mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
7fda0412c5
Pull scheduler fixes from Ingo Molnar. * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: cpusets: Remove an unused variable sched/rt: Improve pick_next_highest_task_rt() sched: Fix select_fallback_rq() vs cpu_active/cpu_online sched/x86/smp: Do not enable IRQs over calibrate_delay() sched: Fix compiler warning about declared inline after use MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
5581 lines
140 KiB
C
5581 lines
140 KiB
C
/*
|
|
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
|
|
*
|
|
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* Interactivity improvements by Mike Galbraith
|
|
* (C) 2007 Mike Galbraith <efault@gmx.de>
|
|
*
|
|
* Various enhancements by Dmitry Adamushko.
|
|
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
|
|
*
|
|
* Group scheduling enhancements by Srivatsa Vaddagiri
|
|
* Copyright IBM Corporation, 2007
|
|
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
|
|
*
|
|
* Scaled math optimizations by Thomas Gleixner
|
|
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
|
|
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
*/
|
|
|
|
#include <linux/latencytop.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <trace/events/sched.h>
|
|
|
|
#include "sched.h"
|
|
|
|
/*
|
|
* Targeted preemption latency for CPU-bound tasks:
|
|
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
|
|
*
|
|
* NOTE: this latency value is not the same as the concept of
|
|
* 'timeslice length' - timeslices in CFS are of variable length
|
|
* and have no persistent notion like in traditional, time-slice
|
|
* based scheduling concepts.
|
|
*
|
|
* (to see the precise effective timeslice length of your workload,
|
|
* run vmstat and monitor the context-switches (cs) field)
|
|
*/
|
|
unsigned int sysctl_sched_latency = 6000000ULL;
|
|
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
|
|
|
|
/*
|
|
* The initial- and re-scaling of tunables is configurable
|
|
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
|
|
*
|
|
* Options are:
|
|
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
|
|
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
|
|
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
|
|
*/
|
|
enum sched_tunable_scaling sysctl_sched_tunable_scaling
|
|
= SCHED_TUNABLESCALING_LOG;
|
|
|
|
/*
|
|
* Minimal preemption granularity for CPU-bound tasks:
|
|
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
|
|
*/
|
|
unsigned int sysctl_sched_min_granularity = 750000ULL;
|
|
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
|
|
|
|
/*
|
|
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
|
|
*/
|
|
static unsigned int sched_nr_latency = 8;
|
|
|
|
/*
|
|
* After fork, child runs first. If set to 0 (default) then
|
|
* parent will (try to) run first.
|
|
*/
|
|
unsigned int sysctl_sched_child_runs_first __read_mostly;
|
|
|
|
/*
|
|
* SCHED_OTHER wake-up granularity.
|
|
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
|
|
*
|
|
* This option delays the preemption effects of decoupled workloads
|
|
* and reduces their over-scheduling. Synchronous workloads will still
|
|
* have immediate wakeup/sleep latencies.
|
|
*/
|
|
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
|
|
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
|
|
|
|
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
|
|
|
|
/*
|
|
* The exponential sliding window over which load is averaged for shares
|
|
* distribution.
|
|
* (default: 10msec)
|
|
*/
|
|
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
/*
|
|
* Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
|
|
* each time a cfs_rq requests quota.
|
|
*
|
|
* Note: in the case that the slice exceeds the runtime remaining (either due
|
|
* to consumption or the quota being specified to be smaller than the slice)
|
|
* we will always only issue the remaining available time.
|
|
*
|
|
* default: 5 msec, units: microseconds
|
|
*/
|
|
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
|
|
#endif
|
|
|
|
/*
|
|
* Increase the granularity value when there are more CPUs,
|
|
* because with more CPUs the 'effective latency' as visible
|
|
* to users decreases. But the relationship is not linear,
|
|
* so pick a second-best guess by going with the log2 of the
|
|
* number of CPUs.
|
|
*
|
|
* This idea comes from the SD scheduler of Con Kolivas:
|
|
*/
|
|
static int get_update_sysctl_factor(void)
|
|
{
|
|
unsigned int cpus = min_t(int, num_online_cpus(), 8);
|
|
unsigned int factor;
|
|
|
|
switch (sysctl_sched_tunable_scaling) {
|
|
case SCHED_TUNABLESCALING_NONE:
|
|
factor = 1;
|
|
break;
|
|
case SCHED_TUNABLESCALING_LINEAR:
|
|
factor = cpus;
|
|
break;
|
|
case SCHED_TUNABLESCALING_LOG:
|
|
default:
|
|
factor = 1 + ilog2(cpus);
|
|
break;
|
|
}
|
|
|
|
return factor;
|
|
}
|
|
|
|
static void update_sysctl(void)
|
|
{
|
|
unsigned int factor = get_update_sysctl_factor();
|
|
|
|
#define SET_SYSCTL(name) \
|
|
(sysctl_##name = (factor) * normalized_sysctl_##name)
|
|
SET_SYSCTL(sched_min_granularity);
|
|
SET_SYSCTL(sched_latency);
|
|
SET_SYSCTL(sched_wakeup_granularity);
|
|
#undef SET_SYSCTL
|
|
}
|
|
|
|
void sched_init_granularity(void)
|
|
{
|
|
update_sysctl();
|
|
}
|
|
|
|
#if BITS_PER_LONG == 32
|
|
# define WMULT_CONST (~0UL)
|
|
#else
|
|
# define WMULT_CONST (1UL << 32)
|
|
#endif
|
|
|
|
#define WMULT_SHIFT 32
|
|
|
|
/*
|
|
* Shift right and round:
|
|
*/
|
|
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
|
|
|
|
/*
|
|
* delta *= weight / lw
|
|
*/
|
|
static unsigned long
|
|
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
|
|
struct load_weight *lw)
|
|
{
|
|
u64 tmp;
|
|
|
|
/*
|
|
* weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
|
|
* entities since MIN_SHARES = 2. Treat weight as 1 if less than
|
|
* 2^SCHED_LOAD_RESOLUTION.
|
|
*/
|
|
if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
|
|
tmp = (u64)delta_exec * scale_load_down(weight);
|
|
else
|
|
tmp = (u64)delta_exec;
|
|
|
|
if (!lw->inv_weight) {
|
|
unsigned long w = scale_load_down(lw->weight);
|
|
|
|
if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
|
|
lw->inv_weight = 1;
|
|
else if (unlikely(!w))
|
|
lw->inv_weight = WMULT_CONST;
|
|
else
|
|
lw->inv_weight = WMULT_CONST / w;
|
|
}
|
|
|
|
/*
|
|
* Check whether we'd overflow the 64-bit multiplication:
|
|
*/
|
|
if (unlikely(tmp > WMULT_CONST))
|
|
tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
|
|
WMULT_SHIFT/2);
|
|
else
|
|
tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
|
|
|
|
return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
|
|
}
|
|
|
|
|
|
const struct sched_class fair_sched_class;
|
|
|
|
/**************************************************************
|
|
* CFS operations on generic schedulable entities:
|
|
*/
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
|
/* cpu runqueue to which this cfs_rq is attached */
|
|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
{
|
|
return cfs_rq->rq;
|
|
}
|
|
|
|
/* An entity is a task if it doesn't "own" a runqueue */
|
|
#define entity_is_task(se) (!se->my_q)
|
|
|
|
static inline struct task_struct *task_of(struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
WARN_ON_ONCE(!entity_is_task(se));
|
|
#endif
|
|
return container_of(se, struct task_struct, se);
|
|
}
|
|
|
|
/* Walk up scheduling entities hierarchy */
|
|
#define for_each_sched_entity(se) \
|
|
for (; se; se = se->parent)
|
|
|
|
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
|
|
{
|
|
return p->se.cfs_rq;
|
|
}
|
|
|
|
/* runqueue on which this entity is (to be) queued */
|
|
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
|
|
{
|
|
return se->cfs_rq;
|
|
}
|
|
|
|
/* runqueue "owned" by this group */
|
|
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
{
|
|
return grp->my_q;
|
|
}
|
|
|
|
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (!cfs_rq->on_list) {
|
|
/*
|
|
* Ensure we either appear before our parent (if already
|
|
* enqueued) or force our parent to appear after us when it is
|
|
* enqueued. The fact that we always enqueue bottom-up
|
|
* reduces this to two cases.
|
|
*/
|
|
if (cfs_rq->tg->parent &&
|
|
cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
|
|
list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
|
|
&rq_of(cfs_rq)->leaf_cfs_rq_list);
|
|
} else {
|
|
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
|
|
&rq_of(cfs_rq)->leaf_cfs_rq_list);
|
|
}
|
|
|
|
cfs_rq->on_list = 1;
|
|
}
|
|
}
|
|
|
|
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (cfs_rq->on_list) {
|
|
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
|
|
cfs_rq->on_list = 0;
|
|
}
|
|
}
|
|
|
|
/* Iterate thr' all leaf cfs_rq's on a runqueue */
|
|
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
|
|
list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
|
|
|
|
/* Do the two (enqueued) entities belong to the same group ? */
|
|
static inline int
|
|
is_same_group(struct sched_entity *se, struct sched_entity *pse)
|
|
{
|
|
if (se->cfs_rq == pse->cfs_rq)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct sched_entity *parent_entity(struct sched_entity *se)
|
|
{
|
|
return se->parent;
|
|
}
|
|
|
|
/* return depth at which a sched entity is present in the hierarchy */
|
|
static inline int depth_se(struct sched_entity *se)
|
|
{
|
|
int depth = 0;
|
|
|
|
for_each_sched_entity(se)
|
|
depth++;
|
|
|
|
return depth;
|
|
}
|
|
|
|
static void
|
|
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
|
|
{
|
|
int se_depth, pse_depth;
|
|
|
|
/*
|
|
* preemption test can be made between sibling entities who are in the
|
|
* same cfs_rq i.e who have a common parent. Walk up the hierarchy of
|
|
* both tasks until we find their ancestors who are siblings of common
|
|
* parent.
|
|
*/
|
|
|
|
/* First walk up until both entities are at same depth */
|
|
se_depth = depth_se(*se);
|
|
pse_depth = depth_se(*pse);
|
|
|
|
while (se_depth > pse_depth) {
|
|
se_depth--;
|
|
*se = parent_entity(*se);
|
|
}
|
|
|
|
while (pse_depth > se_depth) {
|
|
pse_depth--;
|
|
*pse = parent_entity(*pse);
|
|
}
|
|
|
|
while (!is_same_group(*se, *pse)) {
|
|
*se = parent_entity(*se);
|
|
*pse = parent_entity(*pse);
|
|
}
|
|
}
|
|
|
|
#else /* !CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
static inline struct task_struct *task_of(struct sched_entity *se)
|
|
{
|
|
return container_of(se, struct task_struct, se);
|
|
}
|
|
|
|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
{
|
|
return container_of(cfs_rq, struct rq, cfs);
|
|
}
|
|
|
|
#define entity_is_task(se) 1
|
|
|
|
#define for_each_sched_entity(se) \
|
|
for (; se; se = NULL)
|
|
|
|
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
|
|
{
|
|
return &task_rq(p)->cfs;
|
|
}
|
|
|
|
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
|
|
{
|
|
struct task_struct *p = task_of(se);
|
|
struct rq *rq = task_rq(p);
|
|
|
|
return &rq->cfs;
|
|
}
|
|
|
|
/* runqueue "owned" by this group */
|
|
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
}
|
|
|
|
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
}
|
|
|
|
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
|
|
for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
|
|
|
|
static inline int
|
|
is_same_group(struct sched_entity *se, struct sched_entity *pse)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline struct sched_entity *parent_entity(struct sched_entity *se)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
static __always_inline
|
|
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
|
|
|
|
/**************************************************************
|
|
* Scheduling class tree data structure manipulation methods:
|
|
*/
|
|
|
|
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
|
|
{
|
|
s64 delta = (s64)(vruntime - min_vruntime);
|
|
if (delta > 0)
|
|
min_vruntime = vruntime;
|
|
|
|
return min_vruntime;
|
|
}
|
|
|
|
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
|
|
{
|
|
s64 delta = (s64)(vruntime - min_vruntime);
|
|
if (delta < 0)
|
|
min_vruntime = vruntime;
|
|
|
|
return min_vruntime;
|
|
}
|
|
|
|
static inline int entity_before(struct sched_entity *a,
|
|
struct sched_entity *b)
|
|
{
|
|
return (s64)(a->vruntime - b->vruntime) < 0;
|
|
}
|
|
|
|
static void update_min_vruntime(struct cfs_rq *cfs_rq)
|
|
{
|
|
u64 vruntime = cfs_rq->min_vruntime;
|
|
|
|
if (cfs_rq->curr)
|
|
vruntime = cfs_rq->curr->vruntime;
|
|
|
|
if (cfs_rq->rb_leftmost) {
|
|
struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
|
|
struct sched_entity,
|
|
run_node);
|
|
|
|
if (!cfs_rq->curr)
|
|
vruntime = se->vruntime;
|
|
else
|
|
vruntime = min_vruntime(vruntime, se->vruntime);
|
|
}
|
|
|
|
cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
|
|
#ifndef CONFIG_64BIT
|
|
smp_wmb();
|
|
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Enqueue an entity into the rb-tree:
|
|
*/
|
|
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct sched_entity *entry;
|
|
int leftmost = 1;
|
|
|
|
/*
|
|
* Find the right place in the rbtree:
|
|
*/
|
|
while (*link) {
|
|
parent = *link;
|
|
entry = rb_entry(parent, struct sched_entity, run_node);
|
|
/*
|
|
* We dont care about collisions. Nodes with
|
|
* the same key stay together.
|
|
*/
|
|
if (entity_before(se, entry)) {
|
|
link = &parent->rb_left;
|
|
} else {
|
|
link = &parent->rb_right;
|
|
leftmost = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Maintain a cache of leftmost tree entries (it is frequently
|
|
* used):
|
|
*/
|
|
if (leftmost)
|
|
cfs_rq->rb_leftmost = &se->run_node;
|
|
|
|
rb_link_node(&se->run_node, parent, link);
|
|
rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
|
|
}
|
|
|
|
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
if (cfs_rq->rb_leftmost == &se->run_node) {
|
|
struct rb_node *next_node;
|
|
|
|
next_node = rb_next(&se->run_node);
|
|
cfs_rq->rb_leftmost = next_node;
|
|
}
|
|
|
|
rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
|
|
}
|
|
|
|
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rb_node *left = cfs_rq->rb_leftmost;
|
|
|
|
if (!left)
|
|
return NULL;
|
|
|
|
return rb_entry(left, struct sched_entity, run_node);
|
|
}
|
|
|
|
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
|
|
{
|
|
struct rb_node *next = rb_next(&se->run_node);
|
|
|
|
if (!next)
|
|
return NULL;
|
|
|
|
return rb_entry(next, struct sched_entity, run_node);
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
|
|
|
|
if (!last)
|
|
return NULL;
|
|
|
|
return rb_entry(last, struct sched_entity, run_node);
|
|
}
|
|
|
|
/**************************************************************
|
|
* Scheduling class statistics methods:
|
|
*/
|
|
|
|
int sched_proc_update_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
int factor = get_update_sysctl_factor();
|
|
|
|
if (ret || !write)
|
|
return ret;
|
|
|
|
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
|
|
sysctl_sched_min_granularity);
|
|
|
|
#define WRT_SYSCTL(name) \
|
|
(normalized_sysctl_##name = sysctl_##name / (factor))
|
|
WRT_SYSCTL(sched_min_granularity);
|
|
WRT_SYSCTL(sched_latency);
|
|
WRT_SYSCTL(sched_wakeup_granularity);
|
|
#undef WRT_SYSCTL
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* delta /= w
|
|
*/
|
|
static inline unsigned long
|
|
calc_delta_fair(unsigned long delta, struct sched_entity *se)
|
|
{
|
|
if (unlikely(se->load.weight != NICE_0_LOAD))
|
|
delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
|
|
|
|
return delta;
|
|
}
|
|
|
|
/*
|
|
* The idea is to set a period in which each task runs once.
