linux_dsm_epyc7002/arch/arm64/kvm/hyp/switch.c
Linus Torvalds f4000cd997 arm64 updates for 4.10:
- struct thread_info moved off-stack (also touching
   include/linux/thread_info.h and include/linux/restart_block.h)
 
 - cpus_have_cap() reworked to avoid __builtin_constant_p() for static
   key use (also touching drivers/irqchip/irq-gic-v3.c)
 
 - Uprobes support (currently only for native 64-bit tasks)
 
 - Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
   switching to a reserved page table
 
 - CPU capacity information passing via DT or sysfs (used by the
   scheduler)
 
 - Support for systems without FP/SIMD (IOW, kernel avoids touching these
   registers; there is no soft-float ABI, nor kernel emulation for
   AArch64 FP/SIMD)
 
 - Handling of hardware watchpoint with unaligned addresses, varied
   lengths and offsets from base
 
 - Use of the page table contiguous hint for kernel mappings
 
 - Hugetlb fixes for sizes involving the contiguous hint
 
 - Remove unnecessary I-cache invalidation in flush_cache_range()
 
 - CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)
 
 - Boot-time checks for writable+executable kernel mappings
 
 - Simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
   and make the arm64 kernel headers self-consistent (Xen headers patch
   merged separately)
 
 - Workaround for broken .inst support in certain binutils versions
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJYUEd0AAoJEGvWsS0AyF7xLpIP/AvSZgtz6/N+UcJ70r1oPwZ/
 wIZl5OJ1hpfIEs+9XPU71TJbfETOusyOYwDUQmp8lXFDICk3snB4PvXFpLHOSytL
 N05eYnV2de+gyKstC3ysg0mZdpIrazjKQbmHPc1KeNHuf6ZPSuIqRFINr3rnpziY
 TeOVmFplgKnbDYcF4ejqcaEFEn5BkkpNNfqhX4mOHJIC4BMmglT/KefzHtK/39AT
 EdZWrsA9UTEA+ccgolYtq55YcZD9kQFmEy2BRhZLbOamH5UrsUOVl9sS6fRvA3Qs
 eSbnHBsdJ7n/ym6w/CK+KXKo3M/02H0JNXqhPlHaAqb+djlp7N74wyiERISR6GL9
 s+7Fh/uNhfMg7vYtWkN3TlXth9HmNXdpaouNe/m8seBvwdKH+KfC0IBhXCl0NziB
 hxwMI+OtV4wxzPgXTSkYlbqVEC49dAq9GnRtR+Bi5tY4a9+jeNwG/uIRcFMaRHJe
 Wq48050mHMlmOjnmr3N+0l7dNhda8/ZO03ZlPfqrccBccX0idqVypkG6Wj75ZK1b
 TTBvQ2A2Hqi7YtSqZNrUnTDx5O4IlywQpXLzIsDJPph8mrZ4h06lRr2fkh4FcKgH
 NQrr9tjTD9XLOJfl3u0VwSbWYucWrgMHYI1r5SA5xl1Xqp6YJ8Kfod3sdA+uxS3P
 SK03zJP1LM+e1HidQhKN
 =8Uk9
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - struct thread_info moved off-stack (also touching
   include/linux/thread_info.h and include/linux/restart_block.h)

 - cpus_have_cap() reworked to avoid __builtin_constant_p() for static
   key use (also touching drivers/irqchip/irq-gic-v3.c)

 - uprobes support (currently only for native 64-bit tasks)

 - Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1
   switching to a reserved page table

 - CPU capacity information passing via DT or sysfs (used by the
   scheduler)

 - support for systems without FP/SIMD (IOW, kernel avoids touching
   these registers; there is no soft-float ABI, nor kernel emulation for
   AArch64 FP/SIMD)

 - handling of hardware watchpoint with unaligned addresses, varied
   lengths and offsets from base

 - use of the page table contiguous hint for kernel mappings

 - hugetlb fixes for sizes involving the contiguous hint

 - remove unnecessary I-cache invalidation in flush_cache_range()

 - CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1)

 - boot-time checks for writable+executable kernel mappings

 - simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart
   and make the arm64 kernel headers self-consistent (Xen headers patch
   merged separately)

