. This is only required for 7445D0, since 7445E0
|
|
* disconnects the internal switch pseudo-PHY such that we can use the
|
|
* regular SWITCH_MDIO master controller instead.
|
|
*
|
|
* Here we flag the pseudo PHY as needing special treatment and would
|
|
* otherwise make all other PHY read/writes go to the master MDIO bus
|
|
* controller that comes with this switch backed by the "mdio-unimac"
|
|
* driver.
|
|
*/
|
|
if (of_machine_is_compatible("brcm,bcm7445d0"))
|
|
priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
|
|
else
|
|
priv->indir_phy_mask = 0;
|
|
|
|
ds->phys_mii_mask = priv->indir_phy_mask;
|
|
ds->slave_mii_bus = priv->slave_mii_bus;
|
|
priv->slave_mii_bus->parent = ds->dev->parent;
|
|
priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;
|
|
|
|
if (dn)
|
|
err = of_mdiobus_register(priv->slave_mii_bus, dn);
|
|
else
|
|
err = mdiobus_register(priv->slave_mii_bus);
|
|
|
|
if (err)
|
|
of_node_put(dn);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
|
|
{
|
|
mdiobus_unregister(priv->slave_mii_bus);
|
|
if (priv->master_mii_dn)
|
|
of_node_put(priv->master_mii_dn);
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
|
/* The BCM7xxx PHY driver expects to find the integrated PHY revision
|
|
* in bits 15:8 and the patch level in bits 7:0 which is exactly what
|
|
* the REG_PHY_REVISION register layout is.
|
|
*/
|
|
|
|
return priv->hw_params.gphy_rev;
|
|
}
|
|
|
|
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u32 id_mode_dis = 0, port_mode;
|
|
const char *str = NULL;
|
|
u32 reg;
|
|
|
|
switch (phydev->interface) {
|
|
case PHY_INTERFACE_MODE_RGMII:
|
|
str = "RGMII (no delay)";
|
|
id_mode_dis = 1;
|
|
case PHY_INTERFACE_MODE_RGMII_TXID:
|
|
if (!str)
|
|
str = "RGMII (TX delay)";
|
|
port_mode = EXT_GPHY;
|
|
break;
|
|
case PHY_INTERFACE_MODE_MII:
|
|
str = "MII";
|
|
port_mode = EXT_EPHY;
|
|
break;
|
|
case PHY_INTERFACE_MODE_REVMII:
|
|
str = "Reverse MII";
|
|
port_mode = EXT_REVMII;
|
|
break;
|
|
default:
|
|
/* All other PHYs: internal and MoCA */
|
|
goto force_link;
|
|
}
|
|
|
|
/* If the link is down, just disable the interface to conserve power */
|
|
if (!phydev->link) {
|
|
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
|
|
reg &= ~RGMII_MODE_EN;
|
|
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
|
|
goto force_link;
|
|
}
|
|
|
|
/* Clear id_mode_dis bit, and the existing port mode, but
|
|
* make sure we enable the RGMII block for data to pass
|
|
*/
|
|
reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
|
|
reg &= ~ID_MODE_DIS;
|
|
reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
|
|
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
|
|
|
|
reg |= port_mode | RGMII_MODE_EN;
|
|
if (id_mode_dis)
|
|
reg |= ID_MODE_DIS;
|
|
|
|
if (phydev->pause) {
|
|
if (phydev->asym_pause)
|
|
reg |= TX_PAUSE_EN;
|
|
reg |= RX_PAUSE_EN;
|
|
}
|
|
|
|
reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
|
|
|
|
pr_info("Port %d configured for %s\n", port, str);
|
|
|
|
force_link:
|
|
/* Force link settings detected from the PHY */
|
|
reg = SW_OVERRIDE;
|
|
switch (phydev->speed) {
|
|
case SPEED_1000:
|
|
reg |= SPDSTS_1000 << SPEED_SHIFT;
|
|
break;
|
|
case SPEED_100:
|
|
reg |= SPDSTS_100 << SPEED_SHIFT;
|
|
break;
|
|
}
|
|
|
|
if (phydev->link)
|
|
reg |= LINK_STS;
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
reg |= DUPLX_MODE;
|
|
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
}
|
|
|
|
static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
|
|
struct fixed_phy_status *status)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
u32 duplex, pause;
|
|
u32 reg;
|
|
|
|
duplex = core_readl(priv, CORE_DUPSTS);
|
|
pause = core_readl(priv, CORE_PAUSESTS);
|
|
|
|
status->link = 0;
|
|
|
|
/* MoCA port is special as we do not get link status from CORE_LNKSTS,
|
|
* which means that we need to force the link at the port override
|
|
* level to get the data to flow. We do use what the interrupt handler
|
|
* did determine before.
