linux_dsm_epyc7002/drivers/s390/crypto/ap_bus.c
Ralph Wuerthner af512ed0f8 [S390] zcrypt: fix request timeout handling
Under very high load zcrypt requests may timeout while waiting on the
request queue. Modify zcrypt that timeouts are based on crypto adapter
responses. A timeout occurs only if a crypto adapter does not respond
within a given time frame to sumitted requests.

Signed-off-by: Ralph Wuerthner <rwuerthn@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-07-10 11:24:52 +02:00

1361 lines
35 KiB
C

/*
* linux/drivers/s390/crypto/ap_bus.c
*
* Copyright (C) 2006 IBM Corporation
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Ralph Wuerthner <rwuerthn@de.ibm.com>
*
* Adjunct processor bus.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <asm/s390_rdev.h>
#include <asm/reset.h>
#include "ap_bus.h"
/* Some prototypes. */
static void ap_scan_bus(struct work_struct *);
static void ap_poll_all(unsigned long);
static void ap_poll_timeout(unsigned long);
static int ap_poll_thread_start(void);
static void ap_poll_thread_stop(void);
static void ap_request_timeout(unsigned long);
/**
* Module description.
*/
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
"Copyright 2006 IBM Corporation");
MODULE_LICENSE("GPL");
/**
* Module parameter
*/
int ap_domain_index = -1; /* Adjunct Processor Domain Index */
module_param_named(domain, ap_domain_index, int, 0000);
MODULE_PARM_DESC(domain, "domain index for ap devices");
EXPORT_SYMBOL(ap_domain_index);
static int ap_thread_flag = 1;
module_param_named(poll_thread, ap_thread_flag, int, 0000);
MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 1 (on).");
static struct device *ap_root_device = NULL;
static DEFINE_SPINLOCK(ap_device_lock);
static LIST_HEAD(ap_device_list);
/**
* Workqueue & timer for bus rescan.
*/
static struct workqueue_struct *ap_work_queue;
static struct timer_list ap_config_timer;
static int ap_config_time = AP_CONFIG_TIME;
static DECLARE_WORK(ap_config_work, ap_scan_bus);
/**
* Tasklet & timer for AP request polling.
*/
static struct timer_list ap_poll_timer = TIMER_INITIALIZER(ap_poll_timeout,0,0);
static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
static atomic_t ap_poll_requests = ATOMIC_INIT(0);
static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
static struct task_struct *ap_poll_kthread = NULL;
static DEFINE_MUTEX(ap_poll_thread_mutex);
/**
* Test if ap instructions are available.
*
* Returns 0 if the ap instructions are installed.
*/
static inline int ap_instructions_available(void)
{
register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
register unsigned long reg1 asm ("1") = -ENODEV;
register unsigned long reg2 asm ("2") = 0UL;
asm volatile(
" .long 0xb2af0000\n" /* PQAP(TAPQ) */
"0: la %1,0\n"
"1:\n"
EX_TABLE(0b, 1b)
: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
return reg1;
}
/**
* Test adjunct processor queue.
* @qid: the ap queue number
* @queue_depth: pointer to queue depth value
* @device_type: pointer to device type value
*
* Returns ap queue status structure.
*/
static inline struct ap_queue_status
ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
{
register unsigned long reg0 asm ("0") = qid;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm ("2") = 0UL;
asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
*device_type = (int) (reg2 >> 24);
*queue_depth = (int) (reg2 & 0xff);
return reg1;
}
/**
* Reset adjunct processor queue.
* @qid: the ap queue number
*
* Returns ap queue status structure.
*/
static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
{
register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm ("2") = 0UL;
asm volatile(
".long 0xb2af0000" /* PQAP(RAPQ) */
: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
return reg1;
}
/**
* Send message to adjunct processor queue.
* @qid: the ap queue number
* @psmid: the program supplied message identifier
* @msg: the message text
* @length: the message length
*
* Returns ap queue status structure.
*
* Condition code 1 on NQAP can't happen because the L bit is 1.
*
* Condition code 2 on NQAP also means the send is incomplete,
* because a segment boundary was reached. The NQAP is repeated.