|
|
*
|
|
* When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
|
|
* this period because otherwise the slices get too small.
|
|
*
|
|
* p = (nr <= nl) ? l : l*nr/nl
|
|
*/
|
|
static u64 __sched_period(unsigned long nr_running)
|
|
{
|
|
u64 period = sysctl_sched_latency;
|
|
unsigned long nr_latency = sched_nr_latency;
|
|
|
|
if (unlikely(nr_running > nr_latency)) {
|
|
period = sysctl_sched_min_granularity;
|
|
period *= nr_running;
|
|
}
|
|
|
|
return period;
|
|
}
|
|
|
|
/*
|
|
* We calculate the wall-time slice from the period by taking a part
|
|
* proportional to the weight.
|
|
*
|
|
* s = p*P[w/rw]
|
|
*/
|
|
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
|
|
|
|
for_each_sched_entity(se) {
|
|
struct load_weight *load;
|
|
struct load_weight lw;
|
|
|
|
cfs_rq = cfs_rq_of(se);
|
|
load = &cfs_rq->load;
|
|
|
|
if (unlikely(!se->on_rq)) {
|
|
lw = cfs_rq->load;
|
|
|
|
update_load_add(&lw, se->load.weight);
|
|
load = &lw;
|
|
}
|
|
slice = calc_delta_mine(slice, se->load.weight, load);
|
|
}
|
|
return slice;
|
|
}
|
|
|
|
/*
|
|
* We calculate the vruntime slice of a to be inserted task
|
|
*
|
|
* vs = s/w
|
|
*/
|
|
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
return calc_delta_fair(sched_slice(cfs_rq, se), se);
|
|
}
|
|
|
|
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
|
|
static void update_cfs_shares(struct cfs_rq *cfs_rq);
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static inline void
|
|
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
|
|
unsigned long delta_exec)
|
|
{
|
|
unsigned long delta_exec_weighted;
|
|
|
|
schedstat_set(curr->statistics.exec_max,
|
|
max((u64)delta_exec, curr->statistics.exec_max));
|
|
|
|
curr->sum_exec_runtime += delta_exec;
|
|
schedstat_add(cfs_rq, exec_clock, delta_exec);
|
|
delta_exec_weighted = calc_delta_fair(delta_exec, curr);
|
|
|
|
curr->vruntime += delta_exec_weighted;
|
|
update_min_vruntime(cfs_rq);
|
|
|
|
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
|
|
cfs_rq->load_unacc_exec_time += delta_exec;
|
|
#endif
|
|
}
|
|
|
|
static void update_curr(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct sched_entity *curr = cfs_rq->curr;
|
|
u64 now = rq_of(cfs_rq)->clock_task;
|
|
unsigned long delta_exec;
|
|
|
|
if (unlikely(!curr))
|
|
return;
|
|
|
|
/*
|
|
* Get the amount of time the current task was running
|
|
* since the last time we changed load (this cannot
|
|
* overflow on 32 bits):
|
|
*/
|
|
delta_exec = (unsigned long)(now - curr->exec_start);
|
|
if (!delta_exec)
|
|
return;
|
|
|
|
__update_curr(cfs_rq, curr, delta_exec);
|
|
curr->exec_start = now;
|
|
|
|
if (entity_is_task(curr)) {
|
|
struct task_struct *curtask = task_of(curr);
|
|
|
|
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
|
|
cpuacct_charge(curtask, delta_exec);
|
|
account_group_exec_runtime(curtask, delta_exec);
|
|
}
|
|
|
|
account_cfs_rq_runtime(cfs_rq, delta_exec);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
|
|
}
|
|
|
|
/*
|
|
* Task is being enqueued - update stats:
|
|
*/
|
|
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/*
|
|
* Are we enqueueing a waiting task? (for current tasks
|
|
* a dequeue/enqueue event is a NOP)
|
|
*/
|
|
if (se != cfs_rq->curr)
|
|
update_stats_wait_start(cfs_rq, se);
|
|
}
|
|
|
|
static void
|
|
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
|
|
rq_of(cfs_rq)->clock - se->statistics.wait_start));
|
|
schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
|
|
schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
|
|
rq_of(cfs_rq)->clock - se->statistics.wait_start);
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
if (entity_is_task(se)) {
|
|
trace_sched_stat_wait(task_of(se),
|
|
rq_of(cfs_rq)->clock - se->statistics.wait_start);
|
|
}
|
|
#endif
|
|
schedstat_set(se->statistics.wait_start, 0);
|
|
}
|
|
|
|
static inline void
|
|
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/*
|
|
* Mark the end of the wait period if dequeueing a
|
|
* waiting task:
|
|
*/
|
|
if (se != cfs_rq->curr)
|
|
update_stats_wait_end(cfs_rq, se);
|
|
}
|
|
|
|
/*
|
|
* We are picking a new current task - update its stats:
|
|
*/
|
|
static inline void
|
|
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/*
|
|
* We are starting a new run period:
|
|
*/
|
|
se->exec_start = rq_of(cfs_rq)->clock_task;
|
|
}
|
|
|
|
/**************************************************
|
|
* Scheduling class queueing methods:
|
|
*/
|
|
|
|
static void
|
|
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
update_load_add(&cfs_rq->load, se->load.weight);
|
|
if (!parent_entity(se))
|
|
update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
|
|
#ifdef CONFIG_SMP
|
|
if (entity_is_task(se))
|
|
list_add_tail(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
|
|
#endif
|
|
cfs_rq->nr_running++;
|
|
}
|
|
|
|
static void
|
|
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
update_load_sub(&cfs_rq->load, se->load.weight);
|
|
if (!parent_entity(se))
|
|
update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
|
|
if (entity_is_task(se))
|
|
list_del_init(&se->group_node);
|
|
cfs_rq->nr_running--;
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* we need this in update_cfs_load and load-balance functions below */
|
|
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
|
|
# ifdef CONFIG_SMP
|
|
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
|
|
int global_update)
|
|
{
|
|
struct task_group *tg = cfs_rq->tg;
|
|
long load_avg;
|
|
|
|
load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
|
|
load_avg -= cfs_rq->load_contribution;
|
|
|
|
if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
|
|
atomic_add(load_avg, &tg->load_weight);
|
|
cfs_rq->load_contribution += load_avg;
|
|
}
|
|
}
|
|
|
|
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
|
|
{
|
|
u64 period = sysctl_sched_shares_window;
|
|
u64 now, delta;
|
|
unsigned long load = cfs_rq->load.weight;
|
|
|
|
if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
|
|
return;
|
|
|
|
now = rq_of(cfs_rq)->clock_task;
|
|
delta = now - cfs_rq->load_stamp;
|
|
|
|
/* truncate load history at 4 idle periods */
|
|
if (cfs_rq->load_stamp > cfs_rq->load_last &&
|
|
now - cfs_rq->load_last > 4 * period) {
|
|
cfs_rq->load_period = 0;
|
|
cfs_rq->load_avg = 0;
|
|
delta = period - 1;
|
|
}
|
|
|
|
cfs_rq->load_stamp = now;
|
|
cfs_rq->load_unacc_exec_time = 0;
|
|
cfs_rq->load_period += delta;
|
|
if (load) {
|
|
cfs_rq->load_last = now;
|
|
cfs_rq->load_avg += delta * load;
|
|
}
|
|
|
|
/* consider updating load contribution on each fold or truncate */
|
|
if (global_update || cfs_rq->load_period > period
|
|
|| !cfs_rq->load_period)
|
|
update_cfs_rq_load_contribution(cfs_rq, global_update);
|
|
|
|
while (cfs_rq->load_period > period) {
|
|
/*
|
|
* Inline assembly required to prevent the compiler
|
|
* optimising this loop into a divmod call.
|
|
* See __iter_div_u64_rem() for another example of this.
|
|
*/
|
|
asm("" : "+rm" (cfs_rq->load_period));
|
|
cfs_rq->load_period /= 2;
|
|
cfs_rq->load_avg /= 2;
|
|
}
|
|
|
|
if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
|
|
list_del_leaf_cfs_rq(cfs_rq);
|
|
}
|
|
|
|
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
|
|
{
|
|
long tg_weight;
|
|
|
|
/*
|
|
* Use this CPU's actual weight instead of the last load_contribution
|
|
* to gain a more accurate current total weight. See
|
|
* update_cfs_rq_load_contribution().
|
|
*/
|
|
tg_weight = atomic_read(&tg->load_weight);
|
|
tg_weight -= cfs_rq->load_contribution;
|
|
tg_weight += cfs_rq->load.weight;
|
|
|
|
return tg_weight;
|
|
}
|
|
|
|
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
|
|
{
|
|
long tg_weight, load, shares;
|
|
|
|
tg_weight = calc_tg_weight(tg, cfs_rq);
|
|
load = cfs_rq->load.weight;
|
|
|
|
shares = (tg->shares * load);
|
|
if (tg_weight)
|
|
shares /= tg_weight;
|
|
|
|
if (shares < MIN_SHARES)
|
|
shares = MIN_SHARES;
|
|
if (shares > tg->shares)
|
|
shares = tg->shares;
|
|
|
|
return shares;
|
|
}
|
|
|
|
static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
|
|
update_cfs_load(cfs_rq, 0);
|
|
update_cfs_shares(cfs_rq);
|
|
}
|
|
}
|
|
# else /* CONFIG_SMP */
|
|
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
|
|
{
|
|
}
|
|
|
|
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
|
|
{
|
|
return tg->shares;
|
|
}
|
|
|
|
static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
|
|
{
|
|
}
|
|
# endif /* CONFIG_SMP */
|
|
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
|
|
unsigned long weight)
|
|
{
|
|
if (se->on_rq) {
|
|
/* commit outstanding execution time */
|
|
if (cfs_rq->curr == se)
|
|
update_curr(cfs_rq);
|
|
account_entity_dequeue(cfs_rq, se);
|
|
}
|
|
|
|
update_load_set(&se->load, weight);
|
|
|
|
if (se->on_rq)
|
|
account_entity_enqueue(cfs_rq, se);
|
|
}
|
|
|
|
static void update_cfs_shares(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct task_group *tg;
|
|
struct sched_entity *se;
|
|
long shares;
|
|
|
|
tg = cfs_rq->tg;
|
|
se = tg->se[cpu_of(rq_of(cfs_rq))];
|
|
if (!se || throttled_hierarchy(cfs_rq))
|
|
return;
|
|
#ifndef CONFIG_SMP
|
|
if (likely(se->load.weight == tg->shares))
|
|
return;
|
|
#endif
|
|
shares = calc_cfs_shares(cfs_rq, tg);
|
|
|
|
reweight_entity(cfs_rq_of(se), se, shares);
|
|
}
|
|
#else /* CONFIG_FAIR_GROUP_SCHED */
|
|
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
|
|
{
|
|
}
|
|
|
|
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
|
|
{
|
|
}
|
|
|
|
static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
|
|
{
|
|
}
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
struct task_struct *tsk = NULL;
|
|
|
|
if (entity_is_task(se))
|
|
tsk = task_of(se);
|
|
|
|
if (se->statistics.sleep_start) {
|
|
u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
|
|
|
|
if ((s64)delta < 0)
|
|
delta = 0;
|
|
|
|
if (unlikely(delta > se->statistics.sleep_max))
|
|
se->statistics.sleep_max = delta;
|
|
|
|
se->statistics.sleep_start = 0;
|
|
se->statistics.sum_sleep_runtime += delta;
|
|
|
|
if (tsk) {
|
|
account_scheduler_latency(tsk, delta >> 10, 1);
|
|
trace_sched_stat_sleep(tsk, delta);
|
|
}
|
|
}
|
|
if (se->statistics.block_start) {
|
|
u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
|
|
|
|
if ((s64)delta < 0)
|
|
delta = 0;
|
|
|
|
if (unlikely(delta > se->statistics.block_max))
|
|
se->statistics.block_max = delta;
|
|
|
|
se->statistics.block_start = 0;
|
|
se->statistics.sum_sleep_runtime += delta;
|
|
|
|
if (tsk) {
|
|
if (tsk->in_iowait) {
|
|
se->statistics.iowait_sum += delta;
|
|
se->statistics.iowait_count++;
|
|
trace_sched_stat_iowait(tsk, delta);
|
|
}
|
|
|
|
trace_sched_stat_blocked(tsk, delta);
|
|
|
|
/*
|
|
* Blocking time is in units of nanosecs, so shift by
|
|
* 20 to get a milliseconds-range estimation of the
|
|
* amount of time that the task spent sleeping:
|
|
*/
|
|
if (unlikely(prof_on == SLEEP_PROFILING)) {
|
|
profile_hits(SLEEP_PROFILING,
|
|
(void *)get_wchan(tsk),
|
|
delta >> 20);
|
|
}
|
|
account_scheduler_latency(tsk, delta >> 10, 0);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
s64 d = se->vruntime - cfs_rq->min_vruntime;
|
|
|
|
if (d < 0)
|
|
d = -d;
|
|
|
|
if (d > 3*sysctl_sched_latency)
|
|
schedstat_inc(cfs_rq, nr_spread_over);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
|
|
{
|
|
u64 vruntime = cfs_rq->min_vruntime;
|
|
|
|
/*
|
|
* The 'current' period is already promised to the current tasks,
|
|
* however the extra weight of the new task will slow them down a
|
|
* little, place the new task so that it fits in the slot that
|
|
* stays open at the end.