 - Workaround for broken .inst support in certain binutils versions

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (60 commits)
  arm64: Disable PAN on uaccess_enable()
  arm64: Work around broken .inst when defective gas is detected
  arm64: Add detection code for broken .inst support in binutils
  arm64: Remove reference to asm/opcodes.h
  arm64: Get rid of asm/opcodes.h
  arm64: smp: Prevent raw_smp_processor_id() recursion
  arm64: head.S: Fix CNTHCTL_EL2 access on VHE system
  arm64: Remove I-cache invalidation from flush_cache_range()
  arm64: Enable HIBERNATION in defconfig
  arm64: Enable CONFIG_ARM64_SW_TTBR0_PAN
  arm64: xen: Enable user access before a privcmd hvc call
  arm64: Handle faults caused by inadvertent user access with PAN enabled
  arm64: Disable TTBR0_EL1 during normal kernel execution
  arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
  arm64: Factor out TTBR0_EL1 post-update workaround into a specific asm macro
  arm64: Factor out PAN enabling/disabling into separate uaccess_* macros
  arm64: Update the synchronous external abort fault description
  selftests: arm64: add test for unaligned/inexact watchpoint handling
  arm64: Allow hw watchpoint of length 3,5,6 and 7
  arm64: hw_breakpoint: Handle inexact watchpoint addresses
  ...
2016-12-13 16:39:21 -08:00