*/
static inline struct ap_queue_status
__ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
{
typedef struct { char _[length]; } msgblock;
register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm ("2") = (unsigned long) msg;
register unsigned long reg3 asm ("3") = (unsigned long) length;
register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
register unsigned long reg5 asm ("5") = (unsigned int) psmid;
asm volatile (
"0: .long 0xb2ad0042\n" /* DQAP */
" brc 2,0b"
: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
: "cc" );
return reg1;
}
int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
{
struct ap_queue_status status;
status = __ap_send(qid, psmid, msg, length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
return 0;
case AP_RESPONSE_Q_FULL:
case AP_RESPONSE_RESET_IN_PROGRESS:
return -EBUSY;
default: /* Device is gone. */
return -ENODEV;
}
}
EXPORT_SYMBOL(ap_send);
/*
* Receive message from adjunct processor queue.
* @qid: the ap queue number
* @psmid: pointer to program supplied message identifier
* @msg: the message text
* @length: the message length
*
* Returns ap queue status structure.
*
* Condition code 1 on DQAP means the receive has taken place
* but only partially. The response is incomplete, hence the
* DQAP is repeated.
*
* Condition code 2 on DQAP also means the receive is incomplete,
* this time because a segment boundary was reached. Again, the
* DQAP is repeated.
*
* Note that gpr2 is used by the DQAP instruction to keep track of
* any 'residual' length, in case the instruction gets interrupted.
* Hence it gets zeroed before the instruction.
*/
static inline struct ap_queue_status
__ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
{
typedef struct { char _[length]; } msgblock;
register unsigned long reg0 asm("0") = qid | 0x80000000UL;
register struct ap_queue_status reg1 asm ("1");
register unsigned long reg2 asm("2") = 0UL;
register unsigned long reg4 asm("4") = (unsigned long) msg;
register unsigned long reg5 asm("5") = (unsigned long) length;
register unsigned long reg6 asm("6") = 0UL;
register unsigned long reg7 asm("7") = 0UL;
asm volatile(
"0: .long 0xb2ae0064\n"
" brc 6,0b\n"
: "+d" (reg0), "=d" (reg1), "+d" (reg2),
"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
"=m" (*(msgblock *) msg) : : "cc" );
*psmid = (((unsigned long long) reg6) << 32) + reg7;
return reg1;
}
int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
{
struct ap_queue_status status;
status = __ap_recv(qid, psmid, msg, length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
return 0;
case AP_RESPONSE_NO_PENDING_REPLY:
if (status.queue_empty)
return -ENOENT;
return -EBUSY;
case AP_RESPONSE_RESET_IN_PROGRESS:
return -EBUSY;
default:
return -ENODEV;
}
}
EXPORT_SYMBOL(ap_recv);
/**
* Check if an AP queue is available. The test is repeated for
* AP_MAX_RESET times.
* @qid: the ap queue number
* @queue_depth: pointer to queue depth value
* @device_type: pointer to device type value
*/
static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
{
struct ap_queue_status status;
int t_depth, t_device_type, rc, i;
rc = -EBUSY;
for (i = 0; i < AP_MAX_RESET; i++) {
status = ap_test_queue(qid, &t_depth, &t_device_type);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
*queue_depth = t_depth + 1;
*device_type = t_device_type;
rc = 0;
break;
case AP_RESPONSE_Q_NOT_AVAIL:
rc = -ENODEV;
break;
case AP_RESPONSE_RESET_IN_PROGRESS:
break;
case AP_RESPONSE_DECONFIGURED:
rc = -ENODEV;
break;
case AP_RESPONSE_CHECKSTOPPED:
rc = -ENODEV;
break;
case AP_RESPONSE_BUSY:
break;
default:
BUG();
}
if (rc != -EBUSY)
break;
if (i < AP_MAX_RESET - 1)
udelay(5);
}
return rc;
}
/**
* Reset an AP queue and wait for it to become available again.