|
|
*
|
|
* For the other ports, we just force the link status, since this is
|
|
* a fixed PHY device.
|
|
*/
|
|
if (port == priv->moca_port) {
|
|
status->link = priv->port_sts[port].link;
|
|
/* For MoCA interfaces, also force a link down notification
|
|
* since some version of the user-space daemon (mocad) use
|
|
* cmd->autoneg to force the link, which messes up the PHY
|
|
* state machine and make it go in PHY_FORCING state instead.
|
|
*/
|
|
if (!status->link)
|
|
netif_carrier_off(ds->ports[port].netdev);
|
|
status->duplex = 1;
|
|
} else {
|
|
status->link = 1;
|
|
status->duplex = !!(duplex & (1 << port));
|
|
}
|
|
|
|
reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
reg |= SW_OVERRIDE;
|
|
if (status->link)
|
|
reg |= LINK_STS;
|
|
else
|
|
reg &= ~LINK_STS;
|
|
core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
|
|
|
|
if ((pause & (1 << port)) &&
|
|
(pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
|
|
status->asym_pause = 1;
|
|
status->pause = 1;
|
|
}
|
|
|
|
if (pause & (1 << port))
|
|
status->pause = 1;
|
|
}
|
|
|
|
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int port;
|
|
|
|
bcm_sf2_intr_disable(priv);
|
|
|
|
/* Disable all ports physically present including the IMP
|
|
* port, the other ones have already been disabled during
|
|
* bcm_sf2_sw_setup
|
|
*/
|
|
for (port = 0; port < DSA_MAX_PORTS; port++) {
|
|
if ((1 << port) & ds->enabled_port_mask ||
|
|
dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_port_disable(ds, port, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_resume(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int port;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_sw_rst(priv);
|
|
if (ret) {
|
|
pr_err("%s: failed to software reset switch\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
if (priv->hw_params.num_gphy == 1)
|
|
bcm_sf2_gphy_enable_set(ds, true);
|
|
|
|
for (port = 0; port < DSA_MAX_PORTS; port++) {
|
|
if ((1 << port) & ds->enabled_port_mask)
|
|
bcm_sf2_port_setup(ds, port, NULL);
|
|
else if (dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_imp_setup(ds, port);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct net_device *p = ds->dst[ds->index].master_netdev;
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct ethtool_wolinfo pwol;
|
|
|
|
/* Get the parent device WoL settings */
|
|
p->ethtool_ops->get_wol(p, &pwol);
|
|
|
|
/* Advertise the parent device supported settings */
|
|
wol->supported = pwol.supported;
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
|
|
if (pwol.wolopts & WAKE_MAGICSECURE)
|
|
memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
|
|
|
|
if (priv->wol_ports_mask & (1 << port))
|
|
wol->wolopts = pwol.wolopts;
|
|
else
|
|
wol->wolopts = 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
|
|
struct ethtool_wolinfo *wol)
|
|
{
|
|
struct net_device *p = ds->dst[ds->index].master_netdev;
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
s8 cpu_port = ds->dst[ds->index].cpu_port;
|
|
struct ethtool_wolinfo pwol;
|
|
|
|
p->ethtool_ops->get_wol(p, &pwol);
|
|
if (wol->wolopts & ~pwol.supported)
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts)
|
|
priv->wol_ports_mask |= (1 << port);
|
|
else
|
|
priv->wol_ports_mask &= ~(1 << port);
|
|
|
|
/* If we have at least one port enabled, make sure the CPU port
|
|
* is also enabled. If the CPU port is the last one enabled, we disable
|
|
* it since this configuration does not make sense.
