mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 12:49:50 +07:00
477f2d1460
This patch add the ethtool support to set RX/Tx coalesce value to the VF associated Rx/Tx queues. Signed-off-by: Rahul Verma <Rahul.Verma@cavium.com> Signed-off-by: Yuval Mintz <yuval.mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
4234 lines
111 KiB
C
4234 lines
111 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015-2017 QLogic Corporation
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and /or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/qed/qed_chain.h>
|
|
#include <linux/qed/qed_if.h>
|
|
#include "qed.h"
|
|
#include "qed_cxt.h"
|
|
#include "qed_dcbx.h"
|
|
#include "qed_dev_api.h"
|
|
#include "qed_fcoe.h"
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_init_ops.h"
|
|
#include "qed_int.h"
|
|
#include "qed_iscsi.h"
|
|
#include "qed_ll2.h"
|
|
#include "qed_mcp.h"
|
|
#include "qed_ooo.h"
|
|
#include "qed_reg_addr.h"
|
|
#include "qed_sp.h"
|
|
#include "qed_sriov.h"
|
|
#include "qed_vf.h"
|
|
#include "qed_rdma.h"
|
|
|
|
static DEFINE_SPINLOCK(qm_lock);
|
|
|
|
#define QED_MIN_DPIS (4)
|
|
#define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS)
|
|
|
|
static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, enum BAR_ID bar_id)
|
|
{
|
|
u32 bar_reg = (bar_id == BAR_ID_0 ?
|
|
PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
|
|
u32 val;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return qed_vf_hw_bar_size(p_hwfn, bar_id);
|
|
|
|
val = qed_rd(p_hwfn, p_ptt, bar_reg);
|
|
if (val)
|
|
return 1 << (val + 15);
|
|
|
|
/* Old MFW initialized above registered only conditionally */
|
|
if (p_hwfn->cdev->num_hwfns > 1) {
|
|
DP_INFO(p_hwfn,
|
|
"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
|
|
return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
|
|
} else {
|
|
DP_INFO(p_hwfn,
|
|
"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
|
|
return 512 * 1024;
|
|
}
|
|
}
|
|
|
|
void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
|
|
{
|
|
u32 i;
|
|
|
|
cdev->dp_level = dp_level;
|
|
cdev->dp_module = dp_module;
|
|
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
p_hwfn->dp_level = dp_level;
|
|
p_hwfn->dp_module = dp_module;
|
|
}
|
|
}
|
|
|
|
void qed_init_struct(struct qed_dev *cdev)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
p_hwfn->cdev = cdev;
|
|
p_hwfn->my_id = i;
|
|
p_hwfn->b_active = false;
|
|
|
|
mutex_init(&p_hwfn->dmae_info.mutex);
|
|
}
|
|
|
|
/* hwfn 0 is always active */
|
|
cdev->hwfns[0].b_active = true;
|
|
|
|
/* set the default cache alignment to 128 */
|
|
cdev->cache_shift = 7;
|
|
}
|
|
|
|
static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
kfree(qm_info->qm_pq_params);
|
|
qm_info->qm_pq_params = NULL;
|
|
kfree(qm_info->qm_vport_params);
|
|
qm_info->qm_vport_params = NULL;
|
|
kfree(qm_info->qm_port_params);
|
|
qm_info->qm_port_params = NULL;
|
|
kfree(qm_info->wfq_data);
|
|
qm_info->wfq_data = NULL;
|
|
}
|
|
|
|
void qed_resc_free(struct qed_dev *cdev)
|
|
{
|
|
int i;
|
|
|
|
if (IS_VF(cdev)) {
|
|
for_each_hwfn(cdev, i)
|
|
qed_l2_free(&cdev->hwfns[i]);
|
|
return;
|
|
}
|
|
|
|
kfree(cdev->fw_data);
|
|
cdev->fw_data = NULL;
|
|
|
|
kfree(cdev->reset_stats);
|
|
cdev->reset_stats = NULL;
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
qed_cxt_mngr_free(p_hwfn);
|
|
qed_qm_info_free(p_hwfn);
|
|
qed_spq_free(p_hwfn);
|
|
qed_eq_free(p_hwfn);
|
|
qed_consq_free(p_hwfn);
|
|
qed_int_free(p_hwfn);
|
|
#ifdef CONFIG_QED_LL2
|
|
qed_ll2_free(p_hwfn);
|
|
#endif
|
|
if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
|
|
qed_fcoe_free(p_hwfn);
|
|
|
|
if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
|
|
qed_iscsi_free(p_hwfn);
|
|
qed_ooo_free(p_hwfn);
|
|
}
|
|
qed_iov_free(p_hwfn);
|
|
qed_l2_free(p_hwfn);
|
|
qed_dmae_info_free(p_hwfn);
|
|
qed_dcbx_info_free(p_hwfn);
|
|
}
|
|
}
|
|
|
|
/******************** QM initialization *******************/
|
|
#define ACTIVE_TCS_BMAP 0x9f
|
|
#define ACTIVE_TCS_BMAP_4PORT_K2 0xf
|
|
|
|
/* determines the physical queue flags for a given PF. */
|
|
static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 flags;
|
|
|
|
/* common flags */
|
|
flags = PQ_FLAGS_LB;
|
|
|
|
/* feature flags */
|
|
if (IS_QED_SRIOV(p_hwfn->cdev))
|
|
flags |= PQ_FLAGS_VFS;
|
|
|
|
/* protocol flags */
|
|
switch (p_hwfn->hw_info.personality) {
|
|
case QED_PCI_ETH:
|
|
flags |= PQ_FLAGS_MCOS;
|
|
break;
|
|
case QED_PCI_FCOE:
|
|
flags |= PQ_FLAGS_OFLD;
|
|
break;
|
|
case QED_PCI_ISCSI:
|
|
flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
|
|
break;
|
|
case QED_PCI_ETH_ROCE:
|
|
flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
|
|
break;
|
|
case QED_PCI_ETH_IWARP:
|
|
flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
|
|
PQ_FLAGS_OFLD;
|
|
break;
|
|
default:
|
|
DP_ERR(p_hwfn,
|
|
"unknown personality %d\n", p_hwfn->hw_info.personality);
|
|
return 0;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
/* Getters for resource amounts necessary for qm initialization */
|
|
u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
|
|
{
|
|
return p_hwfn->hw_info.num_hw_tc;
|
|
}
|
|
|
|
u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
|
|
{
|
|
return IS_QED_SRIOV(p_hwfn->cdev) ?
|
|
p_hwfn->cdev->p_iov_info->total_vfs : 0;
|
|
}
|
|
|
|
#define NUM_DEFAULT_RLS 1
|
|
|
|
u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
|
|
|
|
/* num RLs can't exceed resource amount of rls or vports */
|
|
num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
|
|
RESC_NUM(p_hwfn, QED_VPORT));
|
|
|
|
/* Make sure after we reserve there's something left */
|
|
if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
|
|
return 0;
|
|
|
|
/* subtract rls necessary for VFs and one default one for the PF */
|
|
num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
|
|
|
|
return num_pf_rls;
|
|
}
|
|
|
|
u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 pq_flags = qed_get_pq_flags(p_hwfn);
|
|
|
|
/* all pqs share the same vport, except for vfs and pf_rl pqs */
|
|
return (!!(PQ_FLAGS_RLS & pq_flags)) *
|
|
qed_init_qm_get_num_pf_rls(p_hwfn) +
|
|
(!!(PQ_FLAGS_VFS & pq_flags)) *
|
|
qed_init_qm_get_num_vfs(p_hwfn) + 1;
|
|
}
|
|
|
|
/* calc amount of PQs according to the requested flags */
|
|
u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 pq_flags = qed_get_pq_flags(p_hwfn);
|
|
|
|
return (!!(PQ_FLAGS_RLS & pq_flags)) *
|
|
qed_init_qm_get_num_pf_rls(p_hwfn) +
|
|
(!!(PQ_FLAGS_MCOS & pq_flags)) *
|
|
qed_init_qm_get_num_tcs(p_hwfn) +
|
|
(!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
|
|
(!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) +
|
|
(!!(PQ_FLAGS_LLT & pq_flags)) +
|
|
(!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
|
|
}
|
|
|
|
/* initialize the top level QM params */
|
|
static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
bool four_port;
|
|
|
|
/* pq and vport bases for this PF */
|
|
qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
|
|
qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
|
|
|
|
/* rate limiting and weighted fair queueing are always enabled */
|
|
qm_info->vport_rl_en = 1;
|
|
qm_info->vport_wfq_en = 1;
|
|
|
|
/* TC config is different for AH 4 port */
|
|
four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
|
|
|
|
/* in AH 4 port we have fewer TCs per port */
|
|
qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
|
|
NUM_OF_PHYS_TCS;
|
|
|
|
/* unless MFW indicated otherwise, ooo_tc == 3 for
|
|
* AH 4-port and 4 otherwise.
|
|
*/
|
|
if (!qm_info->ooo_tc)
|
|
qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
|
|
DCBX_TCP_OOO_TC;
|
|
}
|
|
|
|
/* initialize qm vport params */
|
|
static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
u8 i;
|
|
|
|
/* all vports participate in weighted fair queueing */
|
|
for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
|
|
qm_info->qm_vport_params[i].vport_wfq = 1;
|
|
}
|
|
|
|
/* initialize qm port params */
|
|
static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
|
|
{
|
|
/* Initialize qm port parameters */
|
|
u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
|
|
|
|
/* indicate how ooo and high pri traffic is dealt with */
|
|
active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
|
|
ACTIVE_TCS_BMAP_4PORT_K2 :
|
|
ACTIVE_TCS_BMAP;
|
|
|
|
for (i = 0; i < num_ports; i++) {
|
|
struct init_qm_port_params *p_qm_port =
|
|
&p_hwfn->qm_info.qm_port_params[i];
|
|
|
|
p_qm_port->active = 1;
|
|
p_qm_port->active_phys_tcs = active_phys_tcs;
|
|
p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
|
|
p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
|
|
}
|
|
}
|
|
|
|
/* Reset the params which must be reset for qm init. QM init may be called as
|
|
* a result of flows other than driver load (e.g. dcbx renegotiation). Other
|
|
* params may be affected by the init but would simply recalculate to the same
|
|
* values. The allocations made for QM init, ports, vports, pqs and vfqs are not
|
|
* affected as these amounts stay the same.
|
|
*/
|
|
static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
qm_info->num_pqs = 0;
|
|
qm_info->num_vports = 0;
|
|
qm_info->num_pf_rls = 0;
|
|
qm_info->num_vf_pqs = 0;
|
|
qm_info->first_vf_pq = 0;
|
|
qm_info->first_mcos_pq = 0;
|
|
qm_info->first_rl_pq = 0;
|
|
}
|
|
|
|
static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
qm_info->num_vports++;
|
|
|
|
if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
|
|
DP_ERR(p_hwfn,
|
|
"vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
|
|
qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
|
|
}
|
|
|
|
/* initialize a single pq and manage qm_info resources accounting.
|
|
* The pq_init_flags param determines whether the PQ is rate limited
|
|
* (for VF or PF) and whether a new vport is allocated to the pq or not
|
|
* (i.e. vport will be shared).
