linux_dsm_epyc7002/drivers/infiniband/hw/bnxt_re/qplib_res.c
Joe Perches 08920b8f5d RDMA/bnxt_re: QPLIB: Add and use #define dev_fmt(fmt) "QPLIB: " fmt
Consistently use the "QPLIB: " prefix for dev_<level> logging.

Miscellanea:

o Add missing newlines to avoid possible message interleaving
o Coalesce consecutive dev_<level> uses that emit a message header to
  avoid < 80 column lengths and mistakenly output on multiple lines
o Reflow modified lines to use 80 columns where appropriate
o Consistently use "%s: " where __func__ is output
o QPLIB: is now always output immediately after the dev_<level> header

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Selvin Xavier <selvin.xavier@broadcom.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-09-05 15:35:20 -06:00

830 lines
21 KiB
C

/*
* Broadcom NetXtreme-E RoCE driver.
*
* Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
* Broadcom refers to Broadcom Limited and/or its subsidiaries.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Description: QPLib resource manager
*/
#define dev_fmt(fmt) "QPLIB: " fmt
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/inetdevice.h>
#include <linux/dma-mapping.h>
#include <linux/if_vlan.h>
#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_sp.h"
#include "qplib_rcfw.h"
static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats);
static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats);
/* PBL */
static void __free_pbl(struct pci_dev *pdev, struct bnxt_qplib_pbl *pbl,
bool is_umem)
{
int i;
if (!is_umem) {
for (i = 0; i < pbl->pg_count; i++) {
if (pbl->pg_arr[i])
dma_free_coherent(&pdev->dev, pbl->pg_size,
(void *)((unsigned long)
pbl->pg_arr[i] &
PAGE_MASK),
pbl->pg_map_arr[i]);
else
dev_warn(&pdev->dev,
"PBL free pg_arr[%d] empty?!\n", i);
pbl->pg_arr[i] = NULL;
}
}
kfree(pbl->pg_arr);
pbl->pg_arr = NULL;
kfree(pbl->pg_map_arr);
pbl->pg_map_arr = NULL;
pbl->pg_count = 0;
pbl->pg_size = 0;
}
static int __alloc_pbl(struct pci_dev *pdev, struct bnxt_qplib_pbl *pbl,
struct scatterlist *sghead, u32 pages, u32 pg_size)
{
struct scatterlist *sg;
bool is_umem = false;
int i;
/* page ptr arrays */
pbl->pg_arr = kcalloc(pages, sizeof(void *), GFP_KERNEL);
if (!pbl->pg_arr)
return -ENOMEM;
pbl->pg_map_arr = kcalloc(pages, sizeof(dma_addr_t), GFP_KERNEL);
if (!pbl->pg_map_arr) {
kfree(pbl->pg_arr);
pbl->pg_arr = NULL;
return -ENOMEM;
}
pbl->pg_count = 0;
pbl->pg_size = pg_size;
if (!sghead) {
for (i = 0; i < pages; i++) {
pbl->pg_arr[i] = dma_zalloc_coherent(&pdev->dev,
pbl->pg_size,
&pbl->pg_map_arr[i],
GFP_KERNEL);
if (!pbl->pg_arr[i])
goto fail;
pbl->pg_count++;
}
} else {
i = 0;
is_umem = true;
for_each_sg(sghead, sg, pages, i) {
pbl->pg_map_arr[i] = sg_dma_address(sg);
pbl->pg_arr[i] = sg_virt(sg);
if (!pbl->pg_arr[i])
goto fail;
pbl->pg_count++;
}
}
return 0;
fail:
__free_pbl(pdev, pbl, is_umem);
return -ENOMEM;
}
/* HWQ */
void bnxt_qplib_free_hwq(struct pci_dev *pdev, struct bnxt_qplib_hwq *hwq)
{
int i;
if (!hwq->max_elements)
return;
if (hwq->level >= PBL_LVL_MAX)
return;
for (i = 0; i < hwq->level + 1; i++) {
if (i == hwq->level)
__free_pbl(pdev, &hwq->pbl[i], hwq->is_user);
else
__free_pbl(pdev, &hwq->pbl[i], false);
}
hwq->level = PBL_LVL_MAX;
hwq->max_elements = 0;
hwq->element_size = 0;
hwq->prod = 0;
hwq->cons = 0;
hwq->cp_bit = 0;
}
/* All HWQs are power of 2 in size */
int bnxt_qplib_alloc_init_hwq(struct pci_dev *pdev, struct bnxt_qplib_hwq *hwq,
struct scatterlist *sghead, int nmap,