* @qid: the ap queue number
*/
static int ap_init_queue(ap_qid_t qid)
{
struct ap_queue_status status;
int rc, dummy, i;
rc = -ENODEV;
status = ap_reset_queue(qid);
for (i = 0; i < AP_MAX_RESET; i++) {
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
if (status.queue_empty)
rc = 0;
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
i = AP_MAX_RESET; /* return with -ENODEV */
break;
case AP_RESPONSE_RESET_IN_PROGRESS:
rc = -EBUSY;
case AP_RESPONSE_BUSY:
default:
break;
}
if (rc != -ENODEV && rc != -EBUSY)
break;
if (i < AP_MAX_RESET - 1) {
udelay(5);
status = ap_test_queue(qid, &dummy, &dummy);
}
}
return rc;
}
/**
* Arm request timeout if a AP device was idle and a new request is submitted.
*/
static void ap_increase_queue_count(struct ap_device *ap_dev)
{
int timeout = ap_dev->drv->request_timeout;
ap_dev->queue_count++;
if (ap_dev->queue_count == 1) {
mod_timer(&ap_dev->timeout, jiffies + timeout);
ap_dev->reset = AP_RESET_ARMED;
}
}
/**
* AP device is still alive, re-schedule request timeout if there are still
* pending requests.
*/
static void ap_decrease_queue_count(struct ap_device *ap_dev)
{
int timeout = ap_dev->drv->request_timeout;
ap_dev->queue_count--;
if (ap_dev->queue_count > 0)
mod_timer(&ap_dev->timeout, jiffies + timeout);
else
/**
* The timeout timer should to be disabled now - since
* del_timer_sync() is very expensive, we just tell via the
* reset flag to ignore the pending timeout timer.
*/
ap_dev->reset = AP_RESET_IGNORE;
}
/**
* AP device related attributes.
*/
static ssize_t ap_hwtype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ap_device *ap_dev = to_ap_dev(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
}
static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ap_device *ap_dev = to_ap_dev(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
}
static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
static ssize_t ap_request_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ap_device *ap_dev = to_ap_dev(dev);
int rc;
spin_lock_bh(&ap_dev->lock);
rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
spin_unlock_bh(&ap_dev->lock);
return rc;
}
static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
static ssize_t ap_modalias_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
}
static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
static struct attribute *ap_dev_attrs[] = {
&dev_attr_hwtype.attr,
&dev_attr_depth.attr,
&dev_attr_request_count.attr,
&dev_attr_modalias.attr,
NULL
};
static struct attribute_group ap_dev_attr_group = {
.attrs = ap_dev_attrs
};
/**
* AP bus driver registration/unregistration.
*/
static int ap_bus_match(struct device *dev, struct device_driver *drv)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(drv);
struct ap_device_id *id;
/**
* Compare device type of the device with the list of
* supported types of the device_driver.
*/
for (id = ap_drv->ids; id->match_flags; id++) {
if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
(id->dev_type != ap_dev->device_type))
continue;
return 1;
}
return 0;
}
/**
* uevent function for AP devices. It sets up a single environment
* variable DEV_TYPE which contains the hardware device type.
*/
static int ap_uevent (struct device *dev, char **envp, int num_envp,
char *buffer, int buffer_size)
{
struct ap_device *ap_dev = to_ap_dev(dev);
int retval = 0, length = 0, i = 0;
if (!ap_dev)
return -ENODEV;
/* Set up DEV_TYPE environment variable. */
retval = add_uevent_var(envp, num_envp, &i,
buffer, buffer_size, &length,
"DEV_TYPE=%04X", ap_dev->device_type);
if (retval)
return retval;
/* Add MODALIAS= */
retval = add_uevent_var(envp, num_envp, &i,
buffer, buffer_size, &length,
"MODALIAS=ap:t%02X", ap_dev->device_type);
envp[i] = NULL;
return retval;
}
static struct bus_type ap_bus_type = {
.name = "ap",
.match = &ap_bus_match,
.uevent = &ap_uevent,
};
static int ap_device_probe(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(dev->driver);
int rc;
ap_dev->drv = ap_drv;
spin_lock_bh(&ap_device_lock);
list_add(&ap_dev->list, &ap_device_list);
spin_unlock_bh(&ap_device_lock);
rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
return rc;
}
/**
* Flush all requests from the request/pending queue of an AP device.