|
|
*/
|
|
if (initial && sched_feat(START_DEBIT))
|
|
vruntime += sched_vslice(cfs_rq, se);
|
|
|
|
/* sleeps up to a single latency don't count. */
|
|
if (!initial) {
|
|
unsigned long thresh = sysctl_sched_latency;
|
|
|
|
/*
|
|
* Halve their sleep time's effect, to allow
|
|
* for a gentler effect of sleepers:
|
|
*/
|
|
if (sched_feat(GENTLE_FAIR_SLEEPERS))
|
|
thresh >>= 1;
|
|
|
|
vruntime -= thresh;
|
|
}
|
|
|
|
/* ensure we never gain time by being placed backwards. */
|
|
vruntime = max_vruntime(se->vruntime, vruntime);
|
|
|
|
se->vruntime = vruntime;
|
|
}
|
|
|
|
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
|
|
|
|
static void
|
|
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
|
{
|
|
/*
|
|
* Update the normalized vruntime before updating min_vruntime
|
|
* through callig update_curr().
|
|
*/
|
|
if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
|
|
se->vruntime += cfs_rq->min_vruntime;
|
|
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
update_cfs_load(cfs_rq, 0);
|
|
account_entity_enqueue(cfs_rq, se);
|
|
update_cfs_shares(cfs_rq);
|
|
|
|
if (flags & ENQUEUE_WAKEUP) {
|
|
place_entity(cfs_rq, se, 0);
|
|
enqueue_sleeper(cfs_rq, se);
|
|
}
|
|
|
|
update_stats_enqueue(cfs_rq, se);
|
|
check_spread(cfs_rq, se);
|
|
if (se != cfs_rq->curr)
|
|
__enqueue_entity(cfs_rq, se);
|
|
se->on_rq = 1;
|
|
|
|
if (cfs_rq->nr_running == 1) {
|
|
list_add_leaf_cfs_rq(cfs_rq);
|
|
check_enqueue_throttle(cfs_rq);
|
|
}
|
|
}
|
|
|
|
static void __clear_buddies_last(struct sched_entity *se)
|
|
{
|
|
for_each_sched_entity(se) {
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
if (cfs_rq->last == se)
|
|
cfs_rq->last = NULL;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __clear_buddies_next(struct sched_entity *se)
|
|
{
|
|
for_each_sched_entity(se) {
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
if (cfs_rq->next == se)
|
|
cfs_rq->next = NULL;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __clear_buddies_skip(struct sched_entity *se)
|
|
{
|
|
for_each_sched_entity(se) {
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
if (cfs_rq->skip == se)
|
|
cfs_rq->skip = NULL;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
if (cfs_rq->last == se)
|
|
__clear_buddies_last(se);
|
|
|
|
if (cfs_rq->next == se)
|
|
__clear_buddies_next(se);
|
|
|
|
if (cfs_rq->skip == se)
|
|
__clear_buddies_skip(se);
|
|
}
|
|
|
|
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
|
|
|
|
static void
|
|
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
|
{
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
|
|
update_stats_dequeue(cfs_rq, se);
|
|
if (flags & DEQUEUE_SLEEP) {
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
if (entity_is_task(se)) {
|
|
struct task_struct *tsk = task_of(se);
|
|
|
|
if (tsk->state & TASK_INTERRUPTIBLE)
|
|
se->statistics.sleep_start = rq_of(cfs_rq)->clock;
|
|
if (tsk->state & TASK_UNINTERRUPTIBLE)
|
|
se->statistics.block_start = rq_of(cfs_rq)->clock;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
clear_buddies(cfs_rq, se);
|
|
|
|
if (se != cfs_rq->curr)
|
|
__dequeue_entity(cfs_rq, se);
|
|
se->on_rq = 0;
|
|
update_cfs_load(cfs_rq, 0);
|
|
account_entity_dequeue(cfs_rq, se);
|
|
|
|
/*
|
|
* Normalize the entity after updating the min_vruntime because the
|
|
* update can refer to the ->curr item and we need to reflect this
|
|
* movement in our normalized position.
|
|
*/
|
|
if (!(flags & DEQUEUE_SLEEP))
|
|
se->vruntime -= cfs_rq->min_vruntime;
|
|
|
|
/* return excess runtime on last dequeue */
|
|
return_cfs_rq_runtime(cfs_rq);
|
|
|
|
update_min_vruntime(cfs_rq);
|
|
update_cfs_shares(cfs_rq);
|
|
}
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void
|
|
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
|
{
|
|
unsigned long ideal_runtime, delta_exec;
|
|
struct sched_entity *se;
|
|
s64 delta;
|
|
|
|
ideal_runtime = sched_slice(cfs_rq, curr);
|
|
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
|
|
if (delta_exec > ideal_runtime) {
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
/*
|
|
* The current task ran long enough, ensure it doesn't get
|
|
* re-elected due to buddy favours.
|
|
*/
|
|
clear_buddies(cfs_rq, curr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ensure that a task that missed wakeup preemption by a
|
|
* narrow margin doesn't have to wait for a full slice.
|
|
* This also mitigates buddy induced latencies under load.
|
|
*/
|
|
if (delta_exec < sysctl_sched_min_granularity)
|
|
return;
|
|
|
|
se = __pick_first_entity(cfs_rq);
|
|
delta = curr->vruntime - se->vruntime;
|
|
|
|
if (delta < 0)
|
|
return;
|
|
|
|
if (delta > ideal_runtime)
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
}
|
|
|
|
static void
|
|
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
{
|
|
/* 'current' is not kept within the tree. */
|
|
if (se->on_rq) {
|
|
/*
|
|
* Any task has to be enqueued before it get to execute on
|
|
* a CPU. So account for the time it spent waiting on the
|
|
* runqueue.
|
|
*/
|
|
update_stats_wait_end(cfs_rq, se);
|
|
__dequeue_entity(cfs_rq, se);
|
|
}
|
|
|
|
update_stats_curr_start(cfs_rq, se);
|
|
cfs_rq->curr = se;
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/*
|
|
* Track our maximum slice length, if the CPU's load is at
|
|
* least twice that of our own weight (i.e. dont track it
|
|
* when there are only lesser-weight tasks around):
|
|
*/
|
|
if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
|
|
se->statistics.slice_max = max(se->statistics.slice_max,
|
|
se->sum_exec_runtime - se->prev_sum_exec_runtime);
|
|
}
|
|
#endif
|
|
se->prev_sum_exec_runtime = se->sum_exec_runtime;
|
|
}
|
|
|
|
static int
|
|
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
|
|
|
|
/*
|
|
* Pick the next process, keeping these things in mind, in this order:
|
|
* 1) keep things fair between processes/task groups
|
|
* 2) pick the "next" process, since someone really wants that to run
|
|
* 3) pick the "last" process, for cache locality
|
|
* 4) do not run the "skip" process, if something else is available
|
|
*/
|
|
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct sched_entity *se = __pick_first_entity(cfs_rq);
|
|
struct sched_entity *left = se;
|
|
|
|
/*
|
|
* Avoid running the skip buddy, if running something else can
|
|
* be done without getting too unfair.
|
|
*/
|
|
if (cfs_rq->skip == se) {
|
|
struct sched_entity *second = __pick_next_entity(se);
|
|
if (second && wakeup_preempt_entity(second, left) < 1)
|
|
se = second;
|
|
}
|
|
|
|
/*
|
|
* Prefer last buddy, try to return the CPU to a preempted task.
|
|
*/
|
|
if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
|
|
se = cfs_rq->last;
|
|
|
|
/*
|
|
* Someone really wants this to run. If it's not unfair, run it.
|
|
*/
|
|
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
|
|
se = cfs_rq->next;
|
|
|
|
clear_buddies(cfs_rq, se);
|
|
|
|
return se;
|
|
}
|
|
|
|
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
|
|
|
|
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
|
|
{
|
|
/*
|
|
* If still on the runqueue then deactivate_task()
|
|
* was not called and update_curr() has to be done:
|
|
*/
|
|
if (prev->on_rq)
|
|
update_curr(cfs_rq);
|
|
|
|
/* throttle cfs_rqs exceeding runtime */
|
|
check_cfs_rq_runtime(cfs_rq);
|
|
|
|
check_spread(cfs_rq, prev);
|
|
if (prev->on_rq) {
|
|
update_stats_wait_start(cfs_rq, prev);
|
|
/* Put 'current' back into the tree. */
|
|
__enqueue_entity(cfs_rq, prev);
|
|
}
|
|
cfs_rq->curr = NULL;
|
|
}
|
|
|
|
static void
|
|
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
|
|
{
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
|
|
/*
|
|
* Update share accounting for long-running entities.
|
|
*/
|
|
update_entity_shares_tick(cfs_rq);
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
/*
|
|
* queued ticks are scheduled to match the slice, so don't bother
|
|
* validating it and just reschedule.
|
|
*/
|
|
if (queued) {
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
return;
|
|
}
|
|
/*
|
|
* don't let the period tick interfere with the hrtick preemption
|
|
*/
|
|
if (!sched_feat(DOUBLE_TICK) &&
|
|
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
|
|
return;
|
|
#endif
|
|
|
|
if (cfs_rq->nr_running > 1)
|
|
check_preempt_tick(cfs_rq, curr);
|
|
}
|
|
|
|
|
|
/**************************************************
|
|
* CFS bandwidth control machinery
|
|
*/
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
|
|
#ifdef HAVE_JUMP_LABEL
|
|
static struct static_key __cfs_bandwidth_used;
|
|
|
|
static inline bool cfs_bandwidth_used(void)
|
|
{
|
|
return static_key_false(&__cfs_bandwidth_used);
|
|
}
|
|
|
|
void account_cfs_bandwidth_used(int enabled, int was_enabled)
|
|
{
|
|
/* only need to count groups transitioning between enabled/!enabled */
|
|
if (enabled && !was_enabled)
|
|
static_key_slow_inc(&__cfs_bandwidth_used);
|
|
else if (!enabled && was_enabled)
|
|
static_key_slow_dec(&__cfs_bandwidth_used);
|
|
}
|
|
#else /* HAVE_JUMP_LABEL */
|
|
static bool cfs_bandwidth_used(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
|
|
#endif /* HAVE_JUMP_LABEL */
|
|
|
|
/*
|
|
* default period for cfs group bandwidth.
|
|
* default: 0.1s, units: nanoseconds
|
|
*/
|
|
static inline u64 default_cfs_period(void)
|
|
{
|
|
return 100000000ULL;
|
|
}
|
|
|
|
static inline u64 sched_cfs_bandwidth_slice(void)
|
|
{
|
|
return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
|
|
}
|
|
|
|
/*
|
|
* Replenish runtime according to assigned quota and update expiration time.
|
|
* We use sched_clock_cpu directly instead of rq->clock to avoid adding
|
|
* additional synchronization around rq->lock.
|
|
*
|
|
* requires cfs_b->lock
|
|
*/
|
|
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
|
|
{
|
|
u64 now;
|
|
|
|
if (cfs_b->quota == RUNTIME_INF)
|
|
return;
|
|
|
|
now = sched_clock_cpu(smp_processor_id());
|
|
cfs_b->runtime = cfs_b->quota;
|
|
cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
|
|
}
|
|
|
|
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
|
|
{
|
|
return &tg->cfs_bandwidth;
|
|
}
|
|
|
|
/* returns 0 on failure to allocate runtime */
|
|
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct task_group *tg = cfs_rq->tg;
|
|
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
|
|
u64 amount = 0, min_amount, expires;
|
|
|
|
/* note: this is a positive sum as runtime_remaining <= 0 */
|
|
min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
|
|
|
|
raw_spin_lock(&cfs_b->lock);
|
|
if (cfs_b->quota == RUNTIME_INF)
|
|
amount = min_amount;
|
|
else {
|
|
/*
|
|
* If the bandwidth pool has become inactive, then at least one
|
|
* period must have elapsed since the last consumption.
|
|
* Refresh the global state and ensure bandwidth timer becomes
|
|
* active.
|
|
*/
|
|
if (!cfs_b->timer_active) {
|
|
__refill_cfs_bandwidth_runtime(cfs_b);
|
|
__start_cfs_bandwidth(cfs_b);
|
|
}
|
|
|
|
if (cfs_b->runtime > 0) {
|
|
amount = min(cfs_b->runtime, min_amount);
|
|
cfs_b->runtime -= amount;
|
|
cfs_b->idle = 0;
|
|
}
|
|
}
|
|
expires = cfs_b->runtime_expires;
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
|
|
cfs_rq->runtime_remaining += amount;
|
|
/*
|
|
* we may have advanced our local expiration to account for allowed
|
|
* spread between our sched_clock and the one on which runtime was
|
|
* issued.
|
|
*/
|
|
if ((s64)(expires - cfs_rq->runtime_expires) > 0)
|
|
cfs_rq->runtime_expires = expires;
|
|
|
|
return cfs_rq->runtime_remaining > 0;
|
|
}
|
|
|
|
/*
|
|
* Note: This depends on the synchronization provided by sched_clock and the
|
|
* fact that rq->clock snapshots this value.
|
|
*/
|
|
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
|
|
struct rq *rq = rq_of(cfs_rq);
|
|
|
|
/* if the deadline is ahead of our clock, nothing to do */
|
|
if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
|
|
return;
|
|
|
|
if (cfs_rq->runtime_remaining < 0)
|
|
return;
|
|
|
|
/*
|
|
* If the local deadline has passed we have to consider the
|
|
* possibility that our sched_clock is 'fast' and the global deadline
|
|
* has not truly expired.
|
|
*
|
|
* Fortunately we can check determine whether this the case by checking
|
|
* whether the global deadline has advanced.
|
|
*/
|
|
|
|
if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
|
|
/* extend local deadline, drift is bounded above by 2 ticks */
|
|
cfs_rq->runtime_expires += TICK_NSEC;
|
|
} else {
|
|
/* global deadline is ahead, expiration has passed */
|
|
cfs_rq->runtime_remaining = 0;
|
|
}
|
|
}
|
|
|
|
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
|
|
unsigned long delta_exec)
|
|
{
|
|
/* dock delta_exec before expiring quota (as it could span periods) */
|
|
cfs_rq->runtime_remaining -= delta_exec;
|
|
expire_cfs_rq_runtime(cfs_rq);
|
|
|
|
if (likely(cfs_rq->runtime_remaining > 0))
|
|
return;
|
|
|
|
/*
|
|
* if we're unable to extend our runtime we resched so that the active
|
|
* hierarchy can be throttled
|
|
*/
|
|
if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
|
|
resched_task(rq_of(cfs_rq)->curr);
|
|
}
|
|
|
|
static __always_inline
|
|
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
|
|
{
|
|
if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
|
|
return;
|
|
|
|
__account_cfs_rq_runtime(cfs_rq, delta_exec);
|
|
}
|
|
|
|
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
|
|
{
|
|
return cfs_bandwidth_used() && cfs_rq->throttled;
|
|
}
|
|
|
|
/* check whether cfs_rq, or any parent, is throttled */
|
|
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
|
|
{
|
|
return cfs_bandwidth_used() && cfs_rq->throttle_count;
|
|
}
|
|
|
|
/*
|
|
* Ensure that neither of the group entities corresponding to src_cpu or
|
|
* dest_cpu are members of a throttled hierarchy when performing group
|
|
* load-balance operations.