u32 *elements, u32 element_size, u32 aux,
u32 pg_size, enum bnxt_qplib_hwq_type hwq_type)
{
u32 pages, slots, size, aux_pages = 0, aux_size = 0;
dma_addr_t *src_phys_ptr, **dst_virt_ptr;
int i, rc;
hwq->level = PBL_LVL_MAX;
slots = roundup_pow_of_two(*elements);
if (aux) {
aux_size = roundup_pow_of_two(aux);
aux_pages = (slots * aux_size) / pg_size;
if ((slots * aux_size) % pg_size)
aux_pages++;
}
size = roundup_pow_of_two(element_size);
if (!sghead) {
hwq->is_user = false;
pages = (slots * size) / pg_size + aux_pages;
if ((slots * size) % pg_size)
pages++;
if (!pages)
return -EINVAL;
} else {
hwq->is_user = true;
pages = nmap;
}
/* Alloc the 1st memory block; can be a PDL/PTL/PBL */
if (sghead && (pages == MAX_PBL_LVL_0_PGS))
rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_0], sghead,
pages, pg_size);
else
rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_0], NULL, 1, pg_size);
if (rc)
goto fail;
hwq->level = PBL_LVL_0;
if (pages > MAX_PBL_LVL_0_PGS) {
if (pages > MAX_PBL_LVL_1_PGS) {
/* 2 levels of indirection */
rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_1], NULL,
MAX_PBL_LVL_1_PGS_FOR_LVL_2, pg_size);
if (rc)
goto fail;
/* Fill in lvl0 PBL */
dst_virt_ptr =
(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
src_phys_ptr[i] | PTU_PDE_VALID;
hwq->level = PBL_LVL_1;
rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_2], sghead,
pages, pg_size);
if (rc)
goto fail;
/* Fill in lvl1 PBL */
dst_virt_ptr =
(dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
src_phys_ptr[i] | PTU_PTE_VALID;
}
if (hwq_type == HWQ_TYPE_QUEUE) {
/* Find the last pg of the size */
i = hwq->pbl[PBL_LVL_2].pg_count;
dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
PTU_PTE_LAST;
if (i > 1)
dst_virt_ptr[PTR_PG(i - 2)]
[PTR_IDX(i - 2)] |=
PTU_PTE_NEXT_TO_LAST;
}
hwq->level = PBL_LVL_2;
} else {
u32 flag = hwq_type == HWQ_TYPE_L2_CMPL ? 0 :
PTU_PTE_VALID;
/* 1 level of indirection */
rc = __alloc_pbl(pdev, &hwq->pbl[PBL_LVL_1], sghead,
pages, pg_size);
if (rc)
goto fail;
/* Fill in lvl0 PBL */
dst_virt_ptr =
(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) {
dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
src_phys_ptr[i] | flag;
}
if (hwq_type == HWQ_TYPE_QUEUE) {
/* Find the last pg of the size */
i = hwq->pbl[PBL_LVL_1].pg_count;
dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
PTU_PTE_LAST;
if (i > 1)
dst_virt_ptr[PTR_PG(i - 2)]
[PTR_IDX(i - 2)] |=
PTU_PTE_NEXT_TO_LAST;
}
hwq->level = PBL_LVL_1;
}
}
hwq->pdev = pdev;
spin_lock_init(&hwq->lock);
hwq->prod = 0;
hwq->cons = 0;
*elements = hwq->max_elements = slots;
hwq->element_size = size;
/* For direct access to the elements */
hwq->pbl_ptr = hwq->pbl[hwq->level].pg_arr;
hwq->pbl_dma_ptr = hwq->pbl[hwq->level].pg_map_arr;
return 0;
fail:
bnxt_qplib_free_hwq(pdev, hwq);
return -ENOMEM;
}
/* Context Tables */
void bnxt_qplib_free_ctx(struct pci_dev *pdev,
struct bnxt_qplib_ctx *ctx)
{
int i;
bnxt_qplib_free_hwq(pdev, &ctx->qpc_tbl);
bnxt_qplib_free_hwq(pdev, &ctx->mrw_tbl);
bnxt_qplib_free_hwq(pdev, &ctx->srqc_tbl);
bnxt_qplib_free_hwq(pdev, &ctx->cq_tbl);
bnxt_qplib_free_hwq(pdev, &ctx->tim_tbl);
for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
bnxt_qplib_free_hwq(pdev, &ctx->tqm_tbl[i]);
bnxt_qplib_free_hwq(pdev, &ctx->tqm_pde);
bnxt_qplib_free_stats_ctx(pdev, &ctx->stats);
}
/*
* Routine: bnxt_qplib_alloc_ctx
* Description:
* Context tables are memories which are used by the chip fw.