* @ap_dev: pointer to the AP device.
*/
static void __ap_flush_queue(struct ap_device *ap_dev)
{
struct ap_message *ap_msg, *next;
list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
list_del_init(&ap_msg->list);
ap_dev->pendingq_count--;
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
}
list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
list_del_init(&ap_msg->list);
ap_dev->requestq_count--;
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
}
}
void ap_flush_queue(struct ap_device *ap_dev)
{
spin_lock_bh(&ap_dev->lock);
__ap_flush_queue(ap_dev);
spin_unlock_bh(&ap_dev->lock);
}
EXPORT_SYMBOL(ap_flush_queue);
static int ap_device_remove(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = ap_dev->drv;
ap_flush_queue(ap_dev);
del_timer_sync(&ap_dev->timeout);
if (ap_drv->remove)
ap_drv->remove(ap_dev);
spin_lock_bh(&ap_device_lock);
list_del_init(&ap_dev->list);
spin_unlock_bh(&ap_device_lock);
spin_lock_bh(&ap_dev->lock);
atomic_sub(ap_dev->queue_count, &ap_poll_requests);
spin_unlock_bh(&ap_dev->lock);
return 0;
}
int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
char *name)
{
struct device_driver *drv = &ap_drv->driver;
drv->bus = &ap_bus_type;
drv->probe = ap_device_probe;
drv->remove = ap_device_remove;
drv->owner = owner;
drv->name = name;
return driver_register(drv);
}
EXPORT_SYMBOL(ap_driver_register);
void ap_driver_unregister(struct ap_driver *ap_drv)
{
driver_unregister(&ap_drv->driver);
}
EXPORT_SYMBOL(ap_driver_unregister);
/**
* AP bus attributes.
*/
static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
}
static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
}
static ssize_t ap_config_time_store(struct bus_type *bus,
const char *buf, size_t count)
{
int time;
if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
return -EINVAL;
ap_config_time = time;
if (!timer_pending(&ap_config_timer) ||
!mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
}
return count;
}
static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
}
static ssize_t ap_poll_thread_store(struct bus_type *bus,
const char *buf, size_t count)
{
int flag, rc;
if (sscanf(buf, "%d\n", &flag) != 1)
return -EINVAL;
if (flag) {
rc = ap_poll_thread_start();
if (rc)
return rc;
}
else
ap_poll_thread_stop();
return count;
}
static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
static struct bus_attribute *const ap_bus_attrs[] = {
&bus_attr_ap_domain,
&bus_attr_config_time,
&bus_attr_poll_thread,
NULL
};
/**
* Pick one of the 16 ap domains.
*/
static int ap_select_domain(void)
{
int queue_depth, device_type, count, max_count, best_domain;
int rc, i, j;
/**
* We want to use a single domain. Either the one specified with
* the "domain=" parameter or the domain with the maximum number
* of devices.
*/
if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
/* Domain has already been selected. */
return 0;
best_domain = -1;
max_count = 0;
for (i = 0; i < AP_DOMAINS; i++) {
count = 0;
for (j = 0; j < AP_DEVICES; j++) {
ap_qid_t qid = AP_MKQID(j, i);
rc = ap_query_queue(qid, &queue_depth, &device_type);
if (rc)
continue;
count++;
}
if (count > max_count) {
max_count = count;
best_domain = i;
}
}
if (best_domain >= 0){
ap_domain_index = best_domain;
return 0;
}
return -ENODEV;
}
/**
* Find the device type if query queue returned a device type of 0.
* @ap_dev: pointer to the AP device.