|
|
*/
|
|
if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
|
|
priv->wol_ports_mask |= (1 << cpu_port);
|
|
else
|
|
priv->wol_ports_mask &= ~(1 << cpu_port);
|
|
|
|
return p->ethtool_ops->set_wol(p, wol);
|
|
}
|
|
|
|
static void bcm_sf2_enable_vlan(struct bcm_sf2_priv *priv, bool enable)
|
|
{
|
|
u32 mgmt, vc0, vc1, vc4, vc5;
|
|
|
|
mgmt = core_readl(priv, CORE_SWMODE);
|
|
vc0 = core_readl(priv, CORE_VLAN_CTRL0);
|
|
vc1 = core_readl(priv, CORE_VLAN_CTRL1);
|
|
vc4 = core_readl(priv, CORE_VLAN_CTRL4);
|
|
vc5 = core_readl(priv, CORE_VLAN_CTRL5);
|
|
|
|
mgmt &= ~SW_FWDG_MODE;
|
|
|
|
if (enable) {
|
|
vc0 |= VLAN_EN | VLAN_LEARN_MODE_IVL;
|
|
vc1 |= EN_RSV_MCAST_UNTAG | EN_RSV_MCAST_FWDMAP;
|
|
vc4 &= ~(INGR_VID_CHK_MASK << INGR_VID_CHK_SHIFT);
|
|
vc4 |= INGR_VID_CHK_DROP;
|
|
vc5 |= DROP_VTABLE_MISS | EN_VID_FFF_FWD;
|
|
} else {
|
|
vc0 &= ~(VLAN_EN | VLAN_LEARN_MODE_IVL);
|
|
vc1 &= ~(EN_RSV_MCAST_UNTAG | EN_RSV_MCAST_FWDMAP);
|
|
vc4 &= ~(INGR_VID_CHK_MASK << INGR_VID_CHK_SHIFT);
|
|
vc5 &= ~(DROP_VTABLE_MISS | EN_VID_FFF_FWD);
|
|
vc4 |= INGR_VID_CHK_VID_VIOL_IMP;
|
|
}
|
|
|
|
core_writel(priv, vc0, CORE_VLAN_CTRL0);
|
|
core_writel(priv, vc1, CORE_VLAN_CTRL1);
|
|
core_writel(priv, 0, CORE_VLAN_CTRL3);
|
|
core_writel(priv, vc4, CORE_VLAN_CTRL4);
|
|
core_writel(priv, vc5, CORE_VLAN_CTRL5);
|
|
core_writel(priv, mgmt, CORE_SWMODE);
|
|
}
|
|
|
|
static void bcm_sf2_sw_configure_vlan(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int port;
|
|
|
|
/* Clear all VLANs */
|
|
bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_CLEAR);
|
|
|
|
for (port = 0; port < priv->hw_params.num_ports; port++) {
|
|
if (!((1 << port) & ds->enabled_port_mask))
|
|
continue;
|
|
|
|
core_writel(priv, 1, CORE_DEFAULT_1Q_TAG_P(port));
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_sw_vlan_filtering(struct dsa_switch *ds, int port,
|
|
bool vlan_filtering)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_vlan_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
|
bcm_sf2_enable_vlan(priv, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_sw_vlan_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
|
|
s8 cpu_port = ds->dst->cpu_port;
|
|
struct bcm_sf2_vlan *vl;
|
|
u16 vid;
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
vl = &priv->vlans[vid];
|
|
|
|
bcm_sf2_get_vlan_entry(priv, vid, vl);
|
|
|
|
vl->members |= BIT(port) | BIT(cpu_port);
|
|
if (untagged)
|
|
vl->untag |= BIT(port) | BIT(cpu_port);
|
|
else
|
|
vl->untag &= ~(BIT(port) | BIT(cpu_port));
|
|
|
|
bcm_sf2_set_vlan_entry(priv, vid, vl);
|
|
bcm_sf2_sw_fast_age_vlan(priv, vid);
|
|
}
|
|
|
|
if (pvid) {
|
|
core_writel(priv, vlan->vid_end, CORE_DEFAULT_1Q_TAG_P(port));
|
|
core_writel(priv, vlan->vid_end,
|
|
CORE_DEFAULT_1Q_TAG_P(cpu_port));
|
|
bcm_sf2_sw_fast_age_vlan(priv, vid);
|
|
}
|
|
}
|
|
|
|
static int bcm_sf2_sw_vlan_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
s8 cpu_port = ds->dst->cpu_port;
|
|
struct bcm_sf2_vlan *vl;
|
|
u16 vid, pvid;
|
|
int ret;
|
|
|
|
pvid = core_readl(priv, CORE_DEFAULT_1Q_TAG_P(port));
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
vl = &priv->vlans[vid];
|
|
|
|
ret = bcm_sf2_get_vlan_entry(priv, vid, vl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vl->members &= ~BIT(port);