* The 6 tables defined are:
* QPC ctx - holds QP states
* MRW ctx - holds memory region and window
* SRQ ctx - holds shared RQ states
* CQ ctx - holds completion queue states
* TQM ctx - holds Tx Queue Manager context
* TIM ctx - holds timer context
* Depending on the size of the tbl requested, either a 1 Page Buffer List
* or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
* instead.
* Table might be employed as follows:
* For 0 < ctx size <= 1 PAGE, 0 level of ind is used
* For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
* For 512 < ctx size <= MAX, 2 levels of ind is used
* Returns:
* 0 if success, else -ERRORS
*/
int bnxt_qplib_alloc_ctx(struct pci_dev *pdev,
struct bnxt_qplib_ctx *ctx,
bool virt_fn)
{
int i, j, k, rc = 0;
int fnz_idx = -1;
__le64 **pbl_ptr;
if (virt_fn)
goto stats_alloc;
/* QPC Tables */
ctx->qpc_tbl.max_elements = ctx->qpc_count;
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->qpc_tbl, NULL, 0,
&ctx->qpc_tbl.max_elements,
BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE, 0,
PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
/* MRW Tables */
ctx->mrw_tbl.max_elements = ctx->mrw_count;
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->mrw_tbl, NULL, 0,
&ctx->mrw_tbl.max_elements,
BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE, 0,
PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
/* SRQ Tables */
ctx->srqc_tbl.max_elements = ctx->srqc_count;
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->srqc_tbl, NULL, 0,
&ctx->srqc_tbl.max_elements,
BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE, 0,
PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
/* CQ Tables */
ctx->cq_tbl.max_elements = ctx->cq_count;
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->cq_tbl, NULL, 0,
&ctx->cq_tbl.max_elements,
BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE, 0,
PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
/* TQM Buffer */
ctx->tqm_pde.max_elements = 512;
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->tqm_pde, NULL, 0,
&ctx->tqm_pde.max_elements, sizeof(u64),
0, PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
if (!ctx->tqm_count[i])
continue;
ctx->tqm_tbl[i].max_elements = ctx->qpc_count *
ctx->tqm_count[i];
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->tqm_tbl[i], NULL, 0,
&ctx->tqm_tbl[i].max_elements, 1,
0, PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
}
pbl_ptr = (__le64 **)ctx->tqm_pde.pbl_ptr;
for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
if (!ctx->tqm_tbl[i].max_elements)
continue;
if (fnz_idx == -1)
fnz_idx = i;
switch (ctx->tqm_tbl[i].level) {
case PBL_LVL_2:
for (k = 0; k < ctx->tqm_tbl[i].pbl[PBL_LVL_1].pg_count;
k++)
pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)] =
cpu_to_le64(
ctx->tqm_tbl[i].pbl[PBL_LVL_1].pg_map_arr[k]
| PTU_PTE_VALID);
break;
case PBL_LVL_1:
case PBL_LVL_0:
default:
pbl_ptr[PTR_PG(j)][PTR_IDX(j)] = cpu_to_le64(
ctx->tqm_tbl[i].pbl[PBL_LVL_0].pg_map_arr[0] |
PTU_PTE_VALID);
break;
}
}
if (fnz_idx == -1)
fnz_idx = 0;
ctx->tqm_pde_level = ctx->tqm_tbl[fnz_idx].level == PBL_LVL_2 ?