|
|
*/
|
|
|
|
/* flags for pq init */
|
|
#define PQ_INIT_SHARE_VPORT (1 << 0)
|
|
#define PQ_INIT_PF_RL (1 << 1)
|
|
#define PQ_INIT_VF_RL (1 << 2)
|
|
|
|
/* defines for pq init */
|
|
#define PQ_INIT_DEFAULT_WRR_GROUP 1
|
|
#define PQ_INIT_DEFAULT_TC 0
|
|
#define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc)
|
|
|
|
static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
|
|
struct qed_qm_info *qm_info,
|
|
u8 tc, u32 pq_init_flags)
|
|
{
|
|
u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
|
|
|
|
if (pq_idx > max_pq)
|
|
DP_ERR(p_hwfn,
|
|
"pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
|
|
|
|
/* init pq params */
|
|
qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
|
|
qm_info->num_vports;
|
|
qm_info->qm_pq_params[pq_idx].tc_id = tc;
|
|
qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
|
|
qm_info->qm_pq_params[pq_idx].rl_valid =
|
|
(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
|
|
|
|
/* qm params accounting */
|
|
qm_info->num_pqs++;
|
|
if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
|
|
qm_info->num_vports++;
|
|
|
|
if (pq_init_flags & PQ_INIT_PF_RL)
|
|
qm_info->num_pf_rls++;
|
|
|
|
if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
|
|
DP_ERR(p_hwfn,
|
|
"vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
|
|
qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
|
|
|
|
if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
|
|
DP_ERR(p_hwfn,
|
|
"rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
|
|
qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
|
|
}
|
|
|
|
/* get pq index according to PQ_FLAGS */
|
|
static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
|
|
u32 pq_flags)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
/* Can't have multiple flags set here */
|
|
if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
|
|
goto err;
|
|
|
|
switch (pq_flags) {
|
|
case PQ_FLAGS_RLS:
|
|
return &qm_info->first_rl_pq;
|
|
case PQ_FLAGS_MCOS:
|
|
return &qm_info->first_mcos_pq;
|
|
case PQ_FLAGS_LB:
|
|
return &qm_info->pure_lb_pq;
|
|
case PQ_FLAGS_OOO:
|
|
return &qm_info->ooo_pq;
|
|
case PQ_FLAGS_ACK:
|
|
return &qm_info->pure_ack_pq;
|
|
case PQ_FLAGS_OFLD:
|
|
return &qm_info->offload_pq;
|
|
case PQ_FLAGS_LLT:
|
|
return &qm_info->low_latency_pq;
|
|
case PQ_FLAGS_VFS:
|
|
return &qm_info->first_vf_pq;
|
|
default:
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
|
|
return NULL;
|
|
}
|
|
|
|
/* save pq index in qm info */
|
|
static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
|
|
u32 pq_flags, u16 pq_val)
|
|
{
|
|
u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
|
|
|
|
*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
|
|
}
|
|
|
|
/* get tx pq index, with the PQ TX base already set (ready for context init) */
|
|
u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
|
|
{
|
|
u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
|
|
|
|
return *base_pq_idx + CM_TX_PQ_BASE;
|
|
}
|
|
|
|
u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
|
|
{
|
|
u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
|
|
|
|
if (tc > max_tc)
|
|
DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
|
|
|
|
return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
|
|
}
|
|
|
|
u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
|
|
{
|
|
u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
|
|
|
|
if (vf > max_vf)
|
|
DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
|
|
|
|
return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
|
|
}
|
|
|
|
u16 qed_get_cm_pq_idx_rl(struct qed_hwfn *p_hwfn, u8 rl)
|
|
{
|
|
u16 max_rl = qed_init_qm_get_num_pf_rls(p_hwfn);
|
|
|
|
if (rl > max_rl)
|
|
DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
|
|
|
|
return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
|
|
}
|
|
|
|
/* Functions for creating specific types of pqs */
|
|
static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
|
|
qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
|
|
}
|
|
|
|
static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
|
|
qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
|
|
}
|
|
|
|
static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
|
|
qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
|
|
}
|
|
|
|
static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
|
|
qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
|
|
}
|
|
|
|
static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
|
|
qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
|
|
}
|
|
|
|
static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
u8 tc_idx;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
|
|
for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
|
|
qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
|
|
}
|
|
|
|
static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
|
|
qm_info->num_vf_pqs = num_vfs;
|
|
for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
|
|
qed_init_qm_pq(p_hwfn,
|
|
qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
|
|
}
|
|
|
|
static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
|
|
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
|
|
return;
|
|
|
|
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
|
|
for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
|
|
qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
|
|
}
|
|
|
|
static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
|
|
{
|
|
/* rate limited pqs, must come first (FW assumption) */
|
|
qed_init_qm_rl_pqs(p_hwfn);
|
|
|
|
/* pqs for multi cos */
|
|
qed_init_qm_mcos_pqs(p_hwfn);
|
|
|
|
/* pure loopback pq */
|
|
qed_init_qm_lb_pq(p_hwfn);
|
|
|
|
/* out of order pq */
|
|
qed_init_qm_ooo_pq(p_hwfn);
|
|
|
|
/* pure ack pq */
|
|
qed_init_qm_pure_ack_pq(p_hwfn);
|
|
|
|
/* pq for offloaded protocol */
|
|
qed_init_qm_offload_pq(p_hwfn);
|
|
|
|
/* low latency pq */
|
|
qed_init_qm_low_latency_pq(p_hwfn);
|
|
|
|
/* done sharing vports */
|
|
qed_init_qm_advance_vport(p_hwfn);
|
|
|
|
/* pqs for vfs */
|
|
qed_init_qm_vf_pqs(p_hwfn);
|
|
}
|
|
|
|
/* compare values of getters against resources amounts */
|
|
static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
|
|
{
|
|
if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
|
|
DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (qed_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, QED_PQ)) {
|
|
DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
struct init_qm_vport_params *vport;
|
|
struct init_qm_port_params *port;
|
|
struct init_qm_pq_params *pq;
|
|
int i, tc;
|
|
|
|
/* top level params */
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
|
|
qm_info->start_pq,
|
|
qm_info->start_vport,
|
|
qm_info->pure_lb_pq,
|
|
qm_info->offload_pq, qm_info->pure_ack_pq);
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
|
|
qm_info->ooo_pq,
|
|
qm_info->first_vf_pq,
|
|
qm_info->num_pqs,
|
|
qm_info->num_vf_pqs,
|
|
qm_info->num_vports, qm_info->max_phys_tcs_per_port);
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
|
|
qm_info->pf_rl_en,
|
|
qm_info->pf_wfq_en,
|
|
qm_info->vport_rl_en,
|
|
qm_info->vport_wfq_en,
|
|
qm_info->pf_wfq,
|
|
qm_info->pf_rl,
|
|
qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
|
|
|
|
/* port table */
|
|
for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
|
|
port = &(qm_info->qm_port_params[i]);
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
|
|
i,
|
|
port->active,
|
|
port->active_phys_tcs,
|
|
port->num_pbf_cmd_lines,
|
|
port->num_btb_blocks, port->reserved);
|
|
}
|
|
|
|
/* vport table */
|
|
for (i = 0; i < qm_info->num_vports; i++) {
|
|
vport = &(qm_info->qm_vport_params[i]);
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
|
|
qm_info->start_vport + i,
|
|
vport->vport_rl, vport->vport_wfq);
|
|
for (tc = 0; tc < NUM_OF_TCS; tc++)
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"%d ", vport->first_tx_pq_id[tc]);
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
|
|
}
|
|
|
|
/* pq table */
|
|
for (i = 0; i < qm_info->num_pqs; i++) {
|
|
pq = &(qm_info->qm_pq_params[i]);
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
|
|
qm_info->start_pq + i,
|
|
pq->vport_id,
|
|
pq->tc_id, pq->wrr_group, pq->rl_valid);
|
|
}
|
|
}
|
|
|
|
static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
|
|
{
|
|
/* reset params required for init run */
|
|
qed_init_qm_reset_params(p_hwfn);
|
|
|
|
/* init QM top level params */
|
|
qed_init_qm_params(p_hwfn);
|
|
|
|
/* init QM port params */
|
|
qed_init_qm_port_params(p_hwfn);
|
|
|
|
/* init QM vport params */
|
|
qed_init_qm_vport_params(p_hwfn);
|
|
|
|
/* init QM physical queue params */
|
|
qed_init_qm_pq_params(p_hwfn);
|
|
|
|
/* display all that init */
|
|
qed_dp_init_qm_params(p_hwfn);
|
|
}
|
|
|
|
/* This function reconfigures the QM pf on the fly.
|
|
* For this purpose we:
|
|
* 1. reconfigure the QM database
|
|
* 2. set new values to runtime arrat
|
|
* 3. send an sdm_qm_cmd through the rbc interface to stop the QM
|
|
* 4. activate init tool in QM_PF stage
|
|
* 5. send an sdm_qm_cmd through rbc interface to release the QM
|
|
*/
|
|
int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
bool b_rc;
|
|
int rc;
|
|
|
|
/* initialize qed's qm data structure */
|
|
qed_init_qm_info(p_hwfn);
|
|
|
|
/* stop PF's qm queues */
|
|
spin_lock_bh(&qm_lock);
|
|
b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
|
|
qm_info->start_pq, qm_info->num_pqs);
|
|
spin_unlock_bh(&qm_lock);
|
|
if (!b_rc)
|
|
return -EINVAL;
|
|
|
|
/* clear the QM_PF runtime phase leftovers from previous init */
|
|
qed_init_clear_rt_data(p_hwfn);
|
|
|
|
/* prepare QM portion of runtime array */
|
|
qed_qm_init_pf(p_hwfn, p_ptt);
|
|
|
|
/* activate init tool on runtime array */
|
|
rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
|
|
p_hwfn->hw_info.hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* start PF's qm queues */
|
|
spin_lock_bh(&qm_lock);
|
|
b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
|
|
qm_info->start_pq, qm_info->num_pqs);
|
|
spin_unlock_bh(&qm_lock);
|
|
if (!b_rc)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
int rc;
|
|
|
|
rc = qed_init_qm_sanity(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) *
|
|
qed_init_qm_get_num_pqs(p_hwfn),
|
|
GFP_KERNEL);
|
|
if (!qm_info->qm_pq_params)
|
|
goto alloc_err;
|
|
|
|
qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) *
|
|
qed_init_qm_get_num_vports(p_hwfn),
|
|
GFP_KERNEL);
|
|
if (!qm_info->qm_vport_params)
|
|
goto alloc_err;
|
|
|
|
qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) *
|
|
p_hwfn->cdev->num_ports_in_engine,
|
|
GFP_KERNEL);
|
|
if (!qm_info->qm_port_params)
|
|
goto alloc_err;
|
|
|
|
qm_info->wfq_data = kzalloc(sizeof(*qm_info->wfq_data) *
|
|
qed_init_qm_get_num_vports(p_hwfn),
|
|
GFP_KERNEL);
|
|
if (!qm_info->wfq_data)
|
|
goto alloc_err;
|
|
|
|
return 0;
|
|
|
|
alloc_err:
|
|
DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
|
|
qed_qm_info_free(p_hwfn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int qed_resc_alloc(struct qed_dev *cdev)
|
|
{
|
|
u32 rdma_tasks, excess_tasks;
|
|
u32 line_count;
|
|
int i, rc = 0;
|
|
|
|
if (IS_VF(cdev)) {
|
|
for_each_hwfn(cdev, i) {
|
|
rc = qed_l2_alloc(&cdev->hwfns[i]);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
|
|
if (!cdev->fw_data)
|
|
return -ENOMEM;
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
u32 n_eqes, num_cons;
|
|
|
|
/* First allocate the context manager structure */
|
|
rc = qed_cxt_mngr_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* Set the HW cid/tid numbers (in the contest manager)
|
|
* Must be done prior to any further computations.
|
|
*/
|
|
rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
rc = qed_alloc_qm_data(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* init qm info */
|
|
qed_init_qm_info(p_hwfn);
|
|
|
|
/* Compute the ILT client partition */
|
|
rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"too many ILT lines; re-computing with less lines\n");
|
|
/* In case there are not enough ILT lines we reduce the
|
|
* number of RDMA tasks and re-compute.
|
|
*/
|
|
excess_tasks =
|
|
qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
|
|
if (!excess_tasks)
|
|
goto alloc_err;
|
|
|
|
rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
|
|
rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
|
|
if (rc) {
|
|
DP_ERR(p_hwfn,
|
|
"failed ILT compute. Requested too many lines: %u\n",
|
|
line_count);
|
|
|
|
goto alloc_err;
|
|
}
|
|
}
|
|
|
|
/* CID map / ILT shadow table / T2
|
|
* The talbes sizes are determined by the computations above
|
|
*/
|
|
rc = qed_cxt_tables_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* SPQ, must follow ILT because initializes SPQ context */
|
|
rc = qed_spq_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* SP status block allocation */
|
|
p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
|
|
RESERVED_PTT_DPC);
|
|
|
|
rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
rc = qed_iov_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* EQ */
|
|
n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
|
|
if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
|
|
enum protocol_type rdma_proto;
|
|
|
|
if (QED_IS_ROCE_PERSONALITY(p_hwfn))
|
|
rdma_proto = PROTOCOLID_ROCE;
|
|
else
|
|
rdma_proto = PROTOCOLID_IWARP;
|
|
|
|
num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
|
|
rdma_proto,
|
|
NULL) * 2;
|
|
n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
|
|
} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
|
|
num_cons =
|
|
qed_cxt_get_proto_cid_count(p_hwfn,
|
|
PROTOCOLID_ISCSI,
|
|
NULL);
|
|
n_eqes += 2 * num_cons;
|
|
}
|
|
|
|
if (n_eqes > 0xFFFF) {
|
|
DP_ERR(p_hwfn,
|
|
"Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
|
|
n_eqes, 0xFFFF);
|
|
goto alloc_no_mem;
|
|
}
|
|
|
|
rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
rc = qed_consq_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
rc = qed_l2_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
#ifdef CONFIG_QED_LL2
|
|
if (p_hwfn->using_ll2) {
|
|
rc = qed_ll2_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
}
|
|
#endif
|
|
|
|
if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
|
|
rc = qed_fcoe_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
}
|
|
|
|
if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
|
|
rc = qed_iscsi_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
rc = qed_ooo_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
}
|
|
|
|
/* DMA info initialization */
|
|
rc = qed_dmae_info_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
|
|
/* DCBX initialization */
|
|
rc = qed_dcbx_info_alloc(p_hwfn);
|
|
if (rc)
|
|
goto alloc_err;
|
|
}
|
|
|
|
cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
|
|
if (!cdev->reset_stats)
|
|
goto alloc_no_mem;
|
|
|
|
return 0;
|
|
|
|
alloc_no_mem:
|
|
rc = -ENOMEM;
|
|
alloc_err:
|
|
qed_resc_free(cdev);
|
|
return rc;
|
|
}
|
|
|
|
void qed_resc_setup(struct qed_dev *cdev)