|
|
if ((vl->members & BIT(cpu_port)) == BIT(cpu_port))
|
|
vl->members = 0;
|
|
if (pvid == vid)
|
|
pvid = 0;
|
|
if (untagged) {
|
|
vl->untag &= ~BIT(port);
|
|
if ((vl->untag & BIT(port)) == BIT(cpu_port))
|
|
vl->untag = 0;
|
|
}
|
|
|
|
bcm_sf2_set_vlan_entry(priv, vid, vl);
|
|
bcm_sf2_sw_fast_age_vlan(priv, vid);
|
|
}
|
|
|
|
core_writel(priv, pvid, CORE_DEFAULT_1Q_TAG_P(port));
|
|
core_writel(priv, pvid, CORE_DEFAULT_1Q_TAG_P(cpu_port));
|
|
bcm_sf2_sw_fast_age_vlan(priv, vid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_sw_vlan_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_vlan *vlan,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct bcm_sf2_port_status *p = &priv->port_sts[port];
|
|
struct bcm_sf2_vlan *vl;
|
|
u16 vid, pvid;
|
|
int err = 0;
|
|
|
|
pvid = core_readl(priv, CORE_DEFAULT_1Q_TAG_P(port));
|
|
|
|
for (vid = 0; vid < VLAN_N_VID; vid++) {
|
|
vl = &priv->vlans[vid];
|
|
|
|
if (!(vl->members & BIT(port)))
|
|
continue;
|
|
|
|
vlan->vid_begin = vlan->vid_end = vid;
|
|
vlan->flags = 0;
|
|
|
|
if (vl->untag & BIT(port))
|
|
vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
|
|
if (p->pvid == vid)
|
|
vlan->flags |= BRIDGE_VLAN_INFO_PVID;
|
|
|
|
err = cb(&vlan->obj);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int port;
|
|
|
|
/* Enable all valid ports and disable those unused */
|
|
for (port = 0; port < priv->hw_params.num_ports; port++) {
|
|
/* IMP port receives special treatment */
|
|
if ((1 << port) & ds->enabled_port_mask)
|
|
bcm_sf2_port_setup(ds, port, NULL);
|
|
else if (dsa_is_cpu_port(ds, port))
|
|
bcm_sf2_imp_setup(ds, port);
|
|
else
|
|
bcm_sf2_port_disable(ds, port, NULL);
|
|
}
|
|
|
|
bcm_sf2_sw_configure_vlan(ds);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dsa_switch_ops bcm_sf2_switch_ops = {
|
|
.setup = bcm_sf2_sw_setup,
|
|
.get_tag_protocol = bcm_sf2_sw_get_tag_protocol,
|
|
.set_addr = bcm_sf2_sw_set_addr,
|
|
.get_phy_flags = bcm_sf2_sw_get_phy_flags,
|
|
.get_strings = bcm_sf2_sw_get_strings,
|
|
.get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
|
|
.get_sset_count = bcm_sf2_sw_get_sset_count,
|
|
.adjust_link = bcm_sf2_sw_adjust_link,
|
|
.fixed_link_update = bcm_sf2_sw_fixed_link_update,
|
|
.suspend = bcm_sf2_sw_suspend,
|
|
.resume = bcm_sf2_sw_resume,
|
|
.get_wol = bcm_sf2_sw_get_wol,
|
|
.set_wol = bcm_sf2_sw_set_wol,
|
|
.port_enable = bcm_sf2_port_setup,
|
|
.port_disable = bcm_sf2_port_disable,
|
|
.get_eee = bcm_sf2_sw_get_eee,
|
|
.set_eee = bcm_sf2_sw_set_eee,
|
|
.port_bridge_join = bcm_sf2_sw_br_join,
|
|
.port_bridge_leave = bcm_sf2_sw_br_leave,
|
|
.port_stp_state_set = bcm_sf2_sw_br_set_stp_state,
|
|
.port_fdb_prepare = bcm_sf2_sw_fdb_prepare,
|
|
.port_fdb_add = bcm_sf2_sw_fdb_add,
|
|
.port_fdb_del = bcm_sf2_sw_fdb_del,
|
|
.port_fdb_dump = bcm_sf2_sw_fdb_dump,
|
|
.port_vlan_filtering = bcm_sf2_sw_vlan_filtering,
|
|
.port_vlan_prepare = bcm_sf2_sw_vlan_prepare,
|
|
.port_vlan_add = bcm_sf2_sw_vlan_add,
|
|
.port_vlan_del = bcm_sf2_sw_vlan_del,
|
|
.port_vlan_dump = bcm_sf2_sw_vlan_dump,
|
|
};
|
|
|
|
/* The SWITCH_CORE register space is managed by b53 but operates on a page +
|
|
* register basis so we need to translate that into an address that the
|
|
* bus-glue understands.