420 lines
11 KiB
C

/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/types.h>
#include <linux/jump_label.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/fpsimd.h>
static bool __hyp_text __fpsimd_enabled_nvhe(void)
{
return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
}
static bool __hyp_text __fpsimd_enabled_vhe(void)
{
return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
}
static hyp_alternate_select(__fpsimd_is_enabled,
__fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
ARM64_HAS_VIRT_HOST_EXTN);
bool __hyp_text __fpsimd_enabled(void)
{
return __fpsimd_is_enabled()();
}
static void __hyp_text __activate_traps_vhe(void)
{
u64 val;
val = read_sysreg(cpacr_el1);
val |= CPACR_EL1_TTA;
val &= ~CPACR_EL1_FPEN;
write_sysreg(val, cpacr_el1);
write_sysreg(__kvm_hyp_vector, vbar_el1);
}
static void __hyp_text __activate_traps_nvhe(void)
{
u64 val;
val = CPTR_EL2_DEFAULT;
val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
write_sysreg(val, cptr_el2);
}
static hyp_alternate_select(__activate_traps_arch,
__activate_traps_nvhe, __activate_traps_vhe,
ARM64_HAS_VIRT_HOST_EXTN);
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
u64 val;
/*
* We are about to set CPTR_EL2.TFP to trap all floating point
* register accesses to EL2, however, the ARM ARM clearly states that
* traps are only taken to EL2 if the operation would not otherwise
* trap to EL1. Therefore, always make sure that for 32-bit guests,
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
* it will cause an exception.
*/
val = vcpu->arch.hcr_el2;
if (!(val & HCR_RW) && system_supports_fpsimd()) {
write_sysreg(1 << 30, fpexc32_el2);
isb();
}
write_sysreg(val, hcr_el2);
/* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
write_sysreg(1 << 15, hstr_el2);
/*
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
* PMSELR_EL0 to make sure it never contains the cycle
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
* EL1 instead of being trapped to EL2.
*/
write_sysreg(0, pmselr_el0);
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
__activate_traps_arch()();
}
static void __hyp_text __deactivate_traps_vhe(void)
{
extern char vectors[]; /* kernel exception vectors */
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
write_sysreg(vectors, vbar_el1);
}
static void __hyp_text __deactivate_traps_nvhe(void)
{
write_sysreg(HCR_RW, hcr_el2);
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}
static hyp_alternate_select(__deactivate_traps_arch,
__deactivate_traps_nvhe, __deactivate_traps_vhe,
ARM64_HAS_VIRT_HOST_EXTN);
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
/*
* If we pended a virtual abort, preserve it until it gets
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
* the crucial bit is "On taking a vSError interrupt,
* HCR_EL2.VSE is cleared to 0."
*/
if (vcpu->arch.hcr_el2 & HCR_VSE)
vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
__deactivate_traps_arch()();
write_sysreg(0, hstr_el2);
write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
write_sysreg(0, pmuserenr_el0);
}
static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = kern_hyp_va(vcpu->kvm);
write_sysreg(kvm->arch.vttbr, vttbr_el2);
}
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
write_sysreg(0, vttbr_el2);
}
static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
__vgic_v3_save_state(vcpu);
else
__vgic_v2_save_state(vcpu);
write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
}
static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
{
u64 val;
val = read_sysreg(hcr_el2);
val |= HCR_INT_OVERRIDE;
val |= vcpu->arch.irq_lines;
write_sysreg(val, hcr_el2);
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
__vgic_v3_restore_state(vcpu);
else
__vgic_v2_restore_state(vcpu);
}
static bool __hyp_text __true_value(void)
{
return true;
}
static bool __hyp_text __false_value(void)
{
return false;
}
static hyp_alternate_select(__check_arm_834220,
__false_value, __true_value,
ARM64_WORKAROUND_834220);
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
u64 par, tmp;
/*
* Resolve the IPA the hard way using the guest VA.
*
* Stage-1 translation already validated the memory access
* rights. As such, we can use the EL1 translation regime, and
* don't have to distinguish between EL0 and EL1 access.
*
* We do need to save/restore PAR_EL1 though, as we haven't
* saved the guest context yet, and we may return early...
*/
par = read_sysreg(par_el1);
asm volatile("at s1e1r, %0" : : "r" (far));
isb();
tmp = read_sysreg(par_el1);
write_sysreg(par, par_el1);
if (unlikely(tmp & 1))
return false; /* Translation failed, back to guest */
/* Convert PAR to HPFAR format */
*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
return true;
}
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
u64 esr = read_sysreg_el2(esr);
u8 ec = ESR_ELx_EC(esr);
u64 hpfar, far;
vcpu->arch.fault.esr_el2 = esr;
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
return true;
far = read_sysreg_el2(far);
/*
* The HPFAR can be invalid if the stage 2 fault did not
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
* bit is clear) and one of the two following cases are true:
* 1. The fault was due to a permission fault
* 2. The processor carries errata 834220
*
* Therefore, for all non S1PTW faults where we either have a
* permission fault or the errata workaround is enabled, we
* resolve the IPA using the AT instruction.
*/
if (!(esr & ESR_ELx_S1PTW) &&
(__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
if (!__translate_far_to_hpfar(far, &hpfar))
return false;
} else {
hpfar = read_sysreg(hpfar_el2);
}
vcpu->arch.fault.far_el2 = far;
vcpu->arch.fault.hpfar_el2 = hpfar;
return true;
}
static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
{
*vcpu_pc(vcpu) = read_sysreg_el2(elr);
if (vcpu_mode_is_32bit(vcpu)) {
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
} else {
*vcpu_pc(vcpu) += 4;
}
write_sysreg_el2(*vcpu_pc(vcpu), elr);
}
int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
bool fp_enabled;
u64 exit_code;
vcpu = kern_hyp_va(vcpu);
write_sysreg(vcpu, tpidr_el2);
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
guest_ctxt = &vcpu->arch.ctxt;
__sysreg_save_host_state(host_ctxt);
__debug_cond_save_host_state(vcpu);
__activate_traps(vcpu);
__activate_vm(vcpu);
__vgic_restore_state(vcpu);
__timer_restore_state(vcpu);
/*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_guest_state(guest_ctxt);
__debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
/* Jump in the fire! */
again:
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
/*
* We're using the raw exception code in order to only process
* the trap if no SError is pending. We will come back to the
* same PC once the SError has been injected, and replay the
* trapping instruction.
*/
if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
goto again;
if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
exit_code == ARM_EXCEPTION_TRAP) {
bool valid;
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
kvm_vcpu_dabt_isvalid(vcpu) &&
!kvm_vcpu_dabt_isextabt(vcpu) &&
!kvm_vcpu_dabt_iss1tw(vcpu);
if (valid) {
int ret = __vgic_v2_perform_cpuif_access(vcpu);
if (ret == 1) {
__skip_instr(vcpu);
goto again;
}
if (ret == -1) {
/* Promote an illegal access to an SError */
__skip_instr(vcpu);
exit_code = ARM_EXCEPTION_EL1_SERROR;
}
/* 0 falls through to be handler out of EL2 */
}
}
fp_enabled = __fpsimd_enabled();
__sysreg_save_guest_state(guest_ctxt);
__sysreg32_save_state(vcpu);
__timer_save_state(vcpu);
__vgic_save_state(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_host_state(host_ctxt);
if (fp_enabled) {
__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
}
__debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
__debug_cond_restore_host_state(vcpu);
return exit_code;
}
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
{
unsigned long str_va;
/*
* Force the panic string to be loaded from the literal pool,
* making sure it is a kernel address and not a PC-relative
* reference.
*/
asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
__hyp_do_panic(str_va,
spsr, elr,
read_sysreg(esr_el2), read_sysreg_el2(far),
read_sysreg(hpfar_el2), par,
(void *)read_sysreg(tpidr_el2));
}
static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
{
panic(__hyp_panic_string,
spsr, elr,
read_sysreg_el2(esr), read_sysreg_el2(far),
read_sysreg(hpfar_el2), par,
(void *)read_sysreg(tpidr_el2));
}
static hyp_alternate_select(__hyp_call_panic,
__hyp_call_panic_nvhe, __hyp_call_panic_vhe,
ARM64_HAS_VIRT_HOST_EXTN);
void __hyp_text __noreturn __hyp_panic(void)
{
u64 spsr = read_sysreg_el2(spsr);
u64 elr = read_sysreg_el2(elr);
u64 par = read_sysreg(par_el1);
if (read_sysreg(vttbr_el2)) {
struct kvm_vcpu *vcpu;
struct kvm_cpu_context *host_ctxt;
vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_host_state(host_ctxt);
}
/* Call panic for real */
__hyp_call_panic()(spsr, elr, par);
unreachable();
}