*/
static int ap_probe_device_type(struct ap_device *ap_dev)
{
static unsigned char msg[] = {
0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
};
struct ap_queue_status status;
unsigned long long psmid;
char *reply;
int rc, i;
reply = (void *) get_zeroed_page(GFP_KERNEL);
if (!reply) {
rc = -ENOMEM;
goto out;
}
status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
msg, sizeof(msg));
if (status.response_code != AP_RESPONSE_NORMAL) {
rc = -ENODEV;
goto out_free;
}
/* Wait for the test message to complete. */
for (i = 0; i < 6; i++) {
mdelay(300);
status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
if (status.response_code == AP_RESPONSE_NORMAL &&
psmid == 0x0102030405060708ULL)
break;
}
if (i < 6) {
/* Got an answer. */
if (reply[0] == 0x00 && reply[1] == 0x86)
ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
else
ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
rc = 0;
} else
rc = -ENODEV;
out_free:
free_page((unsigned long) reply);
out:
return rc;
}
/**
* Scan the ap bus for new devices.
*/
static int __ap_scan_bus(struct device *dev, void *data)
{
return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
}
static void ap_device_release(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
kfree(ap_dev);
}
static void ap_scan_bus(struct work_struct *unused)
{
struct ap_device *ap_dev;
struct device *dev;
ap_qid_t qid;
int queue_depth, device_type;
int rc, i;
if (ap_select_domain() != 0)
return;
for (i = 0; i < AP_DEVICES; i++) {
qid = AP_MKQID(i, ap_domain_index);
dev = bus_find_device(&ap_bus_type, NULL,
(void *)(unsigned long)qid,
__ap_scan_bus);
rc = ap_query_queue(qid, &queue_depth, &device_type);
if (dev) {
if (rc == -EBUSY) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(AP_RESET_TIMEOUT);
rc = ap_query_queue(qid, &queue_depth,
&device_type);
}
ap_dev = to_ap_dev(dev);
spin_lock_bh(&ap_dev->lock);
if (rc || ap_dev->unregistered) {
spin_unlock_bh(&ap_dev->lock);
device_unregister(dev);
put_device(dev);
continue;
}
spin_unlock_bh(&ap_dev->lock);
put_device(dev);
continue;
}
if (rc)
continue;
rc = ap_init_queue(qid);
if (rc)
continue;
ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
if (!ap_dev)
break;
ap_dev->qid = qid;
ap_dev->queue_depth = queue_depth;
ap_dev->unregistered = 1;
spin_lock_init(&ap_dev->lock);
INIT_LIST_HEAD(&ap_dev->pendingq);
INIT_LIST_HEAD(&ap_dev->requestq);
INIT_LIST_HEAD(&ap_dev->list);
setup_timer(&ap_dev->timeout, ap_request_timeout,
(unsigned long) ap_dev);
if (device_type == 0)
ap_probe_device_type(ap_dev);
else
ap_dev->device_type = device_type;
ap_dev->device.bus = &ap_bus_type;
ap_dev->device.parent = ap_root_device;
snprintf(ap_dev->device.bus_id, BUS_ID_SIZE, "card%02x",
AP_QID_DEVICE(ap_dev->qid));
ap_dev->device.release = ap_device_release;
rc = device_register(&ap_dev->device);
if (rc) {
kfree(ap_dev);
continue;
}
/* Add device attributes. */
rc = sysfs_create_group(&ap_dev->device.kobj,
&ap_dev_attr_group);
if (!rc) {
spin_lock_bh(&ap_dev->lock);
ap_dev->unregistered = 0;
spin_unlock_bh(&ap_dev->lock);
}
else
device_unregister(&ap_dev->device);
}
}
static void
ap_config_timeout(unsigned long ptr)
{
queue_work(ap_work_queue, &ap_config_work);
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
}
/**
* Set up the timer to run the poll tasklet
*/
static inline void ap_schedule_poll_timer(void)
{
if (timer_pending(&ap_poll_timer))
return;
mod_timer(&ap_poll_timer, jiffies + AP_POLL_TIME);
}
/**
* Receive pending reply messages from an AP device.
* @ap_dev: pointer to the AP device
* @flags: pointer to control flags, bit 2^0 is set if another poll is
* required, bit 2^1 is set if the poll timer needs to get armed
* Returns 0 if the device is still present, -ENODEV if not.