|
|
*/
|
|
#define SF2_PAGE_REG_MKADDR(page, reg) ((page) << 10 | (reg) << 2)
|
|
|
|
static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg,
|
|
u8 *val)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg,
|
|
u16 *val)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg,
|
|
u32 *val)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg,
|
|
u64 *val)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
*val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg,
|
|
u8 value)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg,
|
|
u16 value)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg,
|
|
u32 value)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg,
|
|
u64 value)
|
|
{
|
|
struct bcm_sf2_priv *priv = dev->priv;
|
|
|
|
core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct b53_io_ops bcm_sf2_io_ops = {
|
|
.read8 = bcm_sf2_core_read8,
|
|
.read16 = bcm_sf2_core_read16,
|
|
.read32 = bcm_sf2_core_read32,
|
|
.read48 = bcm_sf2_core_read64,
|
|
.read64 = bcm_sf2_core_read64,
|
|
.write8 = bcm_sf2_core_write8,
|
|
.write16 = bcm_sf2_core_write16,
|
|
.write32 = bcm_sf2_core_write32,
|
|
.write48 = bcm_sf2_core_write64,
|
|
.write64 = bcm_sf2_core_write64,
|
|
};
|
|
|
|
static int bcm_sf2_sw_probe(struct platform_device *pdev)
|
|
{
|
|
const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
|
|
struct device_node *dn = pdev->dev.of_node;
|
|
struct b53_platform_data *pdata;
|
|
struct bcm_sf2_priv *priv;
|
|
struct b53_device *dev;
|
|
struct dsa_switch *ds;
|
|
void __iomem **base;
|
|
struct resource *r;
|
|
unsigned int i;
|
|
u32 reg, rev;
|
|
int ret;
|
|
|
|
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
|
|
if (!pdata)
|
|
return -ENOMEM;
|
|
|
|
/* Auto-detection using standard registers will not work, so
|
|
* provide an indication of what kind of device we are for
|
|
* b53_common to work with
|
|
*/
|
|
pdata->chip_id = BCM7445_DEVICE_ID;
|
|
dev->pdata = pdata;
|
|
|
|
priv->dev = dev;
|
|
ds = dev->ds;
|
|
|
|
/* Override the parts that are non-standard wrt. normal b53 devices */
|
|
ds->ops->get_tag_protocol = bcm_sf2_sw_get_tag_protocol;
|
|
ds->ops->setup = bcm_sf2_sw_setup;
|
|
ds->ops->get_phy_flags = bcm_sf2_sw_get_phy_flags;
|
|
ds->ops->adjust_link = bcm_sf2_sw_adjust_link;
|
|
ds->ops->fixed_link_update = bcm_sf2_sw_fixed_link_update;
|
|
ds->ops->suspend = bcm_sf2_sw_suspend;
|
|
ds->ops->resume = bcm_sf2_sw_resume;
|
|
ds->ops->get_wol = bcm_sf2_sw_get_wol;
|
|
ds->ops->set_wol = bcm_sf2_sw_set_wol;
|
|
ds->ops->port_enable = bcm_sf2_port_setup;
|
|
ds->ops->port_disable = bcm_sf2_port_disable;
|
|
ds->ops->get_eee = bcm_sf2_sw_get_eee;
|
|
ds->ops->set_eee = bcm_sf2_sw_set_eee;
|
|
|
|
/* Avoid having DSA free our slave MDIO bus (checking for
|
|
* ds->slave_mii_bus and ds->ops->phy_read being non-NULL)
|
|
*/
|
|
ds->ops->phy_read = NULL;
|
|
|
|
dev_set_drvdata(&pdev->dev, priv);
|
|
|
|
spin_lock_init(&priv->indir_lock);
|
|
mutex_init(&priv->stats_mutex);
|
|
|
|
bcm_sf2_identify_ports(priv, dn->child);
|
|
|
|
priv->irq0 = irq_of_parse_and_map(dn, 0);
|
|
priv->irq1 = irq_of_parse_and_map(dn, 1);
|
|
|
|
base = &priv->core;
|
|
for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, i);
|
|
*base = devm_ioremap_resource(&pdev->dev, r);
|
|
if (IS_ERR(*base)) {
|
|
pr_err("unable to find register: %s\n", reg_names[i]);
|