|
|
{
|
|
int i;
|
|
|
|
if (IS_VF(cdev)) {
|
|
for_each_hwfn(cdev, i)
|
|
qed_l2_setup(&cdev->hwfns[i]);
|
|
return;
|
|
}
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
qed_cxt_mngr_setup(p_hwfn);
|
|
qed_spq_setup(p_hwfn);
|
|
qed_eq_setup(p_hwfn);
|
|
qed_consq_setup(p_hwfn);
|
|
|
|
/* Read shadow of current MFW mailbox */
|
|
qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
|
|
memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
|
|
p_hwfn->mcp_info->mfw_mb_cur,
|
|
p_hwfn->mcp_info->mfw_mb_length);
|
|
|
|
qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
|
|
|
|
qed_l2_setup(p_hwfn);
|
|
qed_iov_setup(p_hwfn);
|
|
#ifdef CONFIG_QED_LL2
|
|
if (p_hwfn->using_ll2)
|
|
qed_ll2_setup(p_hwfn);
|
|
#endif
|
|
if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
|
|
qed_fcoe_setup(p_hwfn);
|
|
|
|
if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
|
|
qed_iscsi_setup(p_hwfn);
|
|
qed_ooo_setup(p_hwfn);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define FINAL_CLEANUP_POLL_CNT (100)
|
|
#define FINAL_CLEANUP_POLL_TIME (10)
|
|
int qed_final_cleanup(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u16 id, bool is_vf)
|
|
{
|
|
u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
|
|
int rc = -EBUSY;
|
|
|
|
addr = GTT_BAR0_MAP_REG_USDM_RAM +
|
|
USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
|
|
|
|
if (is_vf)
|
|
id += 0x10;
|
|
|
|
command |= X_FINAL_CLEANUP_AGG_INT <<
|
|
SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
|
|
command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
|
|
command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
|
|
command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
|
|
|
|
/* Make sure notification is not set before initiating final cleanup */
|
|
if (REG_RD(p_hwfn, addr)) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Unexpected; Found final cleanup notification before initiating final cleanup\n");
|
|
REG_WR(p_hwfn, addr, 0);
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
|
|
"Sending final cleanup for PFVF[%d] [Command %08x\n]",
|
|
id, command);
|
|
|
|
qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
|
|
|
|
/* Poll until completion */
|
|
while (!REG_RD(p_hwfn, addr) && count--)
|
|
msleep(FINAL_CLEANUP_POLL_TIME);
|
|
|
|
if (REG_RD(p_hwfn, addr))
|
|
rc = 0;
|
|
else
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to receive FW final cleanup notification\n");
|
|
|
|
/* Cleanup afterwards */
|
|
REG_WR(p_hwfn, addr, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
|
|
{
|
|
int hw_mode = 0;
|
|
|
|
if (QED_IS_BB_B0(p_hwfn->cdev)) {
|
|
hw_mode |= 1 << MODE_BB;
|
|
} else if (QED_IS_AH(p_hwfn->cdev)) {
|
|
hw_mode |= 1 << MODE_K2;
|
|
} else {
|
|
DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
|
|
p_hwfn->cdev->type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (p_hwfn->cdev->num_ports_in_engine) {
|
|
case 1:
|
|
hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
|
|
break;
|
|
case 2:
|
|
hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
|
|
break;
|
|
case 4:
|
|
hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
|
|
p_hwfn->cdev->num_ports_in_engine);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (p_hwfn->cdev->mf_mode) {
|
|
case QED_MF_DEFAULT:
|
|
case QED_MF_NPAR:
|
|
hw_mode |= 1 << MODE_MF_SI;
|
|
break;
|
|
case QED_MF_OVLAN:
|
|
hw_mode |= 1 << MODE_MF_SD;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
|
|
hw_mode |= 1 << MODE_MF_SI;
|
|
}
|
|
|
|
hw_mode |= 1 << MODE_ASIC;
|
|
|
|
if (p_hwfn->cdev->num_hwfns > 1)
|
|
hw_mode |= 1 << MODE_100G;
|
|
|
|
p_hwfn->hw_info.hw_mode = hw_mode;
|
|
|
|
DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
|
|
"Configuring function for hw_mode: 0x%08x\n",
|
|
p_hwfn->hw_info.hw_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Init run time data for all PFs on an engine. */
|
|
static void qed_init_cau_rt_data(struct qed_dev *cdev)
|
|
{
|
|
u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
|
|
int i, igu_sb_id;
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
struct qed_igu_info *p_igu_info;
|
|
struct qed_igu_block *p_block;
|
|
struct cau_sb_entry sb_entry;
|
|
|
|
p_igu_info = p_hwfn->hw_info.p_igu_info;
|
|
|
|
for (igu_sb_id = 0;
|
|
igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
|
|
p_block = &p_igu_info->entry[igu_sb_id];
|
|
|
|
if (!p_block->is_pf)
|
|
continue;
|
|
|
|
qed_init_cau_sb_entry(p_hwfn, &sb_entry,
|
|
p_block->function_id, 0, 0);
|
|
STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
|
|
sb_entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 val, wr_mbs, cache_line_size;
|
|
|
|
val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
|
|
switch (val) {
|
|
case 0:
|
|
wr_mbs = 128;
|
|
break;
|
|
case 1:
|
|
wr_mbs = 256;
|
|
break;
|
|
case 2:
|
|
wr_mbs = 512;
|
|
break;
|
|
default:
|
|
DP_INFO(p_hwfn,
|
|
"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
|
|
val);
|
|
return;
|
|
}
|
|
|
|
cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
|
|
switch (cache_line_size) {
|
|
case 32:
|
|
val = 0;
|
|
break;
|
|
case 64:
|
|
val = 1;
|
|
break;
|
|
case 128:
|
|
val = 2;
|
|
break;
|
|
case 256:
|
|
val = 3;
|
|
break;
|
|
default:
|
|
DP_INFO(p_hwfn,
|
|
"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
|
|
cache_line_size);
|
|
}
|
|
|
|
if (L1_CACHE_BYTES > wr_mbs)
|
|
DP_INFO(p_hwfn,
|
|
"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
|
|
L1_CACHE_BYTES, wr_mbs);
|
|
|
|
STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
|
|
if (val > 0) {
|
|
STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
|
|
STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
|
|
}
|
|
}
|
|
|
|
static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, int hw_mode)
|
|
{
|
|
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
|
|
struct qed_qm_common_rt_init_params params;
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
u8 vf_id, max_num_vfs;
|
|
u16 num_pfs, pf_id;
|
|
u32 concrete_fid;
|
|
int rc = 0;
|
|
|
|
qed_init_cau_rt_data(cdev);
|
|
|
|
/* Program GTT windows */
|
|
qed_gtt_init(p_hwfn);
|
|
|
|
if (p_hwfn->mcp_info) {
|
|
if (p_hwfn->mcp_info->func_info.bandwidth_max)
|
|
qm_info->pf_rl_en = 1;
|
|
if (p_hwfn->mcp_info->func_info.bandwidth_min)
|
|
qm_info->pf_wfq_en = 1;
|
|
}
|
|
|
|
memset(¶ms, 0, sizeof(params));
|
|
params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
|
|
params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
|
|
params.pf_rl_en = qm_info->pf_rl_en;
|
|
params.pf_wfq_en = qm_info->pf_wfq_en;
|
|
params.vport_rl_en = qm_info->vport_rl_en;
|
|
params.vport_wfq_en = qm_info->vport_wfq_en;
|
|
params.port_params = qm_info->qm_port_params;
|
|
|
|
qed_qm_common_rt_init(p_hwfn, ¶ms);
|
|
|
|
qed_cxt_hw_init_common(p_hwfn);
|
|
|
|
qed_init_cache_line_size(p_hwfn, p_ptt);
|
|
|
|
rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
|
|
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
|
|
|
|
if (QED_IS_BB(p_hwfn->cdev)) {
|
|
num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
|
|
for (pf_id = 0; pf_id < num_pfs; pf_id++) {
|
|
qed_fid_pretend(p_hwfn, p_ptt, pf_id);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
|
|
}
|
|
/* pretend to original PF */
|
|
qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
|
|
}
|
|
|
|
max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
|
|
for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
|
|
concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
|
|
qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
|
|
qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
|
|
qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
|
|
qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
|
|
}
|
|
/* pretend to original PF */
|
|
qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
|
|
{
|
|
u32 dpi_bit_shift, dpi_count, dpi_page_size;
|
|
u32 min_dpis;
|
|
u32 n_wids;
|
|
|
|
/* Calculate DPI size */
|
|
n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
|
|
dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
|
|
dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
|
|
dpi_bit_shift = ilog2(dpi_page_size / 4096);
|
|
dpi_count = pwm_region_size / dpi_page_size;
|
|
|
|
min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
|
|
min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
|
|
|
|
p_hwfn->dpi_size = dpi_page_size;
|
|
p_hwfn->dpi_count = dpi_count;
|
|
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
|
|
|
|
if (dpi_count < min_dpis)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum QED_ROCE_EDPM_MODE {
|
|
QED_ROCE_EDPM_MODE_ENABLE = 0,
|
|
QED_ROCE_EDPM_MODE_FORCE_ON = 1,
|
|
QED_ROCE_EDPM_MODE_DISABLE = 2,
|
|
};
|
|
|
|
static int
|
|
qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
u32 pwm_regsize, norm_regsize;
|
|
u32 non_pwm_conn, min_addr_reg1;
|
|
u32 db_bar_size, n_cpus = 1;
|
|
u32 roce_edpm_mode;
|
|
u32 pf_dems_shift;
|
|
int rc = 0;
|
|
u8 cond;
|
|
|
|
db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
|
|
if (p_hwfn->cdev->num_hwfns > 1)
|
|
db_bar_size /= 2;
|
|
|
|
/* Calculate doorbell regions */
|
|
non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
|
|
qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
|
|
NULL) +
|
|
qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
|
|
NULL);
|
|
norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
|
|
min_addr_reg1 = norm_regsize / 4096;
|
|
pwm_regsize = db_bar_size - norm_regsize;
|
|
|
|
/* Check that the normal and PWM sizes are valid */
|
|
if (db_bar_size < norm_regsize) {
|
|
DP_ERR(p_hwfn->cdev,
|
|
"Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
|
|
db_bar_size, norm_regsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pwm_regsize < QED_MIN_PWM_REGION) {
|
|
DP_ERR(p_hwfn->cdev,
|
|
"PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
|
|
pwm_regsize,
|
|
QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Calculate number of DPIs */
|
|
roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
|
|
if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
|
|
((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
|
|
/* Either EDPM is mandatory, or we are attempting to allocate a
|
|
* WID per CPU.
|
|
*/
|
|
n_cpus = num_present_cpus();
|
|
rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
|
|
}
|
|
|
|
cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
|
|
(roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
|
|
if (cond || p_hwfn->dcbx_no_edpm) {
|
|
/* Either EDPM is disabled from user configuration, or it is
|
|
* disabled via DCBx, or it is not mandatory and we failed to
|
|
* allocated a WID per CPU.
|
|
*/
|
|
n_cpus = 1;
|
|
rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
|
|
|
|
if (cond)
|
|
qed_rdma_dpm_bar(p_hwfn, p_ptt);
|
|
}
|
|
|
|
p_hwfn->wid_count = (u16) n_cpus;
|
|
|
|
DP_INFO(p_hwfn,
|
|
"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
|
|
norm_regsize,
|
|
pwm_regsize,
|
|
p_hwfn->dpi_size,
|
|
p_hwfn->dpi_count,
|
|
((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
|
|
"disabled" : "enabled");
|
|
|
|
if (rc) {
|
|
DP_ERR(p_hwfn,
|
|
"Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
|
|
p_hwfn->dpi_count,
|
|
p_hwfn->pf_params.rdma_pf_params.min_dpis);
|
|
return -EINVAL;
|
|
}
|
|
|
|
p_hwfn->dpi_start_offset = norm_regsize;
|
|
|
|
/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
|
|
pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, int hw_mode)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct qed_tunnel_info *p_tunn,
|
|
int hw_mode,
|
|
bool b_hw_start,
|
|
enum qed_int_mode int_mode,
|
|
bool allow_npar_tx_switch)
|
|
{
|
|
u8 rel_pf_id = p_hwfn->rel_pf_id;
|
|
int rc = 0;
|
|
|
|
if (p_hwfn->mcp_info) {
|
|
struct qed_mcp_function_info *p_info;
|
|
|
|
p_info = &p_hwfn->mcp_info->func_info;
|
|
if (p_info->bandwidth_min)
|
|
p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
|
|
|
|
/* Update rate limit once we'll actually have a link */
|
|
p_hwfn->qm_info.pf_rl = 100000;
|
|
}
|
|
|
|
qed_cxt_hw_init_pf(p_hwfn, p_ptt);
|
|
|
|
qed_int_igu_init_rt(p_hwfn);
|
|
|
|
/* Set VLAN in NIG if needed */
|
|
if (hw_mode & BIT(MODE_MF_SD)) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
|
|
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
|
|
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
|
|
p_hwfn->hw_info.ovlan);
|
|
}
|
|
|
|
/* Enable classification by MAC if needed */
|
|
if (hw_mode & BIT(MODE_MF_SI)) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"Configuring TAGMAC_CLS_TYPE\n");
|
|
STORE_RT_REG(p_hwfn,
|
|
NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
|
|
}
|
|
|
|
/* Protocl Configuration */
|
|
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
|
|
(p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
|
|
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
|
|
(p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
|
|
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
|
|
|
|
/* Cleanup chip from previous driver if such remains exist */
|
|
rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* PF Init sequence */
|
|
rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
|
|
rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Pure runtime initializations - directly to the HW */
|
|
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
|
|
|
|
rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (b_hw_start) {
|
|
/* enable interrupts */
|
|
qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
|
|
|
|
/* send function start command */
|
|
rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
|
|
p_hwfn->cdev->mf_mode,
|
|
allow_npar_tx_switch);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
|
|
return rc;
|
|
}
|
|
if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
|
|
qed_wr(p_hwfn, p_ptt,
|
|
PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
|
|
0x100);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u8 enable)
|
|
{
|
|
u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
|
|
|
|
/* Change PF in PXP */
|
|
qed_wr(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
|
|
|
|
/* wait until value is set - try for 1 second every 50us */
|
|
for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
|
|
val = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
|
|
if (val == set_val)
|
|
break;
|
|
|
|
usleep_range(50, 60);
|
|
}
|
|
|
|
if (val != set_val) {
|
|
DP_NOTICE(p_hwfn,
|
|
"PFID_ENABLE_MASTER wasn't changed after a second\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_main_ptt)
|
|
{
|
|
/* Read shadow of current MFW mailbox */
|
|
qed_mcp_read_mb(p_hwfn, p_main_ptt);
|
|
memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
|
|
p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
|
|
}
|
|
|
|
static void
|
|
qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
|
|
struct qed_drv_load_params *p_drv_load)
|
|
{
|
|
memset(p_load_req, 0, sizeof(*p_load_req));
|
|
|
|
p_load_req->drv_role = p_drv_load->is_crash_kernel ?