*/
static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
{
struct ap_queue_status status;
struct ap_message *ap_msg;
if (ap_dev->queue_count <= 0)
return 0;
status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
ap_dev->reply->message, ap_dev->reply->length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
atomic_dec(&ap_poll_requests);
ap_decrease_queue_count(ap_dev);
list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
if (ap_msg->psmid != ap_dev->reply->psmid)
continue;
list_del_init(&ap_msg->list);
ap_dev->pendingq_count--;
ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
break;
}
if (ap_dev->queue_count > 0)
*flags |= 1;
break;
case AP_RESPONSE_NO_PENDING_REPLY:
if (status.queue_empty) {
/* The card shouldn't forget requests but who knows. */
atomic_sub(ap_dev->queue_count, &ap_poll_requests);
ap_dev->queue_count = 0;
list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
ap_dev->requestq_count += ap_dev->pendingq_count;
ap_dev->pendingq_count = 0;
} else
*flags |= 2;
break;
default:
return -ENODEV;
}
return 0;
}
/**
* Send messages from the request queue to an AP device.
* @ap_dev: pointer to the AP device
* @flags: pointer to control flags, bit 2^0 is set if another poll is
* required, bit 2^1 is set if the poll timer needs to get armed
* Returns 0 if the device is still present, -ENODEV if not.
*/
static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
{
struct ap_queue_status status;
struct ap_message *ap_msg;
if (ap_dev->requestq_count <= 0 ||
ap_dev->queue_count >= ap_dev->queue_depth)
return 0;
/* Start the next request on the queue. */
ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
status = __ap_send(ap_dev->qid, ap_msg->psmid,
ap_msg->message, ap_msg->length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
atomic_inc(&ap_poll_requests);
ap_increase_queue_count(ap_dev);
list_move_tail(&ap_msg->list, &ap_dev->pendingq);
ap_dev->requestq_count--;
ap_dev->pendingq_count++;
if (ap_dev->queue_count < ap_dev->queue_depth &&
ap_dev->requestq_count > 0)
*flags |= 1;
*flags |= 2;
break;
case AP_RESPONSE_Q_FULL:
case AP_RESPONSE_RESET_IN_PROGRESS:
*flags |= 2;
break;
case AP_RESPONSE_MESSAGE_TOO_BIG:
return -EINVAL;
default:
return -ENODEV;
}
return 0;
}
/**
* Poll AP device for pending replies and send new messages. If either
* ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
* @ap_dev: pointer to the bus device
* @flags: pointer to control flags, bit 2^0 is set if another poll is
* required, bit 2^1 is set if the poll timer needs to get armed
* Returns 0.
*/
static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
{
int rc;
rc = ap_poll_read(ap_dev, flags);
if (rc)
return rc;
return ap_poll_write(ap_dev, flags);
}
/**
* Queue a message to a device.
* @ap_dev: pointer to the AP device
* @ap_msg: the message to be queued
*/
static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
{
struct ap_queue_status status;
if (list_empty(&ap_dev->requestq) &&
ap_dev->queue_count < ap_dev->queue_depth) {
status = __ap_send(ap_dev->qid, ap_msg->psmid,
ap_msg->message, ap_msg->length);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
list_add_tail(&ap_msg->list, &ap_dev->pendingq);
atomic_inc(&ap_poll_requests);
ap_dev->pendingq_count++;
ap_increase_queue_count(ap_dev);
ap_dev->total_request_count++;
break;
case AP_RESPONSE_Q_FULL:
case AP_RESPONSE_RESET_IN_PROGRESS:
list_add_tail(&ap_msg->list, &ap_dev->requestq);
ap_dev->requestq_count++;
ap_dev->total_request_count++;
return -EBUSY;
case AP_RESPONSE_MESSAGE_TOO_BIG:
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
return -EINVAL;
default: /* Device is gone. */
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
return -ENODEV;
}
} else {
list_add_tail(&ap_msg->list, &ap_dev->requestq);
ap_dev->requestq_count++;
ap_dev->total_request_count++;
return -EBUSY;
}
ap_schedule_poll_timer();
return 0;
}
void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
{
unsigned long flags;
int rc;
spin_lock_bh(&ap_dev->lock);
if (!ap_dev->unregistered) {
/* Make room on the queue by polling for finished requests. */
rc = ap_poll_queue(ap_dev, &flags);
if (!rc)
rc = __ap_queue_message(ap_dev, ap_msg);
if (!rc)
wake_up(&ap_poll_wait);
if (rc == -ENODEV)
ap_dev->unregistered = 1;
} else {
ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
rc = -ENODEV;
}
spin_unlock_bh(&ap_dev->lock);
if (rc == -ENODEV)
device_unregister(&ap_dev->device);
}
EXPORT_SYMBOL(ap_queue_message);
/**
* Cancel a crypto request. This is done by removing the request
* from the devive pendingq or requestq queue. Note that the
* request stays on the AP queue. When it finishes the message
* reply will be discarded because the psmid can't be found.