|
return PTR_ERR(*base);
|
|
}
|
|
base++;
|
|
}
|
|
|
|
ret = bcm_sf2_sw_rst(priv);
|
|
if (ret) {
|
|
pr_err("unable to software reset switch: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = bcm_sf2_mdio_register(ds);
|
|
if (ret) {
|
|
pr_err("failed to register MDIO bus\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Disable all interrupts and request them */
|
|
bcm_sf2_intr_disable(priv);
|
|
|
|
ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
|
|
"switch_0", priv);
|
|
if (ret < 0) {
|
|
pr_err("failed to request switch_0 IRQ\n");
|
|
goto out_mdio;
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
|
|
"switch_1", priv);
|
|
if (ret < 0) {
|
|
pr_err("failed to request switch_1 IRQ\n");
|
|
goto out_mdio;
|
|
}
|
|
|
|
/* Reset the MIB counters */
|
|
reg = core_readl(priv, CORE_GMNCFGCFG);
|
|
reg |= RST_MIB_CNT;
|
|
core_writel(priv, reg, CORE_GMNCFGCFG);
|
|
reg &= ~RST_MIB_CNT;
|
|
core_writel(priv, reg, CORE_GMNCFGCFG);
|
|
|
|
/* Get the maximum number of ports for this switch */
|
|
priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
|
|
if (priv->hw_params.num_ports > DSA_MAX_PORTS)
|
|
priv->hw_params.num_ports = DSA_MAX_PORTS;
|
|
|
|
/* Assume a single GPHY setup if we can't read that property */
|
|
if (of_property_read_u32(dn, "brcm,num-gphy",
|
|
&priv->hw_params.num_gphy))
|
|
priv->hw_params.num_gphy = 1;
|
|
|
|
rev = reg_readl(priv, REG_SWITCH_REVISION);
|
|
priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
|
|
SWITCH_TOP_REV_MASK;
|
|
priv->hw_params.core_rev = (rev & SF2_REV_MASK);
|
|
|
|
rev = reg_readl(priv, REG_PHY_REVISION);
|
|
priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
|
|
|
|
ret = b53_switch_register(dev);
|
|
if (ret)
|
|
goto out_mdio;
|
|
|
|
pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
|
|
priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
|
|
priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
|
|
priv->core, priv->irq0, priv->irq1);
|
|
|
|
return 0;
|
|
|
|
out_mdio:
|
|
bcm_sf2_mdio_unregister(priv);
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_sw_remove(struct platform_device *pdev)
|
|
{
|
|
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
|
|
|
|
/* Disable all ports and interrupts */
|
|
priv->wol_ports_mask = 0;
|
|
bcm_sf2_sw_suspend(priv->dev->ds);
|
|
dsa_unregister_switch(priv->dev->ds);
|
|
bcm_sf2_mdio_unregister(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int bcm_sf2_suspend(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
|
|
|
|
return dsa_switch_suspend(priv->dev->ds);
|
|
}
|
|
|
|
static int bcm_sf2_resume(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
|
|
|
|
return dsa_switch_resume(priv->dev->ds);
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
|
|
bcm_sf2_suspend, bcm_sf2_resume);
|
|
|
|
static const struct of_device_id bcm_sf2_of_match[] = {
|
|
{ .compatible = "brcm,bcm7445-switch-v4.0" },
|
|
{ /* sentinel */ },
|
|
};
|
|
|
|
static struct platform_driver bcm_sf2_driver = {
|
|
.probe = bcm_sf2_sw_probe,
|
|
.remove = bcm_sf2_sw_remove,
|
|
.driver = {
|
|
.name = "brcm-sf2",
|
|
.of_match_table = bcm_sf2_of_match,
|
|
.pm = &bcm_sf2_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(bcm_sf2_driver);
|
|
|
|
MODULE_AUTHOR("Broadcom Corporation");
|
|
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:brcm-sf2");
|