|
|
*/
|
|
static inline int throttled_lb_pair(struct task_group *tg,
|
|
int src_cpu, int dest_cpu)
|
|
{
|
|
struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
|
|
|
|
src_cfs_rq = tg->cfs_rq[src_cpu];
|
|
dest_cfs_rq = tg->cfs_rq[dest_cpu];
|
|
|
|
return throttled_hierarchy(src_cfs_rq) ||
|
|
throttled_hierarchy(dest_cfs_rq);
|
|
}
|
|
|
|
/* updated child weight may affect parent so we have to do this bottom up */
|
|
static int tg_unthrottle_up(struct task_group *tg, void *data)
|
|
{
|
|
struct rq *rq = data;
|
|
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
|
|
|
|
cfs_rq->throttle_count--;
|
|
#ifdef CONFIG_SMP
|
|
if (!cfs_rq->throttle_count) {
|
|
u64 delta = rq->clock_task - cfs_rq->load_stamp;
|
|
|
|
/* leaving throttled state, advance shares averaging windows */
|
|
cfs_rq->load_stamp += delta;
|
|
cfs_rq->load_last += delta;
|
|
|
|
/* update entity weight now that we are on_rq again */
|
|
update_cfs_shares(cfs_rq);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tg_throttle_down(struct task_group *tg, void *data)
|
|
{
|
|
struct rq *rq = data;
|
|
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
|
|
|
|
/* group is entering throttled state, record last load */
|
|
if (!cfs_rq->throttle_count)
|
|
update_cfs_load(cfs_rq, 0);
|
|
cfs_rq->throttle_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rq *rq = rq_of(cfs_rq);
|
|
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
|
|
struct sched_entity *se;
|
|
long task_delta, dequeue = 1;
|
|
|
|
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
|
|
|
|
/* account load preceding throttle */
|
|
rcu_read_lock();
|
|
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
|
|
rcu_read_unlock();
|
|
|
|
task_delta = cfs_rq->h_nr_running;
|
|
for_each_sched_entity(se) {
|
|
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
|
|
/* throttled entity or throttle-on-deactivate */
|
|
if (!se->on_rq)
|
|
break;
|
|
|
|
if (dequeue)
|
|
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
|
|
qcfs_rq->h_nr_running -= task_delta;
|
|
|
|
if (qcfs_rq->load.weight)
|
|
dequeue = 0;
|
|
}
|
|
|
|
if (!se)
|
|
rq->nr_running -= task_delta;
|
|
|
|
cfs_rq->throttled = 1;
|
|
cfs_rq->throttled_timestamp = rq->clock;
|
|
raw_spin_lock(&cfs_b->lock);
|
|
list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
}
|
|
|
|
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct rq *rq = rq_of(cfs_rq);
|
|
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
|
|
struct sched_entity *se;
|
|
int enqueue = 1;
|
|
long task_delta;
|
|
|
|
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
|
|
|
|
cfs_rq->throttled = 0;
|
|
raw_spin_lock(&cfs_b->lock);
|
|
cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
|
|
list_del_rcu(&cfs_rq->throttled_list);
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
cfs_rq->throttled_timestamp = 0;
|
|
|
|
update_rq_clock(rq);
|
|
/* update hierarchical throttle state */
|
|
walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
|
|
|
|
if (!cfs_rq->load.weight)
|
|
return;
|
|
|
|
task_delta = cfs_rq->h_nr_running;
|
|
for_each_sched_entity(se) {
|
|
if (se->on_rq)
|
|
enqueue = 0;
|
|
|
|
cfs_rq = cfs_rq_of(se);
|
|
if (enqueue)
|
|
enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
|
|
cfs_rq->h_nr_running += task_delta;
|
|
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
break;
|
|
}
|
|
|
|
if (!se)
|
|
rq->nr_running += task_delta;
|
|
|
|
/* determine whether we need to wake up potentially idle cpu */
|
|
if (rq->curr == rq->idle && rq->cfs.nr_running)
|
|
resched_task(rq->curr);
|
|
}
|
|
|
|
static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
|
|
u64 remaining, u64 expires)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
u64 runtime = remaining;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
|
|
throttled_list) {
|
|
struct rq *rq = rq_of(cfs_rq);
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
if (!cfs_rq_throttled(cfs_rq))
|
|
goto next;
|
|
|
|
runtime = -cfs_rq->runtime_remaining + 1;
|
|
if (runtime > remaining)
|
|
runtime = remaining;
|
|
remaining -= runtime;
|
|
|
|
cfs_rq->runtime_remaining += runtime;
|
|
cfs_rq->runtime_expires = expires;
|
|
|
|
/* we check whether we're throttled above */
|
|
if (cfs_rq->runtime_remaining > 0)
|
|
unthrottle_cfs_rq(cfs_rq);
|
|
|
|
next:
|
|
raw_spin_unlock(&rq->lock);
|
|
|
|
if (!remaining)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return remaining;
|
|
}
|
|
|
|
/*
|
|
* Responsible for refilling a task_group's bandwidth and unthrottling its
|
|
* cfs_rqs as appropriate. If there has been no activity within the last
|
|
* period the timer is deactivated until scheduling resumes; cfs_b->idle is
|
|
* used to track this state.
|
|
*/
|
|
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
|
|
{
|
|
u64 runtime, runtime_expires;
|
|
int idle = 1, throttled;
|
|
|
|
raw_spin_lock(&cfs_b->lock);
|
|
/* no need to continue the timer with no bandwidth constraint */
|
|
if (cfs_b->quota == RUNTIME_INF)
|
|
goto out_unlock;
|
|
|
|
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
|
|
/* idle depends on !throttled (for the case of a large deficit) */
|
|
idle = cfs_b->idle && !throttled;
|
|
cfs_b->nr_periods += overrun;
|
|
|
|
/* if we're going inactive then everything else can be deferred */
|
|
if (idle)
|
|
goto out_unlock;
|
|
|
|
__refill_cfs_bandwidth_runtime(cfs_b);
|
|
|
|
if (!throttled) {
|
|
/* mark as potentially idle for the upcoming period */
|
|
cfs_b->idle = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* account preceding periods in which throttling occurred */
|
|
cfs_b->nr_throttled += overrun;
|
|
|
|
/*
|
|
* There are throttled entities so we must first use the new bandwidth
|
|
* to unthrottle them before making it generally available. This
|
|
* ensures that all existing debts will be paid before a new cfs_rq is
|
|
* allowed to run.
|
|
*/
|
|
runtime = cfs_b->runtime;
|
|
runtime_expires = cfs_b->runtime_expires;
|
|
cfs_b->runtime = 0;
|
|
|
|
/*
|
|
* This check is repeated as we are holding onto the new bandwidth
|
|
* while we unthrottle. This can potentially race with an unthrottled
|
|
* group trying to acquire new bandwidth from the global pool.
|
|
*/
|
|
while (throttled && runtime > 0) {
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
/* we can't nest cfs_b->lock while distributing bandwidth */
|
|
runtime = distribute_cfs_runtime(cfs_b, runtime,
|
|
runtime_expires);
|
|
raw_spin_lock(&cfs_b->lock);
|
|
|
|
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
|
|
}
|
|
|
|
/* return (any) remaining runtime */
|
|
cfs_b->runtime = runtime;
|
|
/*
|
|
* While we are ensured activity in the period following an
|
|
* unthrottle, this also covers the case in which the new bandwidth is
|
|
* insufficient to cover the existing bandwidth deficit. (Forcing the
|
|
* timer to remain active while there are any throttled entities.)
|
|
*/
|
|
cfs_b->idle = 0;
|
|
out_unlock:
|
|
if (idle)
|
|
cfs_b->timer_active = 0;
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
|
|
return idle;
|
|
}
|
|
|
|
/* a cfs_rq won't donate quota below this amount */
|
|
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
|
|
/* minimum remaining period time to redistribute slack quota */
|
|
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
|
|
/* how long we wait to gather additional slack before distributing */
|
|
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
|
|
|
|
/* are we near the end of the current quota period? */
|
|
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
|
|
{
|
|
struct hrtimer *refresh_timer = &cfs_b->period_timer;
|
|
u64 remaining;
|
|
|
|
/* if the call-back is running a quota refresh is already occurring */
|
|
if (hrtimer_callback_running(refresh_timer))
|
|
return 1;
|
|
|
|
/* is a quota refresh about to occur? */
|
|
remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
|
|
if (remaining < min_expire)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
|
|
{
|
|
u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
|
|
|
|
/* if there's a quota refresh soon don't bother with slack */
|
|
if (runtime_refresh_within(cfs_b, min_left))
|
|
return;
|
|
|
|
start_bandwidth_timer(&cfs_b->slack_timer,
|
|
ns_to_ktime(cfs_bandwidth_slack_period));
|
|
}
|
|
|
|
/* we know any runtime found here is valid as update_curr() precedes return */
|
|
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
|
|
{
|
|
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
|
|
s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
|
|
|
|
if (slack_runtime <= 0)
|
|
return;
|
|
|
|
raw_spin_lock(&cfs_b->lock);
|
|
if (cfs_b->quota != RUNTIME_INF &&
|
|
cfs_rq->runtime_expires == cfs_b->runtime_expires) {
|
|
cfs_b->runtime += slack_runtime;
|
|
|
|
/* we are under rq->lock, defer unthrottling using a timer */
|
|
if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
|
|
!list_empty(&cfs_b->throttled_cfs_rq))
|
|
start_cfs_slack_bandwidth(cfs_b);
|
|
}
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
|
|
/* even if it's not valid for return we don't want to try again */
|
|
cfs_rq->runtime_remaining -= slack_runtime;
|
|
}
|
|
|
|
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (!cfs_bandwidth_used())
|
|
return;
|
|
|
|
if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
|
|
return;
|
|
|
|
__return_cfs_rq_runtime(cfs_rq);
|
|
}
|
|
|
|
/*
|
|
* This is done with a timer (instead of inline with bandwidth return) since
|
|
* it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
|
|
*/
|
|
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
|
|
{
|
|
u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
|
|
u64 expires;
|
|
|
|
/* confirm we're still not at a refresh boundary */
|
|
if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
|
|
return;
|
|
|
|
raw_spin_lock(&cfs_b->lock);
|
|
if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
|
|
runtime = cfs_b->runtime;
|
|
cfs_b->runtime = 0;
|
|
}
|
|
expires = cfs_b->runtime_expires;
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
|
|
if (!runtime)
|
|
return;
|
|
|
|
runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
|
|
|
|
raw_spin_lock(&cfs_b->lock);
|
|
if (expires == cfs_b->runtime_expires)
|
|
cfs_b->runtime = runtime;
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
}
|
|
|
|
/*
|
|
* When a group wakes up we want to make sure that its quota is not already
|
|
* expired/exceeded, otherwise it may be allowed to steal additional ticks of
|
|
* runtime as update_curr() throttling can not not trigger until it's on-rq.
|
|
*/
|
|
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (!cfs_bandwidth_used())
|
|
return;
|
|
|
|
/* an active group must be handled by the update_curr()->put() path */
|
|
if (!cfs_rq->runtime_enabled || cfs_rq->curr)
|
|
return;
|
|
|
|
/* ensure the group is not already throttled */
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
return;
|
|
|
|
/* update runtime allocation */
|
|
account_cfs_rq_runtime(cfs_rq, 0);
|
|
if (cfs_rq->runtime_remaining <= 0)
|
|
throttle_cfs_rq(cfs_rq);
|
|
}
|
|
|
|
/* conditionally throttle active cfs_rq's from put_prev_entity() */
|
|
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
|
|
{
|
|
if (!cfs_bandwidth_used())
|
|
return;
|
|
|
|
if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
|
|
return;
|
|
|
|
/*
|
|
* it's possible for a throttled entity to be forced into a running
|
|
* state (e.g. set_curr_task), in this case we're finished.
|
|
*/
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
return;
|
|
|
|
throttle_cfs_rq(cfs_rq);
|
|
}
|
|
|
|
static inline u64 default_cfs_period(void);
|
|
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
|
|
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
|
|
|
|
static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
|
|
{
|
|
struct cfs_bandwidth *cfs_b =
|
|
container_of(timer, struct cfs_bandwidth, slack_timer);
|
|
do_sched_cfs_slack_timer(cfs_b);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
|
|
{
|
|
struct cfs_bandwidth *cfs_b =
|
|
container_of(timer, struct cfs_bandwidth, period_timer);
|
|
ktime_t now;
|
|
int overrun;
|
|
int idle = 0;
|
|
|
|
for (;;) {
|
|
now = hrtimer_cb_get_time(timer);
|
|
overrun = hrtimer_forward(timer, now, cfs_b->period);
|
|
|
|
if (!overrun)
|
|
break;
|
|
|
|
idle = do_sched_cfs_period_timer(cfs_b, overrun);
|
|
}
|
|
|
|
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
|
|
}
|
|
|
|
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
|
|
{
|
|
raw_spin_lock_init(&cfs_b->lock);
|
|
cfs_b->runtime = 0;
|
|
cfs_b->quota = RUNTIME_INF;
|
|
cfs_b->period = ns_to_ktime(default_cfs_period());
|
|
|
|
INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
|
|
hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
cfs_b->period_timer.function = sched_cfs_period_timer;
|
|
hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
cfs_b->slack_timer.function = sched_cfs_slack_timer;
|
|
}
|
|
|
|
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
|
|
{
|
|
cfs_rq->runtime_enabled = 0;
|
|
INIT_LIST_HEAD(&cfs_rq->throttled_list);
|
|
}
|
|
|
|
/* requires cfs_b->lock, may release to reprogram timer */
|
|
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
|
|
{
|
|
/*
|
|
* The timer may be active because we're trying to set a new bandwidth
|
|
* period or because we're racing with the tear-down path
|
|
* (timer_active==0 becomes visible before the hrtimer call-back
|
|
* terminates). In either case we ensure that it's re-programmed
|
|
*/
|
|
while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
|
|
raw_spin_unlock(&cfs_b->lock);
|
|
/* ensure cfs_b->lock is available while we wait */
|
|
hrtimer_cancel(&cfs_b->period_timer);
|
|
|
|
raw_spin_lock(&cfs_b->lock);
|
|
/* if someone else restarted the timer then we're done */
|
|
if (cfs_b->timer_active)
|
|
return;
|
|
}
|
|
|
|
cfs_b->timer_active = 1;
|
|
start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
|
|
}
|
|
|
|
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
|
|
{
|
|
hrtimer_cancel(&cfs_b->period_timer);
|
|
hrtimer_cancel(&cfs_b->slack_timer);
|
|
}
|
|
|
|
void unthrottle_offline_cfs_rqs(struct rq *rq)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
|
|
for_each_leaf_cfs_rq(rq, cfs_rq) {
|
|
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
|
|
|
|
if (!cfs_rq->runtime_enabled)
|
|
continue;
|
|
|
|
/*
|
|
* clock_task is not advancing so we just need to make sure
|
|
* there's some valid quota amount
|
|
*/
|
|
cfs_rq->runtime_remaining = cfs_b->quota;
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
unthrottle_cfs_rq(cfs_rq);
|
|
}
|
|
}
|
|
|
|
#else /* CONFIG_CFS_BANDWIDTH */
|
|
static __always_inline
|
|
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
|
|
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
|
|
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
|
|
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
|
|
|
|
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int throttled_lb_pair(struct task_group *tg,
|
|
int src_cpu, int dest_cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
|
|
#endif
|
|
|
|
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
|
|
void unthrottle_offline_cfs_rqs(struct rq *rq) {}
|
|
|
|
#endif /* CONFIG_CFS_BANDWIDTH */
|
|
|
|
/**************************************************
|
|
* CFS operations on tasks:
|
|
*/
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct sched_entity *se = &p->se;
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
|
WARN_ON(task_rq(p) != rq);
|
|
|
|
if (cfs_rq->nr_running > 1) {
|
|
u64 slice = sched_slice(cfs_rq, se);
|
|
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
|
|
s64 delta = slice - ran;
|
|
|
|
if (delta < 0) {
|
|
if (rq->curr == p)
|
|
resched_task(p);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Don't schedule slices shorter than 10000ns, that just
|
|
* doesn't make sense. Rely on vruntime for fairness.