|
|
QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
|
|
p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
|
|
p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
|
|
p_load_req->override_force_load = p_drv_load->override_force_load;
|
|
}
|
|
|
|
static int qed_vf_start(struct qed_hwfn *p_hwfn,
|
|
struct qed_hw_init_params *p_params)
|
|
{
|
|
if (p_params->p_tunn) {
|
|
qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
|
|
qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
|
|
}
|
|
|
|
p_hwfn->b_int_enabled = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
|
|
{
|
|
struct qed_load_req_params load_req_params;
|
|
u32 load_code, param, drv_mb_param;
|
|
bool b_default_mtu = true;
|
|
struct qed_hwfn *p_hwfn;
|
|
int rc = 0, mfw_rc, i;
|
|
|
|
if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
|
|
DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (IS_PF(cdev)) {
|
|
rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
/* If management didn't provide a default, set one of our own */
|
|
if (!p_hwfn->hw_info.mtu) {
|
|
p_hwfn->hw_info.mtu = 1500;
|
|
b_default_mtu = false;
|
|
}
|
|
|
|
if (IS_VF(cdev)) {
|
|
qed_vf_start(p_hwfn, p_params);
|
|
continue;
|
|
}
|
|
|
|
/* Enable DMAE in PXP */
|
|
rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
|
|
|
|
rc = qed_calc_hw_mode(p_hwfn);
|
|
if (rc)
|
|
return rc;
|
|
|
|
qed_fill_load_req_params(&load_req_params,
|
|
p_params->p_drv_load_params);
|
|
rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
|
|
&load_req_params);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
|
|
return rc;
|
|
}
|
|
|
|
load_code = load_req_params.load_code;
|
|
DP_VERBOSE(p_hwfn, QED_MSG_SP,
|
|
"Load request was sent. Load code: 0x%x\n",
|
|
load_code);
|
|
|
|
qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
|
|
|
|
qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
|
|
|
|
p_hwfn->first_on_engine = (load_code ==
|
|
FW_MSG_CODE_DRV_LOAD_ENGINE);
|
|
|
|
switch (load_code) {
|
|
case FW_MSG_CODE_DRV_LOAD_ENGINE:
|
|
rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_hwfn->hw_info.hw_mode);
|
|
if (rc)
|
|
break;
|
|
/* Fall into */
|
|
case FW_MSG_CODE_DRV_LOAD_PORT:
|
|
rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_hwfn->hw_info.hw_mode);
|
|
if (rc)
|
|
break;
|
|
|
|
/* Fall into */
|
|
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
|
|
rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_params->p_tunn,
|
|
p_hwfn->hw_info.hw_mode,
|
|
p_params->b_hw_start,
|
|
p_params->int_mode,
|
|
p_params->allow_npar_tx_switch);
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn,
|
|
"Unexpected load code [0x%08x]", load_code);
|
|
rc = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (rc)
|
|
DP_NOTICE(p_hwfn,
|
|
"init phase failed for loadcode 0x%x (rc %d)\n",
|
|
load_code, rc);
|
|
|
|
/* ACK mfw regardless of success or failure of initialization */
|
|
mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_LOAD_DONE,
|
|
0, &load_code, ¶m);
|
|
if (rc)
|
|
return rc;
|
|
if (mfw_rc) {
|
|
DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
|
|
return mfw_rc;
|
|
}
|
|
|
|
/* Check if there is a DID mismatch between nvm-cfg/efuse */
|
|
if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
|
|
DP_NOTICE(p_hwfn,
|
|
"warning: device configuration is not supported on this board type. The device may not function as expected.\n");
|
|
|
|
/* send DCBX attention request command */
|
|
DP_VERBOSE(p_hwfn,
|
|
QED_MSG_DCB,
|
|
"sending phony dcbx set command to trigger DCBx attention handling\n");
|
|
mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_SET_DCBX,
|
|
1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
|
|
&load_code, ¶m);
|
|
if (mfw_rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to send DCBX attention request\n");
|
|
return mfw_rc;
|
|
}
|
|
|
|
p_hwfn->hw_init_done = true;
|
|
}
|
|
|
|
if (IS_PF(cdev)) {
|
|
p_hwfn = QED_LEADING_HWFN(cdev);
|
|
drv_mb_param = STORM_FW_VERSION;
|
|
rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
|
|
DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
|
|
drv_mb_param, &load_code, ¶m);
|
|
if (rc)
|
|
DP_INFO(p_hwfn, "Failed to update firmware version\n");
|
|
|
|
if (!b_default_mtu) {
|
|
rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
|
|
p_hwfn->hw_info.mtu);
|
|
if (rc)
|
|
DP_INFO(p_hwfn,
|
|
"Failed to update default mtu\n");
|
|
}
|
|
|
|
rc = qed_mcp_ov_update_driver_state(p_hwfn,
|
|
p_hwfn->p_main_ptt,
|
|
QED_OV_DRIVER_STATE_DISABLED);
|
|
if (rc)
|
|
DP_INFO(p_hwfn, "Failed to update driver state\n");
|
|
|
|
rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
|
|
QED_OV_ESWITCH_VEB);
|
|
if (rc)
|
|
DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define QED_HW_STOP_RETRY_LIMIT (10)
|
|
static void qed_hw_timers_stop(struct qed_dev *cdev,
|
|
struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
int i;
|
|
|
|
/* close timers */
|
|
qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
|
|
|
|
for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
|
|
if ((!qed_rd(p_hwfn, p_ptt,
|
|
TM_REG_PF_SCAN_ACTIVE_CONN)) &&
|
|
(!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
|
|
break;
|
|
|
|
/* Dependent on number of connection/tasks, possibly
|
|
* 1ms sleep is required between polls
|
|
*/
|
|
usleep_range(1000, 2000);
|
|
}
|
|
|
|
if (i < QED_HW_STOP_RETRY_LIMIT)
|
|
return;
|
|
|
|
DP_NOTICE(p_hwfn,
|
|
"Timers linear scans are not over [Connection %02x Tasks %02x]\n",
|
|
(u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
|
|
(u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
|
|
}
|
|
|
|
void qed_hw_timers_stop_all(struct qed_dev *cdev)
|
|
{
|
|
int j;
|
|
|
|
for_each_hwfn(cdev, j) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
|
|
struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
|
|
|
|
qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
|
|
}
|
|
}
|
|
|
|
int qed_hw_stop(struct qed_dev *cdev)
|
|
{
|
|
struct qed_hwfn *p_hwfn;
|
|
struct qed_ptt *p_ptt;
|
|
int rc, rc2 = 0;
|
|
int j;
|
|
|
|
for_each_hwfn(cdev, j) {
|
|
p_hwfn = &cdev->hwfns[j];
|
|
p_ptt = p_hwfn->p_main_ptt;
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
|
|
|
|
if (IS_VF(cdev)) {
|
|
qed_vf_pf_int_cleanup(p_hwfn);
|
|
rc = qed_vf_pf_reset(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"qed_vf_pf_reset failed. rc = %d.\n",
|
|
rc);
|
|
rc2 = -EINVAL;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* mark the hw as uninitialized... */
|
|
p_hwfn->hw_init_done = false;
|
|
|
|
/* Send unload command to MCP */
|
|
rc = qed_mcp_unload_req(p_hwfn, p_ptt);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed sending a UNLOAD_REQ command. rc = %d.\n",
|
|
rc);
|
|
rc2 = -EINVAL;
|
|
}
|
|
|
|
qed_slowpath_irq_sync(p_hwfn);
|
|
|
|
/* After this point no MFW attentions are expected, e.g. prevent
|
|
* race between pf stop and dcbx pf update.
|
|
*/
|
|
rc = qed_sp_pf_stop(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
|
|
rc);
|
|
rc2 = -EINVAL;
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
|
|
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
|
|
|
|
qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
|
|
|
|
/* Disable Attention Generation */
|
|
qed_int_igu_disable_int(p_hwfn, p_ptt);
|
|
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
|
|
|
|
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
|
|
|
|
/* Need to wait 1ms to guarantee SBs are cleared */
|
|
usleep_range(1000, 2000);
|
|
|
|
/* Disable PF in HW blocks */
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
|
|
qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
|
|
|
|
qed_mcp_unload_done(p_hwfn, p_ptt);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed sending a UNLOAD_DONE command. rc = %d.\n",
|
|
rc);
|
|
rc2 = -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (IS_PF(cdev)) {
|
|
p_hwfn = QED_LEADING_HWFN(cdev);
|
|
p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
|
|
|
|
/* Disable DMAE in PXP - in CMT, this should only be done for
|
|
* first hw-function, and only after all transactions have
|
|
* stopped for all active hw-functions.
|
|
*/
|
|
rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"qed_change_pci_hwfn failed. rc = %d.\n", rc);
|
|
rc2 = -EINVAL;
|
|
}
|
|
}
|
|
|
|
return rc2;
|
|
}
|
|
|
|
int qed_hw_stop_fastpath(struct qed_dev *cdev)
|
|
{
|
|
int j;
|
|
|
|
for_each_hwfn(cdev, j) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
|
|
struct qed_ptt *p_ptt;
|
|
|
|
if (IS_VF(cdev)) {
|
|
qed_vf_pf_int_cleanup(p_hwfn);
|
|
continue;
|
|
}
|
|
p_ptt = qed_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return -EAGAIN;
|
|
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
|
|
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
|
|
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
|
|
|
|
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
|
|
|
|
/* Need to wait 1ms to guarantee SBs are cleared */
|
|
usleep_range(1000, 2000);
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt *p_ptt;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return 0;
|
|
|
|
p_ptt = qed_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return -EAGAIN;
|
|
|
|
/* If roce info is allocated it means roce is initialized and should
|
|
* be enabled in searcher.
|
|
*/
|
|
if (p_hwfn->p_rdma_info &&
|
|
p_hwfn->b_rdma_enabled_in_prs)
|
|
qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
|
|
|
|
/* Re-open incoming traffic */
|
|
qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Free hwfn memory and resources acquired in hw_hwfn_prepare */
|
|
static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
qed_ptt_pool_free(p_hwfn);
|
|
kfree(p_hwfn->hw_info.p_igu_info);
|
|
p_hwfn->hw_info.p_igu_info = NULL;
|
|
}
|
|
|
|
/* Setup bar access */
|
|
static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
|
|
{
|
|
/* clear indirect access */
|
|
if (QED_IS_AH(p_hwfn->cdev)) {
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
|
|
} else {
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
|
|
}
|
|
|
|
/* Clean Previous errors if such exist */
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
|
|
|
|
/* enable internal target-read */
|
|
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
|
|
PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
|
|
}
|
|
|
|
static void get_function_id(struct qed_hwfn *p_hwfn)
|
|
{
|
|
/* ME Register */
|
|
p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
|
|
PXP_PF_ME_OPAQUE_ADDR);
|
|
|
|
p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
|
|
|
|
p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
|
|
p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
|
|
PXP_CONCRETE_FID_PFID);
|
|
p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
|
|
PXP_CONCRETE_FID_PORT);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
|
|
"Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
|
|
p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
|
|
}
|
|
|
|
static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 *feat_num = p_hwfn->hw_info.feat_num;
|
|
struct qed_sb_cnt_info sb_cnt;
|
|
u32 non_l2_sbs = 0;
|
|
|
|
memset(&sb_cnt, 0, sizeof(sb_cnt));
|
|
qed_int_get_num_sbs(p_hwfn, &sb_cnt);
|
|
|
|
if (IS_ENABLED(CONFIG_QED_RDMA) &&
|
|
QED_IS_RDMA_PERSONALITY(p_hwfn)) {
|
|
/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
|
|
* the status blocks equally between L2 / RoCE but with
|
|
* consideration as to how many l2 queues / cnqs we have.
|
|
*/
|
|
feat_num[QED_RDMA_CNQ] =
|
|
min_t(u32, sb_cnt.cnt / 2,
|
|
RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
|
|
|
|
non_l2_sbs = feat_num[QED_RDMA_CNQ];
|
|
}
|
|
if (QED_IS_L2_PERSONALITY(p_hwfn)) {
|
|
/* Start by allocating VF queues, then PF's */
|
|
feat_num[QED_VF_L2_QUE] = min_t(u32,
|
|
RESC_NUM(p_hwfn, QED_L2_QUEUE),
|
|
sb_cnt.iov_cnt);
|
|
feat_num[QED_PF_L2_QUE] = min_t(u32,
|
|
sb_cnt.cnt - non_l2_sbs,
|
|
RESC_NUM(p_hwfn,
|
|
QED_L2_QUEUE) -
|
|
FEAT_NUM(p_hwfn,
|
|
QED_VF_L2_QUE));
|
|
}
|
|
|
|
if (QED_IS_FCOE_PERSONALITY(p_hwfn))
|
|
feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt,
|
|
RESC_NUM(p_hwfn,
|
|
QED_CMDQS_CQS));
|
|
|
|
if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
|
|
feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
|
|
RESC_NUM(p_hwfn,
|
|
QED_CMDQS_CQS));
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_PROBE,
|
|
"#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
|
|
(int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
|
|
(int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
|
|
(int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
|
|
(int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
|
|
(int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
|
|
(int)sb_cnt.cnt);
|
|
}
|
|
|
|
const char *qed_hw_get_resc_name(enum qed_resources res_id)
|
|
{
|
|
switch (res_id) {
|
|
case QED_L2_QUEUE:
|
|
return "L2_QUEUE";
|
|
case QED_VPORT:
|
|
return "VPORT";
|
|
case QED_RSS_ENG:
|
|
return "RSS_ENG";
|
|
case QED_PQ:
|
|
return "PQ";
|
|
case QED_RL:
|
|
return "RL";
|
|
case QED_MAC:
|
|
return "MAC";
|
|
case QED_VLAN:
|
|
return "VLAN";
|
|
case QED_RDMA_CNQ_RAM:
|
|
return "RDMA_CNQ_RAM";
|
|
case QED_ILT:
|
|
return "ILT";
|
|
case QED_LL2_QUEUE:
|
|
return "LL2_QUEUE";
|
|
case QED_CMDQS_CQS:
|
|
return "CMDQS_CQS";
|
|
case QED_RDMA_STATS_QUEUE:
|
|
return "RDMA_STATS_QUEUE";
|
|
case QED_BDQ:
|
|
return "BDQ";
|
|
case QED_SB:
|
|
return "SB";
|
|
default:
|
|
return "UNKNOWN_RESOURCE";
|
|
}
|
|
}
|
|
|
|
static int
|
|
__qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
enum qed_resources res_id,
|
|
u32 resc_max_val, u32 *p_mcp_resp)
|
|
{
|
|
int rc;
|
|
|
|
rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
|
|
resc_max_val, p_mcp_resp);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"MFW response failure for a max value setting of resource %d [%s]\n",
|
|
res_id, qed_hw_get_resc_name(res_id));
|
|
return rc;
|
|
}
|
|
|
|
if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
|
|
DP_INFO(p_hwfn,
|
|
"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
|
|
res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
bool b_ah = QED_IS_AH(p_hwfn->cdev);
|
|
u32 resc_max_val, mcp_resp;
|
|
u8 res_id;
|
|
int rc;
|
|
|
|
for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
|
|
switch (res_id) {
|
|
case QED_LL2_QUEUE:
|
|
resc_max_val = MAX_NUM_LL2_RX_QUEUES;
|
|
break;
|
|
case QED_RDMA_CNQ_RAM:
|
|
/* No need for a case for QED_CMDQS_CQS since
|
|
* CNQ/CMDQS are the same resource.