* @ap_dev: AP device that has the message queued
* @ap_msg: the message that is to be removed
*/
void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
{
struct ap_message *tmp;
spin_lock_bh(&ap_dev->lock);
if (!list_empty(&ap_msg->list)) {
list_for_each_entry(tmp, &ap_dev->pendingq, list)
if (tmp->psmid == ap_msg->psmid) {
ap_dev->pendingq_count--;
goto found;
}
ap_dev->requestq_count--;
found:
list_del_init(&ap_msg->list);
}
spin_unlock_bh(&ap_dev->lock);
}
EXPORT_SYMBOL(ap_cancel_message);
/**
* AP receive polling for finished AP requests
*/
static void ap_poll_timeout(unsigned long unused)
{
tasklet_schedule(&ap_tasklet);
}
/**
* Reset a not responding AP device and move all requests from the
* pending queue to the request queue.
*/
static void ap_reset(struct ap_device *ap_dev)
{
int rc;
ap_dev->reset = AP_RESET_IGNORE;
atomic_sub(ap_dev->queue_count, &ap_poll_requests);
ap_dev->queue_count = 0;
list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
ap_dev->requestq_count += ap_dev->pendingq_count;
ap_dev->pendingq_count = 0;
rc = ap_init_queue(ap_dev->qid);
if (rc == -ENODEV)
ap_dev->unregistered = 1;
}
/**
* Poll all AP devices on the bus in a round robin fashion. Continue
* polling until bit 2^0 of the control flags is not set. If bit 2^1
* of the control flags has been set arm the poll timer.
*/
static int __ap_poll_all(struct ap_device *ap_dev, unsigned long *flags)
{
spin_lock(&ap_dev->lock);
if (!ap_dev->unregistered) {
if (ap_poll_queue(ap_dev, flags))
ap_dev->unregistered = 1;
if (ap_dev->reset == AP_RESET_DO)
ap_reset(ap_dev);
}
spin_unlock(&ap_dev->lock);
return 0;
}
static void ap_poll_all(unsigned long dummy)
{
unsigned long flags;
struct ap_device *ap_dev;
do {
flags = 0;
spin_lock(&ap_device_lock);
list_for_each_entry(ap_dev, &ap_device_list, list) {
__ap_poll_all(ap_dev, &flags);
}
spin_unlock(&ap_device_lock);
} while (flags & 1);
if (flags & 2)
ap_schedule_poll_timer();
}
/**
* AP bus poll thread. The purpose of this thread is to poll for
* finished requests in a loop if there is a "free" cpu - that is
* a cpu that doesn't have anything better to do. The polling stops
* as soon as there is another task or if all messages have been
* delivered.