|
|
*/
|
|
if (rq->curr != p)
|
|
delta = max_t(s64, 10000LL, delta);
|
|
|
|
hrtick_start(rq, delta);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called from enqueue/dequeue and updates the hrtick when the
|
|
* current task is from our class and nr_running is low enough
|
|
* to matter.
|
|
*/
|
|
static void hrtick_update(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
|
|
if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
|
|
return;
|
|
|
|
if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
|
|
hrtick_start_fair(rq, curr);
|
|
}
|
|
#else /* !CONFIG_SCHED_HRTICK */
|
|
static inline void
|
|
hrtick_start_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void hrtick_update(struct rq *rq)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The enqueue_task method is called before nr_running is
|
|
* increased. Here we update the fair scheduling stats and
|
|
* then put the task into the rbtree:
|
|
*/
|
|
static void
|
|
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &p->se;
|
|
|
|
for_each_sched_entity(se) {
|
|
if (se->on_rq)
|
|
break;
|
|
cfs_rq = cfs_rq_of(se);
|
|
enqueue_entity(cfs_rq, se, flags);
|
|
|
|
/*
|
|
* end evaluation on encountering a throttled cfs_rq
|
|
*
|
|
* note: in the case of encountering a throttled cfs_rq we will
|
|
* post the final h_nr_running increment below.
|
|
*/
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
break;
|
|
cfs_rq->h_nr_running++;
|
|
|
|
flags = ENQUEUE_WAKEUP;
|
|
}
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
cfs_rq->h_nr_running++;
|
|
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
break;
|
|
|
|
update_cfs_load(cfs_rq, 0);
|
|
update_cfs_shares(cfs_rq);
|
|
}
|
|
|
|
if (!se)
|
|
inc_nr_running(rq);
|
|
hrtick_update(rq);
|
|
}
|
|
|
|
static void set_next_buddy(struct sched_entity *se);
|
|
|
|
/*
|
|
* The dequeue_task method is called before nr_running is
|
|
* decreased. We remove the task from the rbtree and
|
|
* update the fair scheduling stats:
|
|
*/
|
|
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &p->se;
|
|
int task_sleep = flags & DEQUEUE_SLEEP;
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
dequeue_entity(cfs_rq, se, flags);
|
|
|
|
/*
|
|
* end evaluation on encountering a throttled cfs_rq
|
|
*
|
|
* note: in the case of encountering a throttled cfs_rq we will
|
|
* post the final h_nr_running decrement below.
|
|
*/
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
break;
|
|
cfs_rq->h_nr_running--;
|
|
|
|
/* Don't dequeue parent if it has other entities besides us */
|
|
if (cfs_rq->load.weight) {
|
|
/*
|
|
* Bias pick_next to pick a task from this cfs_rq, as
|
|
* p is sleeping when it is within its sched_slice.
|
|
*/
|
|
if (task_sleep && parent_entity(se))
|
|
set_next_buddy(parent_entity(se));
|
|
|
|
/* avoid re-evaluating load for this entity */
|
|
se = parent_entity(se);
|
|
break;
|
|
}
|
|
flags |= DEQUEUE_SLEEP;
|
|
}
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
cfs_rq->h_nr_running--;
|
|
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
break;
|
|
|
|
update_cfs_load(cfs_rq, 0);
|
|
update_cfs_shares(cfs_rq);
|
|
}
|
|
|
|
if (!se)
|
|
dec_nr_running(rq);
|
|
hrtick_update(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Used instead of source_load when we know the type == 0 */
|
|
static unsigned long weighted_cpuload(const int cpu)
|
|
{
|
|
return cpu_rq(cpu)->load.weight;
|
|
}
|
|
|
|
/*
|
|
* Return a low guess at the load of a migration-source cpu weighted
|
|
* according to the scheduling class and "nice" value.
|
|
*
|
|
* We want to under-estimate the load of migration sources, to
|
|
* balance conservatively.
|
|
*/
|
|
static unsigned long source_load(int cpu, int type)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long total = weighted_cpuload(cpu);
|
|
|
|
if (type == 0 || !sched_feat(LB_BIAS))
|
|
return total;
|
|
|
|
return min(rq->cpu_load[type-1], total);
|
|
}
|
|
|
|
/*
|
|
* Return a high guess at the load of a migration-target cpu weighted
|
|
* according to the scheduling class and "nice" value.
|
|
*/
|
|
static unsigned long target_load(int cpu, int type)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long total = weighted_cpuload(cpu);
|
|
|
|
if (type == 0 || !sched_feat(LB_BIAS))
|
|
return total;
|
|
|
|
return max(rq->cpu_load[type-1], total);
|
|
}
|
|
|
|
static unsigned long power_of(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cpu_power;
|
|
}
|
|
|
|
static unsigned long cpu_avg_load_per_task(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
|
|
|
|
if (nr_running)
|
|
return rq->load.weight / nr_running;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void task_waking_fair(struct task_struct *p)
|
|
{
|
|
struct sched_entity *se = &p->se;
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
u64 min_vruntime;
|
|
|
|
#ifndef CONFIG_64BIT
|
|
u64 min_vruntime_copy;
|
|
|
|
do {
|
|
min_vruntime_copy = cfs_rq->min_vruntime_copy;
|
|
smp_rmb();
|
|
min_vruntime = cfs_rq->min_vruntime;
|
|
} while (min_vruntime != min_vruntime_copy);
|
|
#else
|
|
min_vruntime = cfs_rq->min_vruntime;
|
|
#endif
|
|
|
|
se->vruntime -= min_vruntime;
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/*
|
|
* effective_load() calculates the load change as seen from the root_task_group
|
|
*
|
|
* Adding load to a group doesn't make a group heavier, but can cause movement
|
|
* of group shares between cpus. Assuming the shares were perfectly aligned one
|
|
* can calculate the shift in shares.
|
|
*
|
|
* Calculate the effective load difference if @wl is added (subtracted) to @tg
|
|
* on this @cpu and results in a total addition (subtraction) of @wg to the
|
|
* total group weight.
|
|
*
|
|
* Given a runqueue weight distribution (rw_i) we can compute a shares
|
|
* distribution (s_i) using:
|
|
*
|
|
* s_i = rw_i / \Sum rw_j (1)
|
|
*
|
|
* Suppose we have 4 CPUs and our @tg is a direct child of the root group and
|
|
* has 7 equal weight tasks, distributed as below (rw_i), with the resulting
|
|
* shares distribution (s_i):
|
|
*
|
|
* rw_i = { 2, 4, 1, 0 }
|
|
* s_i = { 2/7, 4/7, 1/7, 0 }
|
|
*
|
|
* As per wake_affine() we're interested in the load of two CPUs (the CPU the
|
|
* task used to run on and the CPU the waker is running on), we need to
|
|
* compute the effect of waking a task on either CPU and, in case of a sync
|
|
* wakeup, compute the effect of the current task going to sleep.
|
|
*
|
|
* So for a change of @wl to the local @cpu with an overall group weight change
|
|
* of @wl we can compute the new shares distribution (s'_i) using:
|
|
*
|
|
* s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
|
|
*
|
|
* Suppose we're interested in CPUs 0 and 1, and want to compute the load
|
|
* differences in waking a task to CPU 0. The additional task changes the
|
|
* weight and shares distributions like:
|
|
*
|
|
* rw'_i = { 3, 4, 1, 0 }
|
|
* s'_i = { 3/8, 4/8, 1/8, 0 }
|
|
*
|
|
* We can then compute the difference in effective weight by using:
|
|
*
|
|
* dw_i = S * (s'_i - s_i) (3)
|
|
*
|
|
* Where 'S' is the group weight as seen by its parent.
|
|
*
|
|
* Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
|
|
* times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
|
|
* 4/7) times the weight of the group.
|
|
*/
|
|
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
|
|
{
|
|
struct sched_entity *se = tg->se[cpu];
|
|
|
|
if (!tg->parent) /* the trivial, non-cgroup case */
|
|
return wl;
|
|
|
|
for_each_sched_entity(se) {
|
|
long w, W;
|
|
|
|
tg = se->my_q->tg;
|
|
|
|
/*
|
|
* W = @wg + \Sum rw_j
|
|
*/
|
|
W = wg + calc_tg_weight(tg, se->my_q);
|
|
|
|
/*
|
|
* w = rw_i + @wl
|
|
*/
|
|
w = se->my_q->load.weight + wl;
|
|
|
|
/*
|
|
* wl = S * s'_i; see (2)
|
|
*/
|
|
if (W > 0 && w < W)
|
|
wl = (w * tg->shares) / W;
|
|
else
|
|
wl = tg->shares;
|
|
|
|
/*
|
|
* Per the above, wl is the new se->load.weight value; since
|
|
* those are clipped to [MIN_SHARES, ...) do so now. See
|
|
* calc_cfs_shares().
|
|
*/
|
|
if (wl < MIN_SHARES)
|
|
wl = MIN_SHARES;
|
|
|
|
/*
|
|
* wl = dw_i = S * (s'_i - s_i); see (3)
|
|
*/
|
|
wl -= se->load.weight;
|
|
|
|
/*
|
|
* Recursively apply this logic to all parent groups to compute
|
|
* the final effective load change on the root group. Since
|
|
* only the @tg group gets extra weight, all parent groups can
|
|
* only redistribute existing shares. @wl is the shift in shares
|
|
* resulting from this level per the above.
|
|
*/
|
|
wg = 0;
|
|
}
|
|
|
|
return wl;
|
|
}
|
|
#else
|
|
|
|
static inline unsigned long effective_load(struct task_group *tg, int cpu,
|
|
unsigned long wl, unsigned long wg)
|
|
{
|
|
return wl;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
|
|
{
|
|
s64 this_load, load;
|
|
int idx, this_cpu, prev_cpu;
|
|
unsigned long tl_per_task;
|
|
struct task_group *tg;
|
|
unsigned long weight;
|
|
int balanced;
|
|
|
|
idx = sd->wake_idx;
|
|
this_cpu = smp_processor_id();
|
|
prev_cpu = task_cpu(p);
|
|
load = source_load(prev_cpu, idx);
|
|
this_load = target_load(this_cpu, idx);
|
|
|
|
/*
|
|
* If sync wakeup then subtract the (maximum possible)
|
|
* effect of the currently running task from the load
|
|
* of the current CPU:
|
|
*/
|
|
if (sync) {
|
|
tg = task_group(current);
|
|
weight = current->se.load.weight;
|
|
|
|
this_load += effective_load(tg, this_cpu, -weight, -weight);
|
|
load += effective_load(tg, prev_cpu, 0, -weight);
|
|
}
|
|
|
|
tg = task_group(p);
|
|
weight = p->se.load.weight;
|
|
|
|
/*
|
|
* In low-load situations, where prev_cpu is idle and this_cpu is idle
|
|
* due to the sync cause above having dropped this_load to 0, we'll
|
|
* always have an imbalance, but there's really nothing you can do
|
|
* about that, so that's good too.
|
|
*
|
|
* Otherwise check if either cpus are near enough in load to allow this
|
|
* task to be woken on this_cpu.
|
|
*/
|
|
if (this_load > 0) {
|
|
s64 this_eff_load, prev_eff_load;
|
|
|
|
this_eff_load = 100;
|
|
this_eff_load *= power_of(prev_cpu);
|
|
this_eff_load *= this_load +
|
|
effective_load(tg, this_cpu, weight, weight);
|
|
|
|
prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
|
|
prev_eff_load *= power_of(this_cpu);
|
|
prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
|
|
|
|
balanced = this_eff_load <= prev_eff_load;
|
|
} else
|
|
balanced = true;
|
|
|
|
/*
|
|
* If the currently running task will sleep within
|
|
* a reasonable amount of time then attract this newly
|
|
* woken task:
|
|
*/
|
|
if (sync && balanced)
|
|
return 1;
|
|
|
|
schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
|
|
tl_per_task = cpu_avg_load_per_task(this_cpu);
|
|
|
|
if (balanced ||
|
|
(this_load <= load &&
|
|
this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
|
|
/*
|
|
* This domain has SD_WAKE_AFFINE and
|
|
* p is cache cold in this domain, and
|
|
* there is no bad imbalance.
|
|
*/
|
|
schedstat_inc(sd, ttwu_move_affine);
|
|
schedstat_inc(p, se.statistics.nr_wakeups_affine);
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* find_idlest_group finds and returns the least busy CPU group within the
|
|
* domain.
|
|
*/
|
|
static struct sched_group *
|
|
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
|
|
int this_cpu, int load_idx)
|
|
{
|
|
struct sched_group *idlest = NULL, *group = sd->groups;
|
|
unsigned long min_load = ULONG_MAX, this_load = 0;
|
|
int imbalance = 100 + (sd->imbalance_pct-100)/2;
|
|
|
|
do {
|
|
unsigned long load, avg_load;
|
|
int local_group;
|
|
int i;
|
|
|
|
/* Skip over this group if it has no CPUs allowed */
|
|
if (!cpumask_intersects(sched_group_cpus(group),
|
|
tsk_cpus_allowed(p)))
|
|
continue;
|
|
|
|
local_group = cpumask_test_cpu(this_cpu,
|
|
sched_group_cpus(group));
|
|
|
|
/* Tally up the load of all CPUs in the group */
|
|
avg_load = 0;
|
|
|
|
for_each_cpu(i, sched_group_cpus(group)) {
|
|
/* Bias balancing toward cpus of our domain */
|
|
if (local_group)
|
|
load = source_load(i, load_idx);
|
|
else
|
|
load = target_load(i, load_idx);
|
|
|
|
avg_load += load;
|
|
}
|
|
|
|
/* Adjust by relative CPU power of the group */
|
|
avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
|
|
|
|
if (local_group) {
|
|
this_load = avg_load;
|
|
} else if (avg_load < min_load) {
|
|
min_load = avg_load;
|
|
idlest = group;
|
|
}
|
|
} while (group = group->next, group != sd->groups);
|
|
|
|
if (!idlest || 100*this_load < imbalance*min_load)
|
|
return NULL;
|
|
return idlest;
|
|
}
|
|
|
|
/*
|
|
* find_idlest_cpu - find the idlest cpu among the cpus in group.