|
|
*/
|
|
resc_max_val = NUM_OF_CMDQS_CQS;
|
|
break;
|
|
case QED_RDMA_STATS_QUEUE:
|
|
resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
|
|
: RDMA_NUM_STATISTIC_COUNTERS_BB;
|
|
break;
|
|
case QED_BDQ:
|
|
resc_max_val = BDQ_NUM_RESOURCES;
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
|
|
resc_max_val, &mcp_resp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* There's no point to continue to the next resource if the
|
|
* command is not supported by the MFW.
|
|
* We do continue if the command is supported but the resource
|
|
* is unknown to the MFW. Such a resource will be later
|
|
* configured with the default allocation values.
|
|
*/
|
|
if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
|
|
enum qed_resources res_id,
|
|
u32 *p_resc_num, u32 *p_resc_start)
|
|
{
|
|
u8 num_funcs = p_hwfn->num_funcs_on_engine;
|
|
bool b_ah = QED_IS_AH(p_hwfn->cdev);
|
|
|
|
switch (res_id) {
|
|
case QED_L2_QUEUE:
|
|
*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
|
|
MAX_NUM_L2_QUEUES_BB) / num_funcs;
|
|
break;
|
|
case QED_VPORT:
|
|
*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
|
|
MAX_NUM_VPORTS_BB) / num_funcs;
|
|
break;
|
|
case QED_RSS_ENG:
|
|
*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
|
|
ETH_RSS_ENGINE_NUM_BB) / num_funcs;
|
|
break;
|
|
case QED_PQ:
|
|
*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
|
|
MAX_QM_TX_QUEUES_BB) / num_funcs;
|
|
*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
|
|
break;
|
|
case QED_RL:
|
|
*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
|
|
break;
|
|
case QED_MAC:
|
|
case QED_VLAN:
|
|
/* Each VFC resource can accommodate both a MAC and a VLAN */
|
|
*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
|
|
break;
|
|
case QED_ILT:
|
|
*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
|
|
PXP_NUM_ILT_RECORDS_BB) / num_funcs;
|
|
break;
|
|
case QED_LL2_QUEUE:
|
|
*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
|
|
break;
|
|
case QED_RDMA_CNQ_RAM:
|
|
case QED_CMDQS_CQS:
|
|
/* CNQ/CMDQS are the same resource */
|
|
*p_resc_num = NUM_OF_CMDQS_CQS / num_funcs;
|
|
break;
|
|
case QED_RDMA_STATS_QUEUE:
|
|
*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
|
|
RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs;
|
|
break;
|
|
case QED_BDQ:
|
|
if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
|
|
p_hwfn->hw_info.personality != QED_PCI_FCOE)
|
|
*p_resc_num = 0;
|
|
else
|
|
*p_resc_num = 1;
|
|
break;
|
|
case QED_SB:
|
|
/* Since we want its value to reflect whether MFW supports
|
|
* the new scheme, have a default of 0.
|
|
*/
|
|
*p_resc_num = 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (res_id) {
|
|
case QED_BDQ:
|
|
if (!*p_resc_num)
|
|
*p_resc_start = 0;
|
|
else if (p_hwfn->cdev->num_ports_in_engine == 4)
|
|
*p_resc_start = p_hwfn->port_id;
|
|
else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
|
|
*p_resc_start = p_hwfn->port_id;
|
|
else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
|
|
*p_resc_start = p_hwfn->port_id + 2;
|
|
break;
|
|
default:
|
|
*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
|
|
enum qed_resources res_id)
|
|
{
|
|
u32 dflt_resc_num = 0, dflt_resc_start = 0;
|
|
u32 mcp_resp, *p_resc_num, *p_resc_start;
|
|
int rc;
|
|
|
|
p_resc_num = &RESC_NUM(p_hwfn, res_id);
|
|
p_resc_start = &RESC_START(p_hwfn, res_id);
|
|
|
|
rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
|
|
&dflt_resc_start);
|
|
if (rc) {
|
|
DP_ERR(p_hwfn,
|
|
"Failed to get default amount for resource %d [%s]\n",
|
|
res_id, qed_hw_get_resc_name(res_id));
|
|
return rc;
|
|
}
|
|
|
|
rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
|
|
&mcp_resp, p_resc_num, p_resc_start);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"MFW response failure for an allocation request for resource %d [%s]\n",
|
|
res_id, qed_hw_get_resc_name(res_id));
|
|
return rc;
|
|
}
|
|
|
|
/* Default driver values are applied in the following cases:
|
|
* - The resource allocation MB command is not supported by the MFW
|
|
* - There is an internal error in the MFW while processing the request
|
|
* - The resource ID is unknown to the MFW
|
|
*/
|
|
if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
|
|
DP_INFO(p_hwfn,
|
|
"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
|
|
res_id,
|
|
qed_hw_get_resc_name(res_id),
|
|
mcp_resp, dflt_resc_num, dflt_resc_start);
|
|
*p_resc_num = dflt_resc_num;
|
|
*p_resc_start = dflt_resc_start;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
/* PQs have to divide by 8 [that's the HW granularity].
|
|
* Reduce number so it would fit.
|
|
*/
|
|
if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
|
|
DP_INFO(p_hwfn,
|
|
"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
|
|
*p_resc_num,
|
|
(*p_resc_num) & ~0x7,
|
|
*p_resc_start, (*p_resc_start) & ~0x7);
|
|
*p_resc_num &= ~0x7;
|
|
*p_resc_start &= ~0x7;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
|
|
{
|
|
int rc;
|
|
u8 res_id;
|
|
|
|
for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
|
|
rc = __qed_hw_set_resc_info(p_hwfn, res_id);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_resc_unlock_params resc_unlock_params;
|
|
struct qed_resc_lock_params resc_lock_params;
|
|
bool b_ah = QED_IS_AH(p_hwfn->cdev);
|
|
u8 res_id;
|
|
int rc;
|
|
|
|
/* Setting the max values of the soft resources and the following
|
|
* resources allocation queries should be atomic. Since several PFs can
|
|
* run in parallel - a resource lock is needed.
|
|
* If either the resource lock or resource set value commands are not
|
|
* supported - skip the the max values setting, release the lock if
|
|
* needed, and proceed to the queries. Other failures, including a
|
|
* failure to acquire the lock, will cause this function to fail.
|
|
*/
|
|
qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
|
|
QED_RESC_LOCK_RESC_ALLOC, false);
|
|
|
|
rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
|
|
if (rc && rc != -EINVAL) {
|
|
return rc;
|
|
} else if (rc == -EINVAL) {
|
|
DP_INFO(p_hwfn,
|
|
"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
|
|
} else if (!rc && !resc_lock_params.b_granted) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to acquire the resource lock for the resource allocation commands\n");
|
|
return -EBUSY;
|
|
} else {
|
|
rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
|
|
if (rc && rc != -EINVAL) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to set the max values of the soft resources\n");
|
|
goto unlock_and_exit;
|
|
} else if (rc == -EINVAL) {
|
|
DP_INFO(p_hwfn,
|
|
"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
|
|
rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
|
|
&resc_unlock_params);
|
|
if (rc)
|
|
DP_INFO(p_hwfn,
|
|
"Failed to release the resource lock for the resource allocation commands\n");
|
|
}
|
|
}
|
|
|
|
rc = qed_hw_set_resc_info(p_hwfn);
|
|
if (rc)
|
|
goto unlock_and_exit;
|
|
|
|
if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
|
|
rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
|
|
if (rc)
|
|
DP_INFO(p_hwfn,
|
|
"Failed to release the resource lock for the resource allocation commands\n");
|
|
}
|
|
|
|
/* Sanity for ILT */
|
|
if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
|
|
(!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
|
|
DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
|
|
RESC_START(p_hwfn, QED_ILT),
|
|
RESC_END(p_hwfn, QED_ILT) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This will also learn the number of SBs from MFW */
|
|
if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
|
|
return -EINVAL;
|
|
|
|
qed_hw_set_feat(p_hwfn);
|
|
|
|
for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
|
|
qed_hw_get_resc_name(res_id),
|
|
RESC_NUM(p_hwfn, res_id),
|
|
RESC_START(p_hwfn, res_id));
|
|
|
|
return 0;
|
|
|
|
unlock_and_exit:
|
|
if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
|
|
qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
|
|
return rc;
|
|
}
|
|
|
|
static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
|
|
u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
|
|
struct qed_mcp_link_capabilities *p_caps;
|
|
struct qed_mcp_link_params *link;
|
|
|
|
/* Read global nvm_cfg address */
|
|
nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
|
|
|
|
/* Verify MCP has initialized it */
|
|
if (!nvm_cfg_addr) {
|
|
DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
|
|
nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
|
|
|
|
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
offsetof(struct nvm_cfg1, glob) +
|
|
offsetof(struct nvm_cfg1_glob, core_cfg);
|
|
|
|
core_cfg = qed_rd(p_hwfn, p_ptt, addr);
|
|
|
|
switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
|
|
NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
|
|
break;
|
|
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
|
|
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
|
|
break;
|
|
}
|
|
|
|
/* Read default link configuration */
|
|
link = &p_hwfn->mcp_info->link_input;
|
|
p_caps = &p_hwfn->mcp_info->link_capabilities;
|
|
port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
|
|
link_temp = qed_rd(p_hwfn, p_ptt,
|
|
port_cfg_addr +
|
|
offsetof(struct nvm_cfg1_port, speed_cap_mask));
|
|
link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
|
|
link->speed.advertised_speeds = link_temp;
|
|
|
|
link_temp = link->speed.advertised_speeds;
|
|
p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
|
|
|
|
link_temp = qed_rd(p_hwfn, p_ptt,
|
|
port_cfg_addr +
|
|
offsetof(struct nvm_cfg1_port, link_settings));
|
|
switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
|
|
NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
|
|
link->speed.autoneg = true;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
|
|
link->speed.forced_speed = 1000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
|
|
link->speed.forced_speed = 10000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
|
|
link->speed.forced_speed = 25000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
|
|
link->speed.forced_speed = 40000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
|
|
link->speed.forced_speed = 50000;
|
|
break;
|
|
case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
|
|
link->speed.forced_speed = 100000;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
|
|
}
|
|
|
|
p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
|
|
link->speed.autoneg;
|
|
|
|
link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
|
|
link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
|
|
link->pause.autoneg = !!(link_temp &
|
|
NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
|
|
link->pause.forced_rx = !!(link_temp &
|
|
NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
|
|
link->pause.forced_tx = !!(link_temp &
|
|
NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
|
|
link->loopback_mode = 0;
|
|
|
|
if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
|
|
link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
|
|
offsetof(struct nvm_cfg1_port, ext_phy));
|
|
link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
|
|
link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
|
|
p_caps->default_eee = QED_MCP_EEE_ENABLED;
|
|
link->eee.enable = true;
|
|
switch (link_temp) {
|
|
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
|
|
p_caps->default_eee = QED_MCP_EEE_DISABLED;
|
|
link->eee.enable = false;
|
|
break;
|
|
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
|
|
p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
|
|
break;
|
|
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
|
|
p_caps->eee_lpi_timer =
|
|
EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
|
|
break;
|
|
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
|
|
p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
|
|
break;
|
|
}
|
|
|
|
link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
|
|
link->eee.tx_lpi_enable = link->eee.enable;
|
|
link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
|
|
} else {
|
|
p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_LINK,
|
|
"Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
|
|
link->speed.forced_speed,
|
|
link->speed.advertised_speeds,
|
|
link->speed.autoneg,
|
|
link->pause.autoneg,
|
|
p_caps->default_eee, p_caps->eee_lpi_timer);
|
|
|
|
/* Read Multi-function information from shmem */
|
|
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
offsetof(struct nvm_cfg1, glob) +
|
|
offsetof(struct nvm_cfg1_glob, generic_cont0);
|
|
|
|
generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
|
|
|
|
mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
|
|
NVM_CFG1_GLOB_MF_MODE_OFFSET;
|
|
|
|
switch (mf_mode) {
|
|
case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
|
|
p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
|
|
break;
|
|
case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
|
|
p_hwfn->cdev->mf_mode = QED_MF_NPAR;
|
|
break;
|
|
case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
|
|
p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
|
|
break;
|
|
}
|
|
DP_INFO(p_hwfn, "Multi function mode is %08x\n",
|
|
p_hwfn->cdev->mf_mode);
|
|
|
|
/* Read Multi-function information from shmem */
|
|
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
|
|
offsetof(struct nvm_cfg1, glob) +
|
|
offsetof(struct nvm_cfg1_glob, device_capabilities);
|
|
|
|
device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
|
|
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
|
|
__set_bit(QED_DEV_CAP_ETH,
|
|
&p_hwfn->hw_info.device_capabilities);
|
|
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
|
|
__set_bit(QED_DEV_CAP_FCOE,
|
|
&p_hwfn->hw_info.device_capabilities);
|
|
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
|
|
__set_bit(QED_DEV_CAP_ISCSI,
|
|
&p_hwfn->hw_info.device_capabilities);
|
|
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
|
|
__set_bit(QED_DEV_CAP_ROCE,
|
|
&p_hwfn->hw_info.device_capabilities);
|
|
|
|
return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
|
|
}
|
|
|
|
static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
|
|
u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
|
|
num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
|
|
|
|
/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
|
|
* in the other bits are selected.