PBL_LVL_2 : ctx->tqm_tbl[fnz_idx].level + 1;
/* TIM Buffer */
ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
rc = bnxt_qplib_alloc_init_hwq(pdev, &ctx->tim_tbl, NULL, 0,
&ctx->tim_tbl.max_elements, 1,
0, PAGE_SIZE, HWQ_TYPE_CTX);
if (rc)
goto fail;
stats_alloc:
/* Stats */
rc = bnxt_qplib_alloc_stats_ctx(pdev, &ctx->stats);
if (rc)
goto fail;
return 0;
fail:
bnxt_qplib_free_ctx(pdev, ctx);
return rc;
}
/* GUID */
void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid)
{
u8 mac[ETH_ALEN];
/* MAC-48 to EUI-64 mapping */
memcpy(mac, dev_addr, ETH_ALEN);
guid[0] = mac[0] ^ 2;
guid[1] = mac[1];
guid[2] = mac[2];
guid[3] = 0xff;
guid[4] = 0xfe;
guid[5] = mac[3];
guid[6] = mac[4];
guid[7] = mac[5];
}
static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl)
{
kfree(sgid_tbl->tbl);
kfree(sgid_tbl->hw_id);
kfree(sgid_tbl->ctx);
kfree(sgid_tbl->vlan);
sgid_tbl->tbl = NULL;
sgid_tbl->hw_id = NULL;
sgid_tbl->ctx = NULL;
sgid_tbl->vlan = NULL;
sgid_tbl->max = 0;
sgid_tbl->active = 0;
}
static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl,
u16 max)
{
sgid_tbl->tbl = kcalloc(max, sizeof(struct bnxt_qplib_gid), GFP_KERNEL);
if (!sgid_tbl->tbl)
return -ENOMEM;
sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
if (!sgid_tbl->hw_id)
goto out_free1;
sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
if (!sgid_tbl->ctx)
goto out_free2;
sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
if (!sgid_tbl->vlan)
goto out_free3;
sgid_tbl->max = max;
return 0;
out_free3:
kfree(sgid_tbl->ctx);
sgid_tbl->ctx = NULL;
out_free2:
kfree(sgid_tbl->hw_id);
sgid_tbl->hw_id = NULL;
out_free1:
kfree(sgid_tbl->tbl);
sgid_tbl->tbl = NULL;
return -ENOMEM;
};
static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl)
{
int i;
for (i = 0; i < sgid_tbl->max; i++) {
if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
sizeof(bnxt_qplib_gid_zero)))
bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i], true);
}
memset(sgid_tbl->tbl, 0, sizeof(struct bnxt_qplib_gid) * sgid_tbl->max);
memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
sgid_tbl->active = 0;
}
static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
struct net_device *netdev)
{
memset(sgid_tbl->tbl, 0, sizeof(struct bnxt_qplib_gid) * sgid_tbl->max);
memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
}
static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pkey_tbl *pkey_tbl)
{
if (!pkey_tbl->tbl)
dev_dbg(&res->pdev->dev, "PKEY tbl not present\n");
else
kfree(pkey_tbl->tbl);
pkey_tbl->tbl = NULL;
pkey_tbl->max = 0;
pkey_tbl->active = 0;
}
static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pkey_tbl *pkey_tbl,
u16 max)
{
pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL);
if (!pkey_tbl->tbl)
return -ENOMEM;
pkey_tbl->max = max;
return 0;
};
/* PDs */
int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
{
u32 bit_num;
bit_num = find_first_bit(pdt->tbl, pdt->max);
if (bit_num == pdt->max)
return -ENOMEM;
/* Found unused PD */
clear_bit(bit_num, pdt->tbl);
pd->id = bit_num;
return 0;
}
int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
struct bnxt_qplib_pd_tbl *pdt,
struct bnxt_qplib_pd *pd)
{
if (test_and_set_bit(pd->id, pdt->tbl)) {
dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
pd->id);
return -EINVAL;
}
pd->id = 0;
return 0;
}
static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
{
kfree(pdt->tbl);
pdt->tbl = NULL;
pdt->max = 0;
}
static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pd_tbl *pdt,
u32 max)
{
u32 bytes;
bytes = max >> 3;
if (!bytes)
bytes = 1;
pdt->tbl = kmalloc(bytes, GFP_KERNEL);
if (!pdt->tbl)
return -ENOMEM;
pdt->max = max;
memset((u8 *)pdt->tbl, 0xFF, bytes);
return 0;
}
/* DPIs */
int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
struct bnxt_qplib_dpi *dpi,
void *app)
{
u32 bit_num;
bit_num = find_first_bit(dpit->tbl, dpit->max);
if (bit_num == dpit->max)
return -ENOMEM;
/* Found unused DPI */
clear_bit(bit_num, dpit->tbl);