|
|
*/
|
|
static int
|
|
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
|
|
{
|
|
unsigned long load, min_load = ULONG_MAX;
|
|
int idlest = -1;
|
|
int i;
|
|
|
|
/* Traverse only the allowed CPUs */
|
|
for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
|
|
load = weighted_cpuload(i);
|
|
|
|
if (load < min_load || (load == min_load && i == this_cpu)) {
|
|
min_load = load;
|
|
idlest = i;
|
|
}
|
|
}
|
|
|
|
return idlest;
|
|
}
|
|
|
|
/*
|
|
* Try and locate an idle CPU in the sched_domain.
|
|
*/
|
|
static int select_idle_sibling(struct task_struct *p, int target)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int prev_cpu = task_cpu(p);
|
|
struct sched_domain *sd;
|
|
struct sched_group *sg;
|
|
int i;
|
|
|
|
/*
|
|
* If the task is going to be woken-up on this cpu and if it is
|
|
* already idle, then it is the right target.
|
|
*/
|
|
if (target == cpu && idle_cpu(cpu))
|
|
return cpu;
|
|
|
|
/*
|
|
* If the task is going to be woken-up on the cpu where it previously
|
|
* ran and if it is currently idle, then it the right target.
|
|
*/
|
|
if (target == prev_cpu && idle_cpu(prev_cpu))
|
|
return prev_cpu;
|
|
|
|
/*
|
|
* Otherwise, iterate the domains and find an elegible idle cpu.
|
|
*/
|
|
sd = rcu_dereference(per_cpu(sd_llc, target));
|
|
for_each_lower_domain(sd) {
|
|
sg = sd->groups;
|
|
do {
|
|
if (!cpumask_intersects(sched_group_cpus(sg),
|
|
tsk_cpus_allowed(p)))
|
|
goto next;
|
|
|
|
for_each_cpu(i, sched_group_cpus(sg)) {
|
|
if (!idle_cpu(i))
|
|
goto next;
|
|
}
|
|
|
|
target = cpumask_first_and(sched_group_cpus(sg),
|
|
tsk_cpus_allowed(p));
|
|
goto done;
|
|
next:
|
|
sg = sg->next;
|
|
} while (sg != sd->groups);
|
|
}
|
|
done:
|
|
return target;
|
|
}
|
|
|
|
/*
|
|
* sched_balance_self: balance the current task (running on cpu) in domains
|
|
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
|
|
* SD_BALANCE_EXEC.
|
|
*
|
|
* Balance, ie. select the least loaded group.
|
|
*
|
|
* Returns the target CPU number, or the same CPU if no balancing is needed.
|
|
*
|
|
* preempt must be disabled.
|
|
*/
|
|
static int
|
|
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
|
|
{
|
|
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
|
|
int cpu = smp_processor_id();
|
|
int prev_cpu = task_cpu(p);
|
|
int new_cpu = cpu;
|
|
int want_affine = 0;
|
|
int want_sd = 1;
|
|
int sync = wake_flags & WF_SYNC;
|
|
|
|
if (p->rt.nr_cpus_allowed == 1)
|
|
return prev_cpu;
|
|
|
|
if (sd_flag & SD_BALANCE_WAKE) {
|
|
if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
|
|
want_affine = 1;
|
|
new_cpu = prev_cpu;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, tmp) {
|
|
if (!(tmp->flags & SD_LOAD_BALANCE))
|
|
continue;
|
|
|
|
/*
|
|
* If power savings logic is enabled for a domain, see if we
|
|
* are not overloaded, if so, don't balance wider.
|
|
*/
|
|
if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
|
|
unsigned long power = 0;
|
|
unsigned long nr_running = 0;
|
|
unsigned long capacity;
|
|
int i;
|
|
|
|
for_each_cpu(i, sched_domain_span(tmp)) {
|
|
power += power_of(i);
|
|
nr_running += cpu_rq(i)->cfs.nr_running;
|
|
}
|
|
|
|
capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
|
|
|
|
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
|
|
nr_running /= 2;
|
|
|
|
if (nr_running < capacity)
|
|
want_sd = 0;
|
|
}
|
|
|
|
/*
|
|
* If both cpu and prev_cpu are part of this domain,
|
|
* cpu is a valid SD_WAKE_AFFINE target.
|
|
*/
|
|
if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
|
|
cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
|
|
affine_sd = tmp;
|
|
want_affine = 0;
|
|
}
|
|
|
|
if (!want_sd && !want_affine)
|
|
break;
|
|
|
|
if (!(tmp->flags & sd_flag))
|
|
continue;
|
|
|
|
if (want_sd)
|
|
sd = tmp;
|
|
}
|
|
|
|
if (affine_sd) {
|
|
if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
|
|
prev_cpu = cpu;
|
|
|
|
new_cpu = select_idle_sibling(p, prev_cpu);
|
|
goto unlock;
|
|
}
|
|
|
|
while (sd) {
|
|
int load_idx = sd->forkexec_idx;
|
|
struct sched_group *group;
|
|
int weight;
|
|
|
|
if (!(sd->flags & sd_flag)) {
|
|
sd = sd->child;
|
|
continue;
|
|
}
|
|
|
|
if (sd_flag & SD_BALANCE_WAKE)
|
|
load_idx = sd->wake_idx;
|
|
|
|
group = find_idlest_group(sd, p, cpu, load_idx);
|
|
if (!group) {
|
|
sd = sd->child;
|
|
continue;
|
|
}
|
|
|
|
new_cpu = find_idlest_cpu(group, p, cpu);
|
|
if (new_cpu == -1 || new_cpu == cpu) {
|
|
/* Now try balancing at a lower domain level of cpu */
|
|
sd = sd->child;
|
|
continue;
|
|
}
|
|
|
|
/* Now try balancing at a lower domain level of new_cpu */
|
|
cpu = new_cpu;
|
|
weight = sd->span_weight;
|
|
sd = NULL;
|
|
for_each_domain(cpu, tmp) {
|
|
if (weight <= tmp->span_weight)
|
|
break;
|
|
if (tmp->flags & sd_flag)
|
|
sd = tmp;
|
|
}
|
|
/* while loop will break here if sd == NULL */
|
|
}
|
|
unlock:
|
|
rcu_read_unlock();
|
|
|
|
return new_cpu;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static unsigned long
|
|
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
|
|
{
|
|
unsigned long gran = sysctl_sched_wakeup_granularity;
|
|
|
|
/*
|
|
* Since its curr running now, convert the gran from real-time
|
|
* to virtual-time in his units.
|
|
*
|
|
* By using 'se' instead of 'curr' we penalize light tasks, so
|
|
* they get preempted easier. That is, if 'se' < 'curr' then
|
|
* the resulting gran will be larger, therefore penalizing the
|
|
* lighter, if otoh 'se' > 'curr' then the resulting gran will
|
|
* be smaller, again penalizing the lighter task.
|
|
*
|
|
* This is especially important for buddies when the leftmost
|
|
* task is higher priority than the buddy.
|
|
*/
|
|
return calc_delta_fair(gran, se);
|
|
}
|
|
|
|
/*
|
|
* Should 'se' preempt 'curr'.
|
|
*
|
|
* |s1
|
|
* |s2
|
|
* |s3
|
|
* g
|
|
* |<--->|c
|
|
*
|
|
* w(c, s1) = -1
|
|
* w(c, s2) = 0
|
|
* w(c, s3) = 1
|
|
*
|
|
*/
|
|
static int
|
|
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
|
|
{
|
|
s64 gran, vdiff = curr->vruntime - se->vruntime;
|
|
|
|
if (vdiff <= 0)
|
|
return -1;
|
|
|
|
gran = wakeup_gran(curr, se);
|
|
if (vdiff > gran)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_last_buddy(struct sched_entity *se)
|
|
{
|
|
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
|
|
return;
|
|
|
|
for_each_sched_entity(se)
|
|
cfs_rq_of(se)->last = se;
|
|
}
|
|
|
|
static void set_next_buddy(struct sched_entity *se)
|
|
{
|
|
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
|
|
return;
|
|
|
|
for_each_sched_entity(se)
|
|
cfs_rq_of(se)->next = se;
|
|
}
|
|
|
|
static void set_skip_buddy(struct sched_entity *se)
|
|
{
|
|
for_each_sched_entity(se)
|
|
cfs_rq_of(se)->skip = se;
|
|
}
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct sched_entity *se = &curr->se, *pse = &p->se;
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
|
int scale = cfs_rq->nr_running >= sched_nr_latency;
|
|
int next_buddy_marked = 0;
|
|
|
|
if (unlikely(se == pse))
|
|
return;
|
|
|
|
/*
|
|
* This is possible from callers such as move_task(), in which we
|
|
* unconditionally check_prempt_curr() after an enqueue (which may have
|
|
* lead to a throttle). This both saves work and prevents false
|
|
* next-buddy nomination below.
|
|
*/
|
|
if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
|
|
return;
|
|
|
|
if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
|
|
set_next_buddy(pse);
|
|
next_buddy_marked = 1;
|
|
}
|
|
|
|
/*
|
|
* We can come here with TIF_NEED_RESCHED already set from new task
|
|
* wake up path.
|
|
*
|
|
* Note: this also catches the edge-case of curr being in a throttled
|
|
* group (e.g. via set_curr_task), since update_curr() (in the
|
|
* enqueue of curr) will have resulted in resched being set. This
|
|
* prevents us from potentially nominating it as a false LAST_BUDDY
|
|
* below.
|
|
*/
|
|
if (test_tsk_need_resched(curr))
|
|
return;
|
|
|
|
/* Idle tasks are by definition preempted by non-idle tasks. */
|
|
if (unlikely(curr->policy == SCHED_IDLE) &&
|
|
likely(p->policy != SCHED_IDLE))
|
|
goto preempt;
|
|
|
|
/*
|
|
* Batch and idle tasks do not preempt non-idle tasks (their preemption
|
|
* is driven by the tick):
|
|
*/
|
|
if (unlikely(p->policy != SCHED_NORMAL))
|
|
return;
|
|
|
|
find_matching_se(&se, &pse);
|
|
update_curr(cfs_rq_of(se));
|
|
BUG_ON(!pse);
|
|
if (wakeup_preempt_entity(se, pse) == 1) {
|
|
/*
|
|
* Bias pick_next to pick the sched entity that is
|
|
* triggering this preemption.
|
|
*/
|
|
if (!next_buddy_marked)
|
|
set_next_buddy(pse);
|
|
goto preempt;
|
|
}
|
|
|
|
return;
|
|
|
|
preempt:
|
|
resched_task(curr);
|
|
/*
|
|
* Only set the backward buddy when the current task is still
|
|
* on the rq. This can happen when a wakeup gets interleaved
|
|
* with schedule on the ->pre_schedule() or idle_balance()
|
|
* point, either of which can * drop the rq lock.
|
|
*
|
|
* Also, during early boot the idle thread is in the fair class,
|
|
* for obvious reasons its a bad idea to schedule back to it.
|
|
*/
|
|
if (unlikely(!se->on_rq || curr == rq->idle))
|
|
return;
|
|
|
|
if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
|
|
set_last_buddy(se);
|
|
}
|
|
|
|
static struct task_struct *pick_next_task_fair(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
struct cfs_rq *cfs_rq = &rq->cfs;
|
|
struct sched_entity *se;
|
|
|
|
if (!cfs_rq->nr_running)
|
|
return NULL;
|
|
|
|
do {
|
|
se = pick_next_entity(cfs_rq);
|
|
set_next_entity(cfs_rq, se);
|
|
cfs_rq = group_cfs_rq(se);
|
|
} while (cfs_rq);
|
|
|
|
p = task_of(se);
|
|
if (hrtick_enabled(rq))
|
|
hrtick_start_fair(rq, p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Account for a descheduled task:
|
|
*/
|
|
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
struct sched_entity *se = &prev->se;
|
|
struct cfs_rq *cfs_rq;
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
put_prev_entity(cfs_rq, se);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sched_yield() is very simple
|
|
*
|
|
* The magic of dealing with the ->skip buddy is in pick_next_entity.
|
|
*/
|
|
static void yield_task_fair(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
|
struct sched_entity *se = &curr->se;
|
|
|
|
/*
|
|
* Are we the only task in the tree?
|
|
*/
|
|
if (unlikely(rq->nr_running == 1))
|
|
return;
|
|
|
|
clear_buddies(cfs_rq, se);
|
|
|
|
if (curr->policy != SCHED_BATCH) {
|
|
update_rq_clock(rq);
|
|
/*
|
|
* Update run-time statistics of the 'current'.
|
|
*/
|
|
update_curr(cfs_rq);
|
|
/*
|
|
* Tell update_rq_clock() that we've just updated,
|
|
* so we don't do microscopic update in schedule()
|
|
* and double the fastpath cost.
|
|
*/
|
|
rq->skip_clock_update = 1;
|
|
}
|
|
|
|
set_skip_buddy(se);
|
|
}
|
|
|
|
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
|
|
{
|
|
struct sched_entity *se = &p->se;
|
|
|
|
/* throttled hierarchies are not runnable */
|
|
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
|
|
return false;
|
|
|
|
/* Tell the scheduler that we'd really like pse to run next. */
|
|
set_next_buddy(se);
|
|
|
|
yield_task_fair(rq);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**************************************************
|
|
* Fair scheduling class load-balancing methods:
|
|
*/
|
|
|
|
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
|
|
|
|
#define LBF_ALL_PINNED 0x01
|
|
#define LBF_NEED_BREAK 0x02
|
|
|
|
struct lb_env {
|
|
struct sched_domain *sd;
|
|
|
|
int src_cpu;
|
|
struct rq *src_rq;
|
|
|
|
int dst_cpu;
|
|
struct rq *dst_rq;
|
|
|
|
enum cpu_idle_type idle;
|
|
long load_move;
|
|
unsigned int flags;
|
|
|
|
unsigned int loop;
|
|
unsigned int loop_break;
|
|
unsigned int loop_max;
|
|
};
|
|
|
|
/*
|
|
* move_task - move a task from one runqueue to another runqueue.
|
|
* Both runqueues must be locked.