|
|
* Bits 1-15 are for functions 1-15, respectively, and their value is
|
|
* '0' only for enabled functions (function 0 always exists and
|
|
* enabled).
|
|
* In case of CMT, only the "even" functions are enabled, and thus the
|
|
* number of functions for both hwfns is learnt from the same bits.
|
|
*/
|
|
reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
|
|
|
|
if (reg_function_hide & 0x1) {
|
|
if (QED_IS_BB(cdev)) {
|
|
if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
|
|
num_funcs = 0;
|
|
eng_mask = 0xaaaa;
|
|
} else {
|
|
num_funcs = 1;
|
|
eng_mask = 0x5554;
|
|
}
|
|
} else {
|
|
num_funcs = 1;
|
|
eng_mask = 0xfffe;
|
|
}
|
|
|
|
/* Get the number of the enabled functions on the engine */
|
|
tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
|
|
while (tmp) {
|
|
if (tmp & 0x1)
|
|
num_funcs++;
|
|
tmp >>= 0x1;
|
|
}
|
|
|
|
/* Get the PF index within the enabled functions */
|
|
low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
|
|
tmp = reg_function_hide & eng_mask & low_pfs_mask;
|
|
while (tmp) {
|
|
if (tmp & 0x1)
|
|
enabled_func_idx--;
|
|
tmp >>= 0x1;
|
|
}
|
|
}
|
|
|
|
p_hwfn->num_funcs_on_engine = num_funcs;
|
|
p_hwfn->enabled_func_idx = enabled_func_idx;
|
|
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_PROBE,
|
|
"PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
|
|
p_hwfn->rel_pf_id,
|
|
p_hwfn->abs_pf_id,
|
|
p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
|
|
}
|
|
|
|
static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 port_mode;
|
|
|
|
port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0);
|
|
|
|
if (port_mode < 3) {
|
|
p_hwfn->cdev->num_ports_in_engine = 1;
|
|
} else if (port_mode <= 5) {
|
|
p_hwfn->cdev->num_ports_in_engine = 2;
|
|
} else {
|
|
DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
|
|
p_hwfn->cdev->num_ports_in_engine);
|
|
|
|
/* Default num_ports_in_engine to something */
|
|
p_hwfn->cdev->num_ports_in_engine = 1;
|
|
}
|
|
}
|
|
|
|
static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 port;
|
|
int i;
|
|
|
|
p_hwfn->cdev->num_ports_in_engine = 0;
|
|
|
|
for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
|
|
port = qed_rd(p_hwfn, p_ptt,
|
|
CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
|
|
if (port & 1)
|
|
p_hwfn->cdev->num_ports_in_engine++;
|
|
}
|
|
|
|
if (!p_hwfn->cdev->num_ports_in_engine) {
|
|
DP_NOTICE(p_hwfn, "All NIG ports are inactive\n");
|
|
|
|
/* Default num_ports_in_engine to something */
|
|
p_hwfn->cdev->num_ports_in_engine = 1;
|
|
}
|
|
}
|
|
|
|
static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
if (QED_IS_BB(p_hwfn->cdev))
|
|
qed_hw_info_port_num_bb(p_hwfn, p_ptt);
|
|
else
|
|
qed_hw_info_port_num_ah(p_hwfn, p_ptt);
|
|
}
|
|
|
|
static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_mcp_link_capabilities *p_caps;
|
|
u32 eee_status;
|
|
|
|
p_caps = &p_hwfn->mcp_info->link_capabilities;
|
|
if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
|
|
return;
|
|
|
|
p_caps->eee_speed_caps = 0;
|
|
eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
|
|
offsetof(struct public_port, eee_status));
|
|
eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
|
|
EEE_SUPPORTED_SPEED_OFFSET;
|
|
|
|
if (eee_status & EEE_1G_SUPPORTED)
|
|
p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
|
|
if (eee_status & EEE_10G_ADV)
|
|
p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
|
|
}
|
|
|
|
static int
|
|
qed_get_hw_info(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
enum qed_pci_personality personality)
|
|
{
|
|
int rc;
|
|
|
|
/* Since all information is common, only first hwfns should do this */
|
|
if (IS_LEAD_HWFN(p_hwfn)) {
|
|
rc = qed_iov_hw_info(p_hwfn);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
qed_hw_info_port_num(p_hwfn, p_ptt);
|
|
|
|
qed_mcp_get_capabilities(p_hwfn, p_ptt);
|
|
|
|
qed_hw_get_nvm_info(p_hwfn, p_ptt);
|
|
|
|
rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (qed_mcp_is_init(p_hwfn))
|
|
ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
|
|
p_hwfn->mcp_info->func_info.mac);
|
|
else
|
|
eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
|
|
|
|
if (qed_mcp_is_init(p_hwfn)) {
|
|
if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
|
|
p_hwfn->hw_info.ovlan =
|
|
p_hwfn->mcp_info->func_info.ovlan;
|
|
|
|
qed_mcp_cmd_port_init(p_hwfn, p_ptt);
|
|
|
|
qed_get_eee_caps(p_hwfn, p_ptt);
|
|
}
|
|
|
|
if (qed_mcp_is_init(p_hwfn)) {
|
|
enum qed_pci_personality protocol;
|
|
|
|
protocol = p_hwfn->mcp_info->func_info.protocol;
|
|
p_hwfn->hw_info.personality = protocol;
|
|
}
|
|
|
|
p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
|
|
p_hwfn->hw_info.num_active_tc = 1;
|
|
|
|
qed_get_num_funcs(p_hwfn, p_ptt);
|
|
|
|
if (qed_mcp_is_init(p_hwfn))
|
|
p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
|
|
|
|
return qed_hw_get_resc(p_hwfn, p_ptt);
|
|
}
|
|
|
|
static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
u16 device_id_mask;
|
|
u32 tmp;
|
|
|
|
/* Read Vendor Id / Device Id */
|
|
pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
|
|
pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
|
|
|
|
/* Determine type */
|
|
device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
|
|
switch (device_id_mask) {
|
|
case QED_DEV_ID_MASK_BB:
|
|
cdev->type = QED_DEV_TYPE_BB;
|
|
break;
|
|
case QED_DEV_ID_MASK_AH:
|
|
cdev->type = QED_DEV_TYPE_AH;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
|
|
return -EBUSY;
|
|
}
|
|
|
|
cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
|
|
cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
|
|
|
|
MASK_FIELD(CHIP_REV, cdev->chip_rev);
|
|
|
|
/* Learn number of HW-functions */
|
|
tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
|
|
|
|
if (tmp & (1 << p_hwfn->rel_pf_id)) {
|
|
DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
|
|
cdev->num_hwfns = 2;
|
|
} else {
|
|
cdev->num_hwfns = 1;
|
|
}
|
|
|
|
cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
|
|
MISCS_REG_CHIP_TEST_REG) >> 4;
|
|
MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
|
|
cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
|
|
MASK_FIELD(CHIP_METAL, cdev->chip_metal);
|
|
|
|
DP_INFO(cdev->hwfns,
|
|
"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
|
|
QED_IS_BB(cdev) ? "BB" : "AH",
|
|
'A' + cdev->chip_rev,
|
|
(int)cdev->chip_metal,
|
|
cdev->chip_num, cdev->chip_rev,
|
|
cdev->chip_bond_id, cdev->chip_metal);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
|
|
void __iomem *p_regview,
|
|
void __iomem *p_doorbells,
|
|
enum qed_pci_personality personality)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* Split PCI bars evenly between hwfns */
|
|
p_hwfn->regview = p_regview;
|
|
p_hwfn->doorbells = p_doorbells;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return qed_vf_hw_prepare(p_hwfn);
|
|
|
|
/* Validate that chip access is feasible */
|
|
if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
|
|
DP_ERR(p_hwfn,
|
|
"Reading the ME register returns all Fs; Preventing further chip access\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
get_function_id(p_hwfn);
|
|
|
|
/* Allocate PTT pool */
|
|
rc = qed_ptt_pool_alloc(p_hwfn);
|
|
if (rc)
|
|
goto err0;
|
|
|
|
/* Allocate the main PTT */
|
|
p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
|
|
|
|
/* First hwfn learns basic information, e.g., number of hwfns */
|
|
if (!p_hwfn->my_id) {
|
|
rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc)
|
|
goto err1;
|
|
}
|
|
|
|
qed_hw_hwfn_prepare(p_hwfn);
|
|
|
|
/* Initialize MCP structure */
|
|
rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
|
|
goto err1;
|
|
}
|
|
|
|
/* Read the device configuration information from the HW and SHMEM */
|
|
rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, "Failed to get HW information\n");
|
|
goto err2;
|
|
}
|
|
|
|
/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
|
|
* is called as it sets the ports number in an engine.
|
|
*/
|
|
if (IS_LEAD_HWFN(p_hwfn)) {
|
|
rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
|
|
if (rc)
|
|
DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
|
|
}
|
|
|
|
/* Allocate the init RT array and initialize the init-ops engine */
|
|
rc = qed_init_alloc(p_hwfn);
|
|
if (rc)
|
|
goto err2;
|
|
|
|
return rc;
|
|
err2:
|
|
if (IS_LEAD_HWFN(p_hwfn))
|
|
qed_iov_free_hw_info(p_hwfn->cdev);
|
|
qed_mcp_free(p_hwfn);
|
|
err1:
|
|
qed_hw_hwfn_free(p_hwfn);
|
|
err0:
|
|
return rc;
|
|
}
|
|
|
|
int qed_hw_prepare(struct qed_dev *cdev,
|
|
int personality)
|
|
{
|
|
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
|
|
int rc;
|
|
|
|
/* Store the precompiled init data ptrs */
|
|
if (IS_PF(cdev))
|
|
qed_init_iro_array(cdev);
|
|
|
|
/* Initialize the first hwfn - will learn number of hwfns */
|
|
rc = qed_hw_prepare_single(p_hwfn,
|
|
cdev->regview,
|
|
cdev->doorbells, personality);
|
|
if (rc)
|
|
return rc;
|
|
|
|
personality = p_hwfn->hw_info.personality;
|
|
|
|
/* Initialize the rest of the hwfns */
|
|
if (cdev->num_hwfns > 1) {
|
|
void __iomem *p_regview, *p_doorbell;
|
|
u8 __iomem *addr;
|
|
|
|
/* adjust bar offset for second engine */
|
|
addr = cdev->regview +
|
|
qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
|
|
BAR_ID_0) / 2;
|
|
p_regview = addr;
|
|
|
|
addr = cdev->doorbells +
|
|
qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
|
|
BAR_ID_1) / 2;
|
|
p_doorbell = addr;
|
|
|
|
/* prepare second hw function */
|
|
rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
|
|
p_doorbell, personality);
|
|
|
|
/* in case of error, need to free the previously
|
|
* initiliazed hwfn 0.