dpit->app_tbl[bit_num] = app;
dpi->dpi = bit_num;
dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
return 0;
}
int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
struct bnxt_qplib_dpi_tbl *dpit,
struct bnxt_qplib_dpi *dpi)
{
if (dpi->dpi >= dpit->max) {
dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
return -EINVAL;
}
if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
dpi->dpi);
return -EINVAL;
}
if (dpit->app_tbl)
dpit->app_tbl[dpi->dpi] = NULL;
memset(dpi, 0, sizeof(*dpi));
return 0;
}
static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_dpi_tbl *dpit)
{
kfree(dpit->tbl);
kfree(dpit->app_tbl);
if (dpit->dbr_bar_reg_iomem)
pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
memset(dpit, 0, sizeof(*dpit));
}
static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_dpi_tbl *dpit,
u32 dbr_offset)
{
u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
resource_size_t bar_reg_base;
u32 dbr_len, bytes;
if (dpit->dbr_bar_reg_iomem) {
dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
dbr_bar_reg);
return -EALREADY;
}
bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
if (!bar_reg_base) {
dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
dbr_bar_reg);
return -ENOMEM;
}
dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
return -ENOMEM;
}
dpit->dbr_bar_reg_iomem = ioremap_nocache(bar_reg_base + dbr_offset,
dbr_len);
if (!dpit->dbr_bar_reg_iomem) {
dev_err(&res->pdev->dev,
"FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
return -ENOMEM;
}
dpit->unmapped_dbr = bar_reg_base + dbr_offset;
dpit->max = dbr_len / PAGE_SIZE;
dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
if (!dpit->app_tbl)
goto unmap_io;
bytes = dpit->max >> 3;
if (!bytes)
bytes = 1;
dpit->tbl = kmalloc(bytes, GFP_KERNEL);
if (!dpit->tbl) {
kfree(dpit->app_tbl);
dpit->app_tbl = NULL;
goto unmap_io;
}
memset((u8 *)dpit->tbl, 0xFF, bytes);
return 0;
unmap_io:
pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
return -ENOMEM;
}
/* PKEYs */
static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl)
{
memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
pkey_tbl->active = 0;
}
static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res,
struct bnxt_qplib_pkey_tbl *pkey_tbl)
{
u16 pkey = 0xFFFF;
memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
/* pkey default = 0xFFFF */
bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false);
}
/* Stats */
static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats)
{
if (stats->dma) {
dma_free_coherent(&pdev->dev, stats->size,
stats->dma, stats->dma_map);
}
memset(stats, 0, sizeof(*stats));
stats->fw_id = -1;
}
static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
struct bnxt_qplib_stats *stats)
{
memset(stats, 0, sizeof(*stats));
stats->fw_id = -1;
stats->size = sizeof(struct ctx_hw_stats);
stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
&stats->dma_map, GFP_KERNEL);
if (!stats->dma) {
dev_err(&pdev->dev, "Stats DMA allocation failed\n");
return -ENOMEM;
}
return 0;
}
void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
{
bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl);
bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
}
int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
{
bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl);
return 0;
}
void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
{
bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl);
bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
bnxt_qplib_free_pd_tbl(&res->pd_tbl);
bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
res->netdev = NULL;
res->pdev = NULL;
}
int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
struct net_device *netdev,
struct bnxt_qplib_dev_attr *dev_attr)
{
int rc = 0;
res->pdev = pdev;
res->netdev = netdev;
rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
if (rc)
goto fail;
return 0;
fail:
bnxt_qplib_free_res(res);
return rc;
}