|
|
*/
|
|
static void move_task(struct task_struct *p, struct lb_env *env)
|
|
{
|
|
deactivate_task(env->src_rq, p, 0);
|
|
set_task_cpu(p, env->dst_cpu);
|
|
activate_task(env->dst_rq, p, 0);
|
|
check_preempt_curr(env->dst_rq, p, 0);
|
|
}
|
|
|
|
/*
|
|
* Is this task likely cache-hot:
|
|
*/
|
|
static int
|
|
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
|
|
{
|
|
s64 delta;
|
|
|
|
if (p->sched_class != &fair_sched_class)
|
|
return 0;
|
|
|
|
if (unlikely(p->policy == SCHED_IDLE))
|
|
return 0;
|
|
|
|
/*
|
|
* Buddy candidates are cache hot:
|
|
*/
|
|
if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
|
|
(&p->se == cfs_rq_of(&p->se)->next ||
|
|
&p->se == cfs_rq_of(&p->se)->last))
|
|
return 1;
|
|
|
|
if (sysctl_sched_migration_cost == -1)
|
|
return 1;
|
|
if (sysctl_sched_migration_cost == 0)
|
|
return 0;
|
|
|
|
delta = now - p->se.exec_start;
|
|
|
|
return delta < (s64)sysctl_sched_migration_cost;
|
|
}
|
|
|
|
/*
|
|
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
|
|
*/
|
|
static
|
|
int can_migrate_task(struct task_struct *p, struct lb_env *env)
|
|
{
|
|
int tsk_cache_hot = 0;
|
|
/*
|
|
* We do not migrate tasks that are:
|
|
* 1) running (obviously), or
|
|
* 2) cannot be migrated to this CPU due to cpus_allowed, or
|
|
* 3) are cache-hot on their current CPU.
|
|
*/
|
|
if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
|
|
schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
|
|
return 0;
|
|
}
|
|
env->flags &= ~LBF_ALL_PINNED;
|
|
|
|
if (task_running(env->src_rq, p)) {
|
|
schedstat_inc(p, se.statistics.nr_failed_migrations_running);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Aggressive migration if:
|
|
* 1) task is cache cold, or
|
|
* 2) too many balance attempts have failed.
|
|
*/
|
|
|
|
tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
|
|
if (!tsk_cache_hot ||
|
|
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
if (tsk_cache_hot) {
|
|
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
|
|
schedstat_inc(p, se.statistics.nr_forced_migrations);
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
if (tsk_cache_hot) {
|
|
schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* move_one_task tries to move exactly one task from busiest to this_rq, as
|
|
* part of active balancing operations within "domain".
|
|
* Returns 1 if successful and 0 otherwise.
|
|
*
|
|
* Called with both runqueues locked.
|
|
*/
|
|
static int move_one_task(struct lb_env *env)
|
|
{
|
|
struct task_struct *p, *n;
|
|
|
|
list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
|
|
if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
|
|
continue;
|
|
|
|
if (!can_migrate_task(p, env))
|
|
continue;
|
|
|
|
move_task(p, env);
|
|
/*
|
|
* Right now, this is only the second place move_task()
|
|
* is called, so we can safely collect move_task()
|
|
* stats here rather than inside move_task().
|
|
*/
|
|
schedstat_inc(env->sd, lb_gained[env->idle]);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long task_h_load(struct task_struct *p);
|
|
|
|
/*
|
|
* move_tasks tries to move up to load_move weighted load from busiest to
|
|
* this_rq, as part of a balancing operation within domain "sd".
|
|
* Returns 1 if successful and 0 otherwise.
|
|
*
|
|
* Called with both runqueues locked.
|
|
*/
|
|
static int move_tasks(struct lb_env *env)
|
|
{
|
|
struct list_head *tasks = &env->src_rq->cfs_tasks;
|
|
struct task_struct *p;
|
|
unsigned long load;
|
|
int pulled = 0;
|
|
|
|
if (env->load_move <= 0)
|
|
return 0;
|
|
|
|
while (!list_empty(tasks)) {
|
|
p = list_first_entry(tasks, struct task_struct, se.group_node);
|
|
|
|
env->loop++;
|
|
/* We've more or less seen every task there is, call it quits */
|
|
if (env->loop > env->loop_max)
|
|
break;
|
|
|
|
/* take a breather every nr_migrate tasks */
|
|
if (env->loop > env->loop_break) {
|
|
env->loop_break += sysctl_sched_nr_migrate;
|
|
env->flags |= LBF_NEED_BREAK;
|
|
break;
|
|
}
|
|
|
|
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
|
|
goto next;
|
|
|
|
load = task_h_load(p);
|
|
|
|
if (load < 16 && !env->sd->nr_balance_failed)
|
|
goto next;
|
|
|
|
if ((load / 2) > env->load_move)
|
|
goto next;
|
|
|
|
if (!can_migrate_task(p, env))
|
|
goto next;
|
|
|
|
move_task(p, env);
|
|
pulled++;
|
|
env->load_move -= load;
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
/*
|
|
* NEWIDLE balancing is a source of latency, so preemptible
|
|
* kernels will stop after the first task is pulled to minimize
|
|
* the critical section.
|
|
*/
|
|
if (env->idle == CPU_NEWLY_IDLE)
|
|
break;
|
|
#endif
|
|
|
|
/*
|
|
* We only want to steal up to the prescribed amount of
|
|
* weighted load.
|
|
*/
|
|
if (env->load_move <= 0)
|
|
break;
|
|
|
|
continue;
|
|
next:
|
|
list_move_tail(&p->se.group_node, tasks);
|
|
}
|
|
|
|
/*
|
|
* Right now, this is one of only two places move_task() is called,
|
|
* so we can safely collect move_task() stats here rather than
|
|
* inside move_task().
|
|
*/
|
|
schedstat_add(env->sd, lb_gained[env->idle], pulled);
|
|
|
|
return pulled;
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/*
|
|
* update tg->load_weight by folding this cpu's load_avg
|
|
*/
|
|
static int update_shares_cpu(struct task_group *tg, int cpu)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
unsigned long flags;
|
|
struct rq *rq;
|
|
|
|
if (!tg->se[cpu])
|
|
return 0;
|
|
|
|
rq = cpu_rq(cpu);
|
|
cfs_rq = tg->cfs_rq[cpu];
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
|
|
update_rq_clock(rq);
|
|
update_cfs_load(cfs_rq, 1);
|
|
|
|
/*
|
|
* We need to update shares after updating tg->load_weight in
|
|
* order to adjust the weight of groups with long running tasks.
|
|
*/
|
|
update_cfs_shares(cfs_rq);
|
|
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_shares(int cpu)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rcu_read_lock();
|
|
/*
|
|
* Iterates the task_group tree in a bottom up fashion, see
|
|
* list_add_leaf_cfs_rq() for details.
|
|
*/
|
|
for_each_leaf_cfs_rq(rq, cfs_rq) {
|
|
/* throttled entities do not contribute to load */
|
|
if (throttled_hierarchy(cfs_rq))
|
|
continue;
|
|
|
|
update_shares_cpu(cfs_rq->tg, cpu);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Compute the cpu's hierarchical load factor for each task group.
|
|
* This needs to be done in a top-down fashion because the load of a child
|
|
* group is a fraction of its parents load.
|
|
*/
|
|
static int tg_load_down(struct task_group *tg, void *data)
|
|
{
|
|
unsigned long load;
|
|
long cpu = (long)data;
|
|
|
|
if (!tg->parent) {
|
|
load = cpu_rq(cpu)->load.weight;
|
|
} else {
|
|
load = tg->parent->cfs_rq[cpu]->h_load;
|
|
load *= tg->se[cpu]->load.weight;
|
|
load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
|
|
}
|
|
|
|
tg->cfs_rq[cpu]->h_load = load;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_h_load(long cpu)
|
|
{
|
|
rcu_read_lock();
|
|
walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static unsigned long task_h_load(struct task_struct *p)
|
|
{
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
|
unsigned long load;
|
|
|
|
load = p->se.load.weight;
|
|
load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
|
|
|
|
return load;
|
|
}
|
|
#else
|
|
static inline void update_shares(int cpu)
|
|
{
|
|
}
|
|
|
|
static inline void update_h_load(long cpu)
|
|
{
|
|
}
|
|
|
|
static unsigned long task_h_load(struct task_struct *p)
|
|
{
|
|
return p->se.load.weight;
|
|
}
|
|
#endif
|
|
|
|
/********** Helpers for find_busiest_group ************************/
|
|
/*
|
|
* sd_lb_stats - Structure to store the statistics of a sched_domain
|
|
* during load balancing.
|
|
*/
|
|
struct sd_lb_stats {
|
|
struct sched_group *busiest; /* Busiest group in this sd */
|
|
struct sched_group *this; /* Local group in this sd */
|
|
unsigned long total_load; /* Total load of all groups in sd */
|
|
unsigned long total_pwr; /* Total power of all groups in sd */
|
|
unsigned long avg_load; /* Average load across all groups in sd */
|
|
|
|
/** Statistics of this group */
|
|
unsigned long this_load;
|
|
unsigned long this_load_per_task;
|
|
unsigned long this_nr_running;
|
|
unsigned long this_has_capacity;
|
|
unsigned int this_idle_cpus;
|
|
|
|
/* Statistics of the busiest group */
|
|
unsigned int busiest_idle_cpus;
|
|
unsigned long max_load;
|
|
unsigned long busiest_load_per_task;
|
|
unsigned long busiest_nr_running;
|
|
unsigned long busiest_group_capacity;
|
|
unsigned long busiest_has_capacity;
|
|
unsigned int busiest_group_weight;
|
|
|
|
int group_imb; /* Is there imbalance in this sd */
|
|
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
|
|
int power_savings_balance; /* Is powersave balance needed for this sd */
|
|
struct sched_group *group_min; /* Least loaded group in sd */
|
|
struct sched_group *group_leader; /* Group which relieves group_min */
|
|
unsigned long min_load_per_task; /* load_per_task in group_min */
|
|
unsigned long leader_nr_running; /* Nr running of group_leader */
|
|
unsigned long min_nr_running; /* Nr running of group_min */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* sg_lb_stats - stats of a sched_group required for load_balancing
|
|
*/
|
|
struct sg_lb_stats {
|
|
unsigned long avg_load; /*Avg load across the CPUs of the group */
|
|
unsigned long group_load; /* Total load over the CPUs of the group */
|
|
unsigned long sum_nr_running; /* Nr tasks running in the group */
|
|
unsigned long sum_weighted_load; /* Weighted load of group's tasks */
|
|
unsigned long group_capacity;
|
|
unsigned long idle_cpus;
|
|
unsigned long group_weight;
|
|
int group_imb; /* Is there an imbalance in the group ? */
|
|
int group_has_capacity; /* Is there extra capacity in the group? */
|
|
};
|
|
|
|
/**
|
|
* get_sd_load_idx - Obtain the load index for a given sched domain.
|
|
* @sd: The sched_domain whose load_idx is to be obtained.
|
|
* @idle: The Idle status of the CPU for whose sd load_icx is obtained.
|
|
*/
|
|
static inline int get_sd_load_idx(struct sched_domain *sd,
|
|
enum cpu_idle_type idle)
|
|
{
|
|
int load_idx;
|
|
|
|
switch (idle) {
|
|
case CPU_NOT_IDLE:
|
|
load_idx = sd->busy_idx;
|
|
break;
|
|
|
|
case CPU_NEWLY_IDLE:
|
|
load_idx = sd->newidle_idx;
|
|
break;
|
|
default:
|
|
load_idx = sd->idle_idx;
|
|
break;
|
|
}
|
|
|
|
return load_idx;
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
|
|
/**
|
|
* init_sd_power_savings_stats - Initialize power savings statistics for
|
|
* the given sched_domain, during load balancing.
|
|
*
|
|
* @sd: Sched domain whose power-savings statistics are to be initialized.
|
|
* @sds: Variable containing the statistics for sd.
|
|
* @idle: Idle status of the CPU at which we're performing load-balancing.
|
|
*/
|
|
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
|
|
struct sd_lb_stats *sds, enum cpu_idle_type idle)
|
|
{
|
|
/*
|
|
* Busy processors will not participate in power savings
|
|
* balance.
|
|
*/
|
|
if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
|
|
sds->power_savings_balance = 0;
|
|
else {
|
|
sds->power_savings_balance = 1;
|
|
sds->min_nr_running = ULONG_MAX;
|
|
sds->leader_nr_running = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* update_sd_power_savings_stats - Update the power saving stats for a
|
|
* sched_domain while performing load balancing.
|
|
*
|
|
* @group: sched_group belonging to the sched_domain under consideration.
|
|
* @sds: Variable containing the statistics of the sched_domain
|
|
* @local_group: Does group contain the CPU for which we're performing
|
|
* load balancing ?
|
|
* @sgs: Variable containing the statistics of the group.
|
|
*/
|
|
static inline void update_sd_power_savings_stats(struct sched_group *group,
|
|
struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
|
|
{
|
|
|
|
if (!sds->power_savings_balance)
|
|
return;
|
|
|
|
/*
|
|
* If the local group is idle or completely loaded
|
|
* no need to do power savings balance at this domain
|
|
*/
|
|
if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
|
|
!sds->this_nr_running))
|
|
sds->power_savings_balance = 0;
|
|
|
|
/*
|
|
* If a group is already running at full capacity or idle,
|
|
* don't include that group in power savings calculations
|
|
*/
|
|
if (!sds->power_savings_balance ||
|
|
sgs->sum_nr_running >= sgs->group_capacity ||
|
|
!sgs->sum_nr_running)
|
|
return;
|
|
|
|
/*
|
|
* Calculate the group which has the least non-idle load.
|
|
* This is the group from where we need to pick up the load
|
|
* for saving power
|
|
*/
|
|
if ((sgs->sum_nr_running < sds->min_nr_running) ||
|
|
(sgs->sum_nr_running == sds->min_nr_running &&
|
|
group_first_cpu(group) > group_first_cpu(sds->group_min))) {
|
|
sds->group_min = group;
|
|
sds->min_nr_running = sgs->sum_nr_running;
|
|
sds->min_load_per_task = sgs->sum_weighted_load /
|
|
sgs->sum_nr_running;
|
|
}
|
|
|
|
/*
|
|
* Calculate the group which is almost near its
|
|
* capacity but still has some space to pick up some load
|
|
* from other group and save more power
|
|
*/
|
|
if (sgs->sum_nr_running + 1 > sgs->group_capacity)
|
|
return;
|
|
|
|
if (sgs->sum_nr_running > sds->leader_nr_running ||
|
|
(sgs->sum_nr_running == sds->leader_nr_running &&
|
|
group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
|
|
sds->group_leader = group;
|
|
sds->leader_nr_running = sgs->sum_nr_running;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* check_power_save_busiest_group - see if there is potential for some power-savings balance
|
|
* @sds: Variable containing the statistics of the sched_domain
|
|
* under consideration.
|
|
* @this_cpu: Cpu at which we're currently performing load-balancing.