|
|
*/
|
|
if (rc) {
|
|
if (IS_PF(cdev)) {
|
|
qed_init_free(p_hwfn);
|
|
qed_mcp_free(p_hwfn);
|
|
qed_hw_hwfn_free(p_hwfn);
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void qed_hw_remove(struct qed_dev *cdev)
|
|
{
|
|
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
|
|
int i;
|
|
|
|
if (IS_PF(cdev))
|
|
qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
|
|
QED_OV_DRIVER_STATE_NOT_LOADED);
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
if (IS_VF(cdev)) {
|
|
qed_vf_pf_release(p_hwfn);
|
|
continue;
|
|
}
|
|
|
|
qed_init_free(p_hwfn);
|
|
qed_hw_hwfn_free(p_hwfn);
|
|
qed_mcp_free(p_hwfn);
|
|
}
|
|
|
|
qed_iov_free_hw_info(cdev);
|
|
}
|
|
|
|
static void qed_chain_free_next_ptr(struct qed_dev *cdev,
|
|
struct qed_chain *p_chain)
|
|
{
|
|
void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
|
|
dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
|
|
struct qed_chain_next *p_next;
|
|
u32 size, i;
|
|
|
|
if (!p_virt)
|
|
return;
|
|
|
|
size = p_chain->elem_size * p_chain->usable_per_page;
|
|
|
|
for (i = 0; i < p_chain->page_cnt; i++) {
|
|
if (!p_virt)
|
|
break;
|
|
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
|
|
p_virt_next = p_next->next_virt;
|
|
p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
|
|
|
|
dma_free_coherent(&cdev->pdev->dev,
|
|
QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
|
|
|
|
p_virt = p_virt_next;
|
|
p_phys = p_phys_next;
|
|
}
|
|
}
|
|
|
|
static void qed_chain_free_single(struct qed_dev *cdev,
|
|
struct qed_chain *p_chain)
|
|
{
|
|
if (!p_chain->p_virt_addr)
|
|
return;
|
|
|
|
dma_free_coherent(&cdev->pdev->dev,
|
|
QED_CHAIN_PAGE_SIZE,
|
|
p_chain->p_virt_addr, p_chain->p_phys_addr);
|
|
}
|
|
|
|
static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
|
|
{
|
|
void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
|
|
u32 page_cnt = p_chain->page_cnt, i, pbl_size;
|
|
u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table;
|
|
|
|
if (!pp_virt_addr_tbl)
|
|
return;
|
|
|
|
if (!p_pbl_virt)
|
|
goto out;
|
|
|
|
for (i = 0; i < page_cnt; i++) {
|
|
if (!pp_virt_addr_tbl[i])
|
|
break;
|
|
|
|
dma_free_coherent(&cdev->pdev->dev,
|
|
QED_CHAIN_PAGE_SIZE,
|
|
pp_virt_addr_tbl[i],
|
|
*(dma_addr_t *)p_pbl_virt);
|
|
|
|
p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
|
|
}
|
|
|
|
pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
|
|
|
|
if (!p_chain->b_external_pbl)
|
|
dma_free_coherent(&cdev->pdev->dev,
|
|
pbl_size,
|
|
p_chain->pbl_sp.p_virt_table,
|
|
p_chain->pbl_sp.p_phys_table);
|
|
out:
|
|
vfree(p_chain->pbl.pp_virt_addr_tbl);
|
|
p_chain->pbl.pp_virt_addr_tbl = NULL;
|
|
}
|
|
|
|
void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
|
|
{
|
|
switch (p_chain->mode) {
|
|
case QED_CHAIN_MODE_NEXT_PTR:
|
|
qed_chain_free_next_ptr(cdev, p_chain);
|
|
break;
|
|
case QED_CHAIN_MODE_SINGLE:
|
|
qed_chain_free_single(cdev, p_chain);
|
|
break;
|
|
case QED_CHAIN_MODE_PBL:
|
|
qed_chain_free_pbl(cdev, p_chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
qed_chain_alloc_sanity_check(struct qed_dev *cdev,
|
|
enum qed_chain_cnt_type cnt_type,
|
|
size_t elem_size, u32 page_cnt)
|
|
{
|
|
u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
|
|
|
|
/* The actual chain size can be larger than the maximal possible value
|
|
* after rounding up the requested elements number to pages, and after
|
|
* taking into acount the unusuable elements (next-ptr elements).
|
|
* The size of a "u16" chain can be (U16_MAX + 1) since the chain
|
|
* size/capacity fields are of a u32 type.
|
|
*/
|
|
if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
|
|
chain_size > ((u32)U16_MAX + 1)) ||
|
|
(cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
|
|
DP_NOTICE(cdev,
|
|
"The actual chain size (0x%llx) is larger than the maximal possible value\n",
|
|
chain_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
|
|
{
|
|
void *p_virt = NULL, *p_virt_prev = NULL;
|
|
dma_addr_t p_phys = 0;
|
|
u32 i;
|
|
|
|
for (i = 0; i < p_chain->page_cnt; i++) {
|
|
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
|
|
QED_CHAIN_PAGE_SIZE,
|
|
&p_phys, GFP_KERNEL);
|
|
if (!p_virt)
|
|
return -ENOMEM;
|
|
|
|
if (i == 0) {
|
|
qed_chain_init_mem(p_chain, p_virt, p_phys);
|
|
qed_chain_reset(p_chain);
|
|
} else {
|
|
qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
|
|
p_virt, p_phys);
|
|
}
|
|
|
|
p_virt_prev = p_virt;
|
|
}
|
|
/* Last page's next element should point to the beginning of the
|
|
* chain.
|
|
*/
|
|
qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
|
|
p_chain->p_virt_addr,
|
|
p_chain->p_phys_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
|
|
{
|
|
dma_addr_t p_phys = 0;
|
|
void *p_virt = NULL;
|
|
|
|
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
|
|
QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
|
|
if (!p_virt)
|
|
return -ENOMEM;
|
|
|
|
qed_chain_init_mem(p_chain, p_virt, p_phys);
|
|
qed_chain_reset(p_chain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qed_chain_alloc_pbl(struct qed_dev *cdev,
|
|
struct qed_chain *p_chain,
|
|
struct qed_chain_ext_pbl *ext_pbl)
|
|
{
|
|
u32 page_cnt = p_chain->page_cnt, size, i;
|
|
dma_addr_t p_phys = 0, p_pbl_phys = 0;
|
|
void **pp_virt_addr_tbl = NULL;
|
|
u8 *p_pbl_virt = NULL;
|
|
void *p_virt = NULL;
|
|
|
|
size = page_cnt * sizeof(*pp_virt_addr_tbl);
|
|
pp_virt_addr_tbl = vzalloc(size);
|
|
if (!pp_virt_addr_tbl)
|
|
return -ENOMEM;
|
|
|
|
/* The allocation of the PBL table is done with its full size, since it
|
|
* is expected to be successive.
|
|
* qed_chain_init_pbl_mem() is called even in a case of an allocation
|
|
* failure, since pp_virt_addr_tbl was previously allocated, and it
|
|
* should be saved to allow its freeing during the error flow.
|
|
*/
|
|
size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
|
|
|
|
if (!ext_pbl) {
|
|
p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
|
|
size, &p_pbl_phys, GFP_KERNEL);
|
|
} else {
|
|
p_pbl_virt = ext_pbl->p_pbl_virt;
|
|
p_pbl_phys = ext_pbl->p_pbl_phys;
|
|
p_chain->b_external_pbl = true;
|
|
}
|
|
|
|
qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
|
|
pp_virt_addr_tbl);
|
|
if (!p_pbl_virt)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < page_cnt; i++) {
|
|
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
|
|
QED_CHAIN_PAGE_SIZE,
|
|
&p_phys, GFP_KERNEL);
|
|
if (!p_virt)
|
|
return -ENOMEM;
|
|
|
|
if (i == 0) {
|
|
qed_chain_init_mem(p_chain, p_virt, p_phys);
|
|
qed_chain_reset(p_chain);
|
|
}
|
|
|
|
/* Fill the PBL table with the physical address of the page */
|
|
*(dma_addr_t *)p_pbl_virt = p_phys;
|
|
/* Keep the virtual address of the page */
|
|
p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
|
|
|
|
p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_chain_alloc(struct qed_dev *cdev,
|
|
enum qed_chain_use_mode intended_use,
|
|
enum qed_chain_mode mode,
|
|
enum qed_chain_cnt_type cnt_type,
|
|
u32 num_elems,
|
|
size_t elem_size,
|
|
struct qed_chain *p_chain,
|
|
struct qed_chain_ext_pbl *ext_pbl)
|
|
{
|
|
u32 page_cnt;
|
|
int rc = 0;
|
|
|
|
if (mode == QED_CHAIN_MODE_SINGLE)
|
|
page_cnt = 1;
|
|
else
|
|
page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
|
|
|
|
rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
|
|
if (rc) {
|
|
DP_NOTICE(cdev,
|
|
"Cannot allocate a chain with the given arguments:\n");
|
|
DP_NOTICE(cdev,
|
|
"[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
|
|
intended_use, mode, cnt_type, num_elems, elem_size);
|
|
return rc;
|
|
}
|
|
|
|
qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
|
|
mode, cnt_type);
|
|
|
|
switch (mode) {
|
|
case QED_CHAIN_MODE_NEXT_PTR:
|
|
rc = qed_chain_alloc_next_ptr(cdev, p_chain);
|
|
break;
|
|
case QED_CHAIN_MODE_SINGLE:
|
|
rc = qed_chain_alloc_single(cdev, p_chain);
|
|
break;
|
|
case QED_CHAIN_MODE_PBL:
|
|
rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
|
|
break;
|
|
}
|
|
if (rc)
|
|
goto nomem;
|
|
|
|
return 0;
|
|
|
|
nomem:
|
|
qed_chain_free(cdev, p_chain);
|
|
return rc;
|
|
}
|
|
|
|
int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
|
|
{
|
|
if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
|
|
u16 min, max;
|
|
|
|
min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
|
|
max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
|
|
DP_NOTICE(p_hwfn,
|
|
"l2_queue id [%d] is not valid, available indices [%d - %d]\n",
|
|
src_id, min, max);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
|
|
{
|
|
if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
|
|
u8 min, max;
|
|
|
|
min = (u8)RESC_START(p_hwfn, QED_VPORT);
|
|
max = min + RESC_NUM(p_hwfn, QED_VPORT);
|
|
DP_NOTICE(p_hwfn,
|
|
"vport id [%d] is not valid, available indices [%d - %d]\n",
|
|
src_id, min, max);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
|
|
{
|
|
if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
|
|
u8 min, max;
|
|
|
|
min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
|
|
max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
|
|
DP_NOTICE(p_hwfn,
|
|
"rss_eng id [%d] is not valid, available indices [%d - %d]\n",
|
|
src_id, min, max);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
|
|
u8 *p_filter)
|
|
{
|
|
*p_high = p_filter[1] | (p_filter[0] << 8);
|
|
*p_low = p_filter[5] | (p_filter[4] << 8) |
|
|
(p_filter[3] << 16) | (p_filter[2] << 24);
|
|
}
|
|
|
|
int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u8 *p_filter)
|
|
{
|
|
u32 high = 0, low = 0, en;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return 0;
|
|
|
|
qed_llh_mac_to_filter(&high, &low, p_filter);
|
|
|
|
/* Find a free entry and utilize it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
en = qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
|
|
if (en)
|
|
continue;
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), low);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), high);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
|
|
i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to find an empty LLH filter to utilize\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"mac: %pM is added at %d\n",
|
|
p_filter, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u8 *p_filter)
|
|
{
|
|
u32 high = 0, low = 0;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return;
|
|
|
|
qed_llh_mac_to_filter(&high, &low, p_filter);
|
|
|
|
/* Find the entry and clean it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
if (qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32)) != low)
|
|
continue;
|
|
if (qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32)) != high)
|
|
continue;
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), 0);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"mac: %pM is removed from %d\n",
|
|
p_filter, i);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
|
|
DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
|
|
}
|
|
|
|
int
|
|
qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 source_port_or_eth_type,
|
|
u16 dest_port, enum qed_llh_port_filter_type_t type)
|
|
{
|
|
u32 high = 0, low = 0, en;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return 0;
|
|
|
|
switch (type) {
|
|
case QED_LLH_FILTER_ETHERTYPE:
|
|
high = source_port_or_eth_type;
|
|
break;
|
|
case QED_LLH_FILTER_TCP_SRC_PORT:
|
|
case QED_LLH_FILTER_UDP_SRC_PORT:
|
|
low = source_port_or_eth_type << 16;
|
|
break;
|
|
case QED_LLH_FILTER_TCP_DEST_PORT:
|
|
case QED_LLH_FILTER_UDP_DEST_PORT:
|
|
low = dest_port;
|
|
break;
|
|
case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
|
|
case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
|
|
low = (source_port_or_eth_type << 16) | dest_port;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn,
|
|
"Non valid LLH protocol filter type %d\n", type);
|
|
return -EINVAL;
|
|
}
|
|
/* Find a free entry and utilize it */
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
en = qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
|
|
if (en)
|
|
continue;
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32), low);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), high);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
|
|
i * sizeof(u32), 1 << type);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
|
|
break;
|
|
}
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to find an empty LLH filter to utilize\n");
|
|
return -EINVAL;
|
|
}
|
|
switch (type) {
|
|
case QED_LLH_FILTER_ETHERTYPE:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"ETH type %x is added at %d\n",
|
|
source_port_or_eth_type, i);
|
|
break;
|
|
case QED_LLH_FILTER_TCP_SRC_PORT:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"TCP src port %x is added at %d\n",
|
|
source_port_or_eth_type, i);
|
|
break;
|
|
case QED_LLH_FILTER_UDP_SRC_PORT:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"UDP src port %x is added at %d\n",
|
|
source_port_or_eth_type, i);
|
|
break;
|
|
case QED_LLH_FILTER_TCP_DEST_PORT:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"TCP dst port %x is added at %d\n", dest_port, i);
|
|
break;
|
|
case QED_LLH_FILTER_UDP_DEST_PORT:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"UDP dst port %x is added at %d\n", dest_port, i);
|
|
break;
|
|
case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"TCP src/dst ports %x/%x are added at %d\n",
|
|
source_port_or_eth_type, dest_port, i);
|
|
break;
|
|
case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"UDP src/dst ports %x/%x are added at %d\n",
|
|
source_port_or_eth_type, dest_port, i);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 source_port_or_eth_type,
|
|
u16 dest_port,
|
|
enum qed_llh_port_filter_type_t type)
|
|
{
|
|
u32 high = 0, low = 0;
|
|
int i;
|
|
|
|
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
|
|
return;
|
|
|
|
switch (type) {
|
|
case QED_LLH_FILTER_ETHERTYPE:
|
|
high = source_port_or_eth_type;
|
|
break;
|
|
case QED_LLH_FILTER_TCP_SRC_PORT:
|
|
case QED_LLH_FILTER_UDP_SRC_PORT:
|
|
low = source_port_or_eth_type << 16;
|
|
break;
|
|
case QED_LLH_FILTER_TCP_DEST_PORT:
|
|
case QED_LLH_FILTER_UDP_DEST_PORT:
|
|
low = dest_port;
|
|
break;
|
|
case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
|
|
case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
|
|
low = (source_port_or_eth_type << 16) | dest_port;
|
|
break;
|
|
default:
|
|
DP_NOTICE(p_hwfn,
|
|
"Non valid LLH protocol filter type %d\n", type);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
|
|
if (!qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
|
|
continue;
|
|
if (!qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
|
|
continue;
|
|
if (!(qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
|
|
i * sizeof(u32)) & BIT(type)))
|
|
continue;
|
|
if (qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
2 * i * sizeof(u32)) != low)
|
|
continue;
|
|
if (qed_rd(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32)) != high)
|
|
continue;
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
|
|
i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
|
|
qed_wr(p_hwfn, p_ptt,
|
|
NIG_REG_LLH_FUNC_FILTER_VALUE +
|
|
(2 * i + 1) * sizeof(u32), 0);
|
|
break;
|
|
}
|
|
|
|
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
|
|
DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
|
|
}
|
|
|
|
static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
|
|
u32 hw_addr, void *p_eth_qzone,
|
|
size_t eth_qzone_size, u8 timeset)
|
|
{
|
|
struct coalescing_timeset *p_coal_timeset;
|
|
|
|
if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
|
|
DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
p_coal_timeset = p_eth_qzone;
|
|
memset(p_eth_qzone, 0, eth_qzone_size);
|
|
SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
|
|
SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
|
|
qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
|
|
{
|
|
struct qed_queue_cid *p_cid = p_handle;
|
|
struct qed_hwfn *p_hwfn;
|
|
struct qed_ptt *p_ptt;
|
|
int rc = 0;
|
|
|
|
p_hwfn = p_cid->p_owner;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
|
|
|
|
p_ptt = qed_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return -EAGAIN;
|
|
|
|
if (rx_coal) {
|
|
rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
|
|
if (rc)
|
|
goto out;
|
|
p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
|
|
}
|
|
|
|
if (tx_coal) {
|
|
rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
|
|
if (rc)
|
|
goto out;
|
|
p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
|
|
}
|
|
out:
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
return rc;
|
|
}
|
|
|
|
int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 coalesce, struct qed_queue_cid *p_cid)
|
|
{
|
|
struct ustorm_eth_queue_zone eth_qzone;
|
|
u8 timeset, timer_res;
|
|
u32 address;
|
|
int rc;
|
|
|
|
/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
|
|
if (coalesce <= 0x7F) {
|
|
timer_res = 0;
|
|
} else if (coalesce <= 0xFF) {
|
|
timer_res = 1;
|
|
} else if (coalesce <= 0x1FF) {
|
|
timer_res = 2;
|
|
} else {
|
|
DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
|
|
return -EINVAL;
|
|
}
|
|
timeset = (u8)(coalesce >> timer_res);
|
|
|
|
rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
|
|
p_cid->sb_igu_id, false);
|
|
if (rc)
|
|
goto out;
|
|
|
|
address = BAR0_MAP_REG_USDM_RAM +
|
|
USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
|
|
|
|
rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
|
|
sizeof(struct ustorm_eth_queue_zone), timeset);
|
|
if (rc)
|
|
goto out;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 coalesce, struct qed_queue_cid *p_cid)
|
|
{
|
|
struct xstorm_eth_queue_zone eth_qzone;
|
|
u8 timeset, timer_res;
|
|
u32 address;
|
|
int rc;
|
|
|
|
/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
|
|
if (coalesce <= 0x7F) {
|
|
timer_res = 0;
|
|
} else if (coalesce <= 0xFF) {
|
|
timer_res = 1;
|
|
} else if (coalesce <= 0x1FF) {
|
|
timer_res = 2;
|
|
} else {
|
|
DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
|
|
return -EINVAL;
|
|
}
|
|
timeset = (u8)(coalesce >> timer_res);
|
|
|
|
rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
|
|
p_cid->sb_igu_id, true);
|
|
if (rc)
|
|
goto out;
|
|
|
|
address = BAR0_MAP_REG_XSDM_RAM +
|
|
XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
|
|
|
|
rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
|
|
sizeof(struct xstorm_eth_queue_zone), timeset);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* Calculate final WFQ values for all vports and configure them.