*/
static int ap_poll_thread(void *data)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int requests;
struct ap_device *ap_dev;
set_user_nice(current, 19);
while (1) {
if (need_resched()) {
schedule();
continue;
}
add_wait_queue(&ap_poll_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
break;
requests = atomic_read(&ap_poll_requests);
if (requests <= 0)
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&ap_poll_wait, &wait);
flags = 0;
spin_lock_bh(&ap_device_lock);
list_for_each_entry(ap_dev, &ap_device_list, list) {
__ap_poll_all(ap_dev, &flags);
}
spin_unlock_bh(&ap_device_lock);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&ap_poll_wait, &wait);
return 0;
}
static int ap_poll_thread_start(void)
{
int rc;
mutex_lock(&ap_poll_thread_mutex);
if (!ap_poll_kthread) {
ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
if (rc)
ap_poll_kthread = NULL;
}
else
rc = 0;
mutex_unlock(&ap_poll_thread_mutex);
return rc;
}
static void ap_poll_thread_stop(void)
{
mutex_lock(&ap_poll_thread_mutex);
if (ap_poll_kthread) {
kthread_stop(ap_poll_kthread);
ap_poll_kthread = NULL;
}
mutex_unlock(&ap_poll_thread_mutex);
}
/**
* Handling of request timeouts
*/
static void ap_request_timeout(unsigned long data)
{
struct ap_device *ap_dev = (struct ap_device *) data;
if (ap_dev->reset == AP_RESET_ARMED)
ap_dev->reset = AP_RESET_DO;
}
static void ap_reset_domain(void)
{
int i;
for (i = 0; i < AP_DEVICES; i++)
ap_reset_queue(AP_MKQID(i, ap_domain_index));
}
static void ap_reset_all(void)
{
int i, j;
for (i = 0; i < AP_DOMAINS; i++)
for (j = 0; j < AP_DEVICES; j++)
ap_reset_queue(AP_MKQID(j, i));
}
static struct reset_call ap_reset_call = {
.fn = ap_reset_all,
};
/**
* The module initialization code.
*/
int __init ap_module_init(void)
{
int rc, i;
if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
printk(KERN_WARNING "Invalid param: domain = %d. "
" Not loading.\n", ap_domain_index);
return -EINVAL;
}
if (ap_instructions_available() != 0) {
printk(KERN_WARNING "AP instructions not installed.\n");
return -ENODEV;
}
register_reset_call(&ap_reset_call);
/* Create /sys/bus/ap. */
rc = bus_register(&ap_bus_type);
if (rc)
goto out;
for (i = 0; ap_bus_attrs[i]; i++) {
rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
if (rc)
goto out_bus;
}
/* Create /sys/devices/ap. */
ap_root_device = s390_root_dev_register("ap");
rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
if (rc)
goto out_bus;
ap_work_queue = create_singlethread_workqueue("kapwork");
if (!ap_work_queue) {
rc = -ENOMEM;
goto out_root;
}
if (ap_select_domain() == 0)
ap_scan_bus(NULL);
/* Setup the ap bus rescan timer. */
init_timer(&ap_config_timer);
ap_config_timer.function = ap_config_timeout;
ap_config_timer.data = 0;
ap_config_timer.expires = jiffies + ap_config_time * HZ;
add_timer(&ap_config_timer);
/* Start the low priority AP bus poll thread. */
if (ap_thread_flag) {
rc = ap_poll_thread_start();
if (rc)
goto out_work;
}
return 0;
out_work:
del_timer_sync(&ap_config_timer);
del_timer_sync(&ap_poll_timer);
destroy_workqueue(ap_work_queue);
out_root:
s390_root_dev_unregister(ap_root_device);
out_bus:
while (i--)
bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
bus_unregister(&ap_bus_type);
out:
unregister_reset_call(&ap_reset_call);
return rc;
}
static int __ap_match_all(struct device *dev, void *data)
{
return 1;
}
/**
* The module termination code
*/
void ap_module_exit(void)
{
int i;
struct device *dev;
ap_reset_domain();
ap_poll_thread_stop();
del_timer_sync(&ap_config_timer);
del_timer_sync(&ap_poll_timer);
destroy_workqueue(ap_work_queue);
tasklet_kill(&ap_tasklet);
s390_root_dev_unregister(ap_root_device);
while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
__ap_match_all)))
{
device_unregister(dev);
put_device(dev);
}
for (i = 0; ap_bus_attrs[i]; i++)
bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
bus_unregister(&ap_bus_type);
unregister_reset_call(&ap_reset_call);
}
#ifndef CONFIG_ZCRYPT_MONOLITHIC
module_init(ap_module_init);
module_exit(ap_module_exit);
#endif