|
|
* After this configuration each vport will have
|
|
* approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
|
|
*/
|
|
static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 min_pf_rate)
|
|
{
|
|
struct init_qm_vport_params *vport_params;
|
|
int i;
|
|
|
|
vport_params = p_hwfn->qm_info.qm_vport_params;
|
|
|
|
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
|
|
u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
|
|
|
|
vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
|
|
min_pf_rate;
|
|
qed_init_vport_wfq(p_hwfn, p_ptt,
|
|
vport_params[i].first_tx_pq_id,
|
|
vport_params[i].vport_wfq);
|
|
}
|
|
}
|
|
|
|
static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
|
|
u32 min_pf_rate)
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
|
|
p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
|
|
}
|
|
|
|
static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 min_pf_rate)
|
|
{
|
|
struct init_qm_vport_params *vport_params;
|
|
int i;
|
|
|
|
vport_params = p_hwfn->qm_info.qm_vport_params;
|
|
|
|
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
|
|
qed_init_wfq_default_param(p_hwfn, min_pf_rate);
|
|
qed_init_vport_wfq(p_hwfn, p_ptt,
|
|
vport_params[i].first_tx_pq_id,
|
|
vport_params[i].vport_wfq);
|
|
}
|
|
}
|
|
|
|
/* This function performs several validations for WFQ
|
|
* configuration and required min rate for a given vport
|
|
* 1. req_rate must be greater than one percent of min_pf_rate.
|
|
* 2. req_rate should not cause other vports [not configured for WFQ explicitly]
|
|
* rates to get less than one percent of min_pf_rate.
|
|
* 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
|
|
*/
|
|
static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
|
|
u16 vport_id, u32 req_rate, u32 min_pf_rate)
|
|
{
|
|
u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
|
|
int non_requested_count = 0, req_count = 0, i, num_vports;
|
|
|
|
num_vports = p_hwfn->qm_info.num_vports;
|
|
|
|
/* Accounting for the vports which are configured for WFQ explicitly */
|
|
for (i = 0; i < num_vports; i++) {
|
|
u32 tmp_speed;
|
|
|
|
if ((i != vport_id) &&
|
|
p_hwfn->qm_info.wfq_data[i].configured) {
|
|
req_count++;
|
|
tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
|
|
total_req_min_rate += tmp_speed;
|
|
}
|
|
}
|
|
|
|
/* Include current vport data as well */
|
|
req_count++;
|
|
total_req_min_rate += req_rate;
|
|
non_requested_count = num_vports - req_count;
|
|
|
|
if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
|
|
"Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
|
|
vport_id, req_rate, min_pf_rate);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (num_vports > QED_WFQ_UNIT) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
|
|
"Number of vports is greater than %d\n",
|
|
QED_WFQ_UNIT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (total_req_min_rate > min_pf_rate) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
|
|
"Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
|
|
total_req_min_rate, min_pf_rate);
|
|
return -EINVAL;
|
|
}
|
|
|
|
total_left_rate = min_pf_rate - total_req_min_rate;
|
|
|
|
left_rate_per_vp = total_left_rate / non_requested_count;
|
|
if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
|
|
"Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
|
|
left_rate_per_vp, min_pf_rate);
|
|
return -EINVAL;
|
|
}
|
|
|
|
p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
|
|
p_hwfn->qm_info.wfq_data[vport_id].configured = true;
|
|
|
|
for (i = 0; i < num_vports; i++) {
|
|
if (p_hwfn->qm_info.wfq_data[i].configured)
|
|
continue;
|
|
|
|
p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
|
|
{
|
|
struct qed_mcp_link_state *p_link;
|
|
int rc = 0;
|
|
|
|
p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
|
|
|
|
if (!p_link->min_pf_rate) {
|
|
p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
|
|
p_hwfn->qm_info.wfq_data[vp_id].configured = true;
|
|
return rc;
|
|
}
|
|
|
|
rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
|
|
|
|
if (!rc)
|
|
qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
|
|
p_link->min_pf_rate);
|
|
else
|
|
DP_NOTICE(p_hwfn,
|
|
"Validation failed while configuring min rate\n");
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 min_pf_rate)
|
|
{
|
|
bool use_wfq = false;
|
|
int rc = 0;
|
|
u16 i;
|
|
|
|
/* Validate all pre configured vports for wfq */
|
|
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
|
|
u32 rate;
|
|
|
|
if (!p_hwfn->qm_info.wfq_data[i].configured)
|
|
continue;
|
|
|
|
rate = p_hwfn->qm_info.wfq_data[i].min_speed;
|
|
use_wfq = true;
|
|
|
|
rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn,
|
|
"WFQ validation failed while configuring min rate\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!rc && use_wfq)
|
|
qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
|
|
else
|
|
qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Main API for qed clients to configure vport min rate.
|
|
* vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
|
|
* rate - Speed in Mbps needs to be assigned to a given vport.
|
|
*/
|
|
int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
|
|
{
|
|
int i, rc = -EINVAL;
|
|
|
|
/* Currently not supported; Might change in future */
|
|
if (cdev->num_hwfns > 1) {
|
|
DP_NOTICE(cdev,
|
|
"WFQ configuration is not supported for this device\n");
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
struct qed_ptt *p_ptt;
|
|
|
|
p_ptt = qed_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return -EBUSY;
|
|
|
|
rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
|
|
|
|
if (rc) {
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
return rc;
|
|
}
|
|
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* API to configure WFQ from mcp link change */
|
|
void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
|
|
struct qed_ptt *p_ptt, u32 min_pf_rate)
|
|
{
|
|
int i;
|
|
|
|
if (cdev->num_hwfns > 1) {
|
|
DP_VERBOSE(cdev,
|
|
NETIF_MSG_LINK,
|
|
"WFQ configuration is not supported for this device\n");
|
|
return;
|
|
}
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
|
|
__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
|
|
min_pf_rate);
|
|
}
|
|
}
|
|
|
|
int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct qed_mcp_link_state *p_link,
|
|
u8 max_bw)
|
|
{
|
|
int rc = 0;
|
|
|
|
p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
|
|
|
|
if (!p_link->line_speed && (max_bw != 100))
|
|
return rc;
|
|
|
|
p_link->speed = (p_link->line_speed * max_bw) / 100;
|
|
p_hwfn->qm_info.pf_rl = p_link->speed;
|
|
|
|
/* Since the limiter also affects Tx-switched traffic, we don't want it
|
|
* to limit such traffic in case there's no actual limit.
|
|
* In that case, set limit to imaginary high boundary.
|
|
*/
|
|
if (max_bw == 100)
|
|
p_hwfn->qm_info.pf_rl = 100000;
|
|
|
|
rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
|
|
p_hwfn->qm_info.pf_rl);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
|
|
"Configured MAX bandwidth to be %08x Mb/sec\n",
|
|
p_link->speed);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Main API to configure PF max bandwidth where bw range is [1 - 100] */
|
|
int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
|
|
{
|
|
int i, rc = -EINVAL;
|
|
|
|
if (max_bw < 1 || max_bw > 100) {
|
|
DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
|
|
struct qed_mcp_link_state *p_link;
|
|
struct qed_ptt *p_ptt;
|
|
|
|
p_link = &p_lead->mcp_info->link_output;
|
|
|
|
p_ptt = qed_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return -EBUSY;
|
|
|
|
rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
|
|
p_link, max_bw);
|
|
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct qed_mcp_link_state *p_link,
|
|
u8 min_bw)
|
|
{
|
|
int rc = 0;
|
|
|
|
p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
|
|
p_hwfn->qm_info.pf_wfq = min_bw;
|
|
|
|
if (!p_link->line_speed)
|
|
return rc;
|
|
|
|
p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
|
|
|
|
rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
|
|
"Configured MIN bandwidth to be %d Mb/sec\n",
|
|
p_link->min_pf_rate);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Main API to configure PF min bandwidth where bw range is [1-100] */
|
|
int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
|
|
{
|
|
int i, rc = -EINVAL;
|
|
|
|
if (min_bw < 1 || min_bw > 100) {
|
|
DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
|
|
return rc;
|
|
}
|
|
|
|
for_each_hwfn(cdev, i) {
|
|
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
|
|
struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
|
|
struct qed_mcp_link_state *p_link;
|
|
struct qed_ptt *p_ptt;
|
|
|
|
p_link = &p_lead->mcp_info->link_output;
|
|
|
|
p_ptt = qed_ptt_acquire(p_hwfn);
|
|
if (!p_ptt)
|
|
return -EBUSY;
|
|
|
|
rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
|
|
p_link, min_bw);
|
|
if (rc) {
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
return rc;
|
|
}
|
|
|
|
if (p_link->min_pf_rate) {
|
|
u32 min_rate = p_link->min_pf_rate;
|
|
|
|
rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
|
|
p_ptt,
|
|
min_rate);
|
|
}
|
|
|
|
qed_ptt_release(p_hwfn, p_ptt);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_mcp_link_state *p_link;
|
|
|
|
p_link = &p_hwfn->mcp_info->link_output;
|
|
|
|
if (p_link->min_pf_rate)
|
|
qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
|
|
p_link->min_pf_rate);
|
|
|
|
memset(p_hwfn->qm_info.wfq_data, 0,
|
|
sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
|
|
}
|
|
|
|
int qed_device_num_engines(struct qed_dev *cdev)
|
|
{
|
|
return QED_IS_BB(cdev) ? 2 : 1;
|
|
}
|
|
|
|
static int qed_device_num_ports(struct qed_dev *cdev)
|
|
{
|
|
/* in CMT always only one port */
|
|
if (cdev->num_hwfns > 1)
|
|
return 1;
|
|
|
|
return cdev->num_ports_in_engine * qed_device_num_engines(cdev);
|
|
}
|
|
|
|
int qed_device_get_port_id(struct qed_dev *cdev)
|
|
{
|
|
return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev);
|
|
}
|
|
|
|
void qed_set_fw_mac_addr(__le16 *fw_msb,
|
|
__le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
|
|
{
|
|
((u8 *)fw_msb)[0] = mac[1];
|
|
((u8 *)fw_msb)[1] = mac[0];
|
|
((u8 *)fw_mid)[0] = mac[3];
|
|
((u8 *)fw_mid)[1] = mac[2];
|
|
((u8 *)fw_lsb)[0] = mac[5];
|
|
((u8 *)fw_lsb)[1] = mac[4];
|
|
}
|