|
|
* @imbalance: Variable to store the imbalance.
|
|
*
|
|
* Description:
|
|
* Check if we have potential to perform some power-savings balance.
|
|
* If yes, set the busiest group to be the least loaded group in the
|
|
* sched_domain, so that it's CPUs can be put to idle.
|
|
*
|
|
* Returns 1 if there is potential to perform power-savings balance.
|
|
* Else returns 0.
|
|
*/
|
|
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
|
|
int this_cpu, unsigned long *imbalance)
|
|
{
|
|
if (!sds->power_savings_balance)
|
|
return 0;
|
|
|
|
if (sds->this != sds->group_leader ||
|
|
sds->group_leader == sds->group_min)
|
|
return 0;
|
|
|
|
*imbalance = sds->min_load_per_task;
|
|
sds->busiest = sds->group_min;
|
|
|
|
return 1;
|
|
|
|
}
|
|
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
|
|
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
|
|
struct sd_lb_stats *sds, enum cpu_idle_type idle)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static inline void update_sd_power_savings_stats(struct sched_group *group,
|
|
struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
|
|
int this_cpu, unsigned long *imbalance)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
|
|
|
|
|
|
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
return SCHED_POWER_SCALE;
|
|
}
|
|
|
|
unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
return default_scale_freq_power(sd, cpu);
|
|
}
|
|
|
|
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
unsigned long weight = sd->span_weight;
|
|
unsigned long smt_gain = sd->smt_gain;
|
|
|
|
smt_gain /= weight;
|
|
|
|
return smt_gain;
|
|
}
|
|
|
|
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
return default_scale_smt_power(sd, cpu);
|
|
}
|
|
|
|
unsigned long scale_rt_power(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
u64 total, available;
|
|
|
|
total = sched_avg_period() + (rq->clock - rq->age_stamp);
|
|
|
|
if (unlikely(total < rq->rt_avg)) {
|
|
/* Ensures that power won't end up being negative */
|
|
available = 0;
|
|
} else {
|
|
available = total - rq->rt_avg;
|
|
}
|
|
|
|
if (unlikely((s64)total < SCHED_POWER_SCALE))
|
|
total = SCHED_POWER_SCALE;
|
|
|
|
total >>= SCHED_POWER_SHIFT;
|
|
|
|
return div_u64(available, total);
|
|
}
|
|
|
|
static void update_cpu_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
unsigned long weight = sd->span_weight;
|
|
unsigned long power = SCHED_POWER_SCALE;
|
|
struct sched_group *sdg = sd->groups;
|
|
|
|
if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
|
|
if (sched_feat(ARCH_POWER))
|
|
power *= arch_scale_smt_power(sd, cpu);
|
|
else
|
|
power *= default_scale_smt_power(sd, cpu);
|
|
|
|
power >>= SCHED_POWER_SHIFT;
|
|
}
|
|
|
|
sdg->sgp->power_orig = power;
|
|
|
|
if (sched_feat(ARCH_POWER))
|
|
power *= arch_scale_freq_power(sd, cpu);
|
|
else
|
|
power *= default_scale_freq_power(sd, cpu);
|
|
|
|
power >>= SCHED_POWER_SHIFT;
|
|
|
|
power *= scale_rt_power(cpu);
|
|
power >>= SCHED_POWER_SHIFT;
|
|
|
|
if (!power)
|
|
power = 1;
|
|
|
|
cpu_rq(cpu)->cpu_power = power;
|
|
sdg->sgp->power = power;
|
|
}
|
|
|
|
void update_group_power(struct sched_domain *sd, int cpu)
|
|
{
|
|
struct sched_domain *child = sd->child;
|
|
struct sched_group *group, *sdg = sd->groups;
|
|
unsigned long power;
|
|
unsigned long interval;
|
|
|
|
interval = msecs_to_jiffies(sd->balance_interval);
|
|
interval = clamp(interval, 1UL, max_load_balance_interval);
|
|
sdg->sgp->next_update = jiffies + interval;
|
|
|
|
if (!child) {
|
|
update_cpu_power(sd, cpu);
|
|
return;
|
|
}
|
|
|
|
power = 0;
|
|
|
|
group = child->groups;
|
|
do {
|
|
power += group->sgp->power;
|
|
group = group->next;
|
|
} while (group != child->groups);
|
|
|
|
sdg->sgp->power = power;
|
|
}
|
|
|
|
/*
|
|
* Try and fix up capacity for tiny siblings, this is needed when
|
|
* things like SD_ASYM_PACKING need f_b_g to select another sibling
|
|
* which on its own isn't powerful enough.
|
|
*
|
|
* See update_sd_pick_busiest() and check_asym_packing().
|
|
*/
|
|
static inline int
|
|
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
|
|
{
|
|
/*
|
|
* Only siblings can have significantly less than SCHED_POWER_SCALE
|
|
*/
|
|
if (!(sd->flags & SD_SHARE_CPUPOWER))
|
|
return 0;
|
|
|
|
/*
|
|
* If ~90% of the cpu_power is still there, we're good.
|
|
*/
|
|
if (group->sgp->power * 32 > group->sgp->power_orig * 29)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* update_sg_lb_stats - Update sched_group's statistics for load balancing.
|
|
* @sd: The sched_domain whose statistics are to be updated.
|
|
* @group: sched_group whose statistics are to be updated.
|
|
* @this_cpu: Cpu for which load balance is currently performed.
|
|
* @idle: Idle status of this_cpu
|
|
* @load_idx: Load index of sched_domain of this_cpu for load calc.
|
|
* @local_group: Does group contain this_cpu.
|
|
* @cpus: Set of cpus considered for load balancing.
|
|
* @balance: Should we balance.
|
|
* @sgs: variable to hold the statistics for this group.
|
|
*/
|
|
static inline void update_sg_lb_stats(struct sched_domain *sd,
|
|
struct sched_group *group, int this_cpu,
|
|
enum cpu_idle_type idle, int load_idx,
|
|
int local_group, const struct cpumask *cpus,
|
|
int *balance, struct sg_lb_stats *sgs)
|
|
{
|
|
unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
|
|
int i;
|
|
unsigned int balance_cpu = -1, first_idle_cpu = 0;
|
|
unsigned long avg_load_per_task = 0;
|
|
|
|
if (local_group)
|
|
balance_cpu = group_first_cpu(group);
|
|
|
|
/* Tally up the load of all CPUs in the group */
|
|
max_cpu_load = 0;
|
|
min_cpu_load = ~0UL;
|
|
max_nr_running = 0;
|
|
|
|
for_each_cpu_and(i, sched_group_cpus(group), cpus) {
|
|
struct rq *rq = cpu_rq(i);
|
|
|
|
/* Bias balancing toward cpus of our domain */
|
|
if (local_group) {
|
|
if (idle_cpu(i) && !first_idle_cpu) {
|
|
first_idle_cpu = 1;
|
|
balance_cpu = i;
|
|
}
|
|
|
|
load = target_load(i, load_idx);
|
|
} else {
|
|
load = source_load(i, load_idx);
|
|
if (load > max_cpu_load) {
|
|
max_cpu_load = load;
|
|
max_nr_running = rq->nr_running;
|
|
}
|
|
if (min_cpu_load > load)
|
|
min_cpu_load = load;
|
|
}
|
|
|
|
sgs->group_load += load;
|
|
sgs->sum_nr_running += rq->nr_running;
|
|
sgs->sum_weighted_load += weighted_cpuload(i);
|
|
if (idle_cpu(i))
|
|
sgs->idle_cpus++;
|
|
}
|
|
|
|
/*
|
|
* First idle cpu or the first cpu(busiest) in this sched group
|
|
* is eligible for doing load balancing at this and above
|
|
* domains. In the newly idle case, we will allow all the cpu's
|
|
* to do the newly idle load balance.
|
|
*/
|
|
if (local_group) {
|
|
if (idle != CPU_NEWLY_IDLE) {
|
|
if (balance_cpu != this_cpu) {
|
|
*balance = 0;
|
|
return;
|
|
}
|
|
update_group_power(sd, this_cpu);
|
|
} else if (time_after_eq(jiffies, group->sgp->next_update))
|
|
update_group_power(sd, this_cpu);
|
|
}
|
|
|
|
/* Adjust by relative CPU power of the group */
|
|
sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
|
|
|
|
/*
|
|
* Consider the group unbalanced when the imbalance is larger
|
|
* than the average weight of a task.
|
|
*
|
|
* APZ: with cgroup the avg task weight can vary wildly and
|
|
* might not be a suitable number - should we keep a
|
|
* normalized nr_running number somewhere that negates
|
|
* the hierarchy?
|
|
*/
|
|
if (sgs->sum_nr_running)
|
|
avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
|
|
|
|
if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
|
|
sgs->group_imb = 1;
|
|
|
|
sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
|
|
SCHED_POWER_SCALE);
|
|
if (!sgs->group_capacity)
|
|
sgs->group_capacity = fix_small_capacity(sd, group);
|
|
sgs->group_weight = group->group_weight;
|
|
|
|
if (sgs->group_capacity > sgs->sum_nr_running)
|
|
sgs->group_has_capacity = 1;
|
|
}
|
|
|
|
/**
|
|
* update_sd_pick_busiest - return 1 on busiest group
|
|
* @sd: sched_domain whose statistics are to be checked
|
|
* @sds: sched_domain statistics
|
|
* @sg: sched_group candidate to be checked for being the busiest
|
|
* @sgs: sched_group statistics
|
|
* @this_cpu: the current cpu
|
|
*
|
|
* Determine if @sg is a busier group than the previously selected
|
|
* busiest group.
|
|
*/
|
|
static bool update_sd_pick_busiest(struct sched_domain *sd,
|
|
struct sd_lb_stats *sds,
|
|
struct sched_group *sg,
|
|
struct sg_lb_stats *sgs,
|
|
int this_cpu)
|
|
{
|
|
if (sgs->avg_load <= sds->max_load)
|
|
return false;
|
|
|
|
if (sgs->sum_nr_running > sgs->group_capacity)
|
|
return true;
|
|
|
|
if (sgs->group_imb)
|
|
return true;
|
|
|
|
/*
|
|
* ASYM_PACKING needs to move all the work to the lowest
|
|
* numbered CPUs in the group, therefore mark all groups
|
|
* higher than ourself as busy.
|
|
*/
|
|
if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
|
|
this_cpu < group_first_cpu(sg)) {
|
|
if (!sds->busiest)
|
|
return true;
|
|
|
|
if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
|
|
* @sd: sched_domain whose statistics are to be updated.
|
|
* @this_cpu: Cpu for which load balance is currently performed.
|
|
* @idle: Idle status of this_cpu
|
|
* @cpus: Set of cpus considered for load balancing.
|
|
* @balance: Should we balance.
|
|
* @sds: variable to hold the statistics for this sched_domain.
|
|
*/
|
|
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
|
|
enum cpu_idle_type idle, const struct cpumask *cpus,
|
|
int *balance, struct sd_lb_stats *sds)
|
|
{
|
|
struct sched_domain *child = sd->child;
|
|
struct sched_group *sg = sd->groups;
|
|
struct sg_lb_stats sgs;
|
|
int load_idx, prefer_sibling = 0;
|
|
|
|
if (child && child->flags & SD_PREFER_SIBLING)
|
|
prefer_sibling = 1;
|
|
|
|
init_sd_power_savings_stats(sd, sds, idle);
|
|
load_idx = get_sd_load_idx(sd, idle);
|
|
|
|
do {
|
|
int local_group;
|
|
|
|
local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
|
|
memset(&sgs, 0, sizeof(sgs));
|
|
update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
|
|
local_group, cpus, balance, &sgs);
|
|
|
|
if (local_group && !(*balance))
|
|
return;
|
|
|
|
sds->total_load += sgs.group_load;
|
|
sds->total_pwr += sg->sgp->power;
|
|
|
|
/*
|
|
* In case the child domain prefers tasks go to siblings
|
|
* first, lower the sg capacity to one so that we'll try
|
|
* and move all the excess tasks away. We lower the capacity
|
|
* of a group only if the local group has the capacity to fit
|
|
* these excess tasks, i.e. nr_running < group_capacity. The
|
|
* extra check prevents the case where you always pull from the
|
|
* heaviest group when it is already under-utilized (possible
|
|
* with a large weight task outweighs the tasks on the system).
|
|
*/
|
|
if (prefer_sibling && !local_group && sds->this_has_capacity)
|
|
sgs.group_capacity = min(sgs.group_capacity, 1UL);
|
|
|
|
if (local_group) {
|
|
sds->this_load = sgs.avg_load;
|
|
sds->this = sg;
|
|
sds->this_nr_running = sgs.sum_nr_running;
|
|
sds->this_load_per_task = sgs.sum_weighted_load;
|
|
sds->this_has_capacity = sgs.group_has_capacity;
|
|
sds->this_idle_cpus = sgs.idle_cpus;
|
|
} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
|
|
sds->max_load = sgs.avg_load;
|
|
sds->busiest = sg;
|
|
sds->busiest_nr_running = sgs.sum_nr_running;
|
|
sds->busiest_idle_cpus = sgs.idle_cpus;
|
|
sds->busiest_group_capacity = sgs.group_capacity;
|
|
sds->busiest_load_per_task = sgs.sum_weighted_load;
|
|
sds->busiest_has_capacity = sgs.group_has_capacity;
|
|
sds->busiest_group_weight = sgs.group_weight;
|
|
sds->group_imb = sgs.group_imb;
|
|
}
|
|
|
|
update_sd_power_savings_stats(sg, sds, local_group, &sgs);
|
|
sg = sg->next;
|
|
} while (sg != sd->groups);
|
|
}
|
|
|
|
/**
|
|
* check_asym_packing - Check to see if the group is packed into the
|
|
* sched doman.
|
|
*
|
|
* This is primarily intended to used at the sibling level. Some
|
|
* cores like POWER7 prefer to use lower numbered SMT threads. In the
|
|
* case of POWER7, it can move to lower SMT modes only when higher
|
|
* threads are idle. When in lower SMT modes, the threads will
|
|
* perform better since they share less core resources. Hence when we
|
|
* have idle threads, we want them to be the higher ones.
|
|
*
|
|
* This packing function is run on idle threads. It checks to see if
|
|
* the busiest CPU in this domain (core in the P7 case) has a higher
|
|
* CPU number than the packing function is being run on. Here we are
|
|
* assuming lower CPU number will be equivalent to lower a SMT thread
|
|
* number.
|
|
*
|
|
* Returns 1 when packing is required and a task should be moved to
|
|
* this CPU. The amount of the imbalance is returned in *imbalance.
|
|
*
|
|
* @sd: The sched_domain whose packing is to be checked.
|
|
* @sds: Statistics of the sched_domain which is to be packed
|
|
* @this_cpu: The cpu at whose sched_domain we're performing load-balance.
|
|
* @imbalance: returns amount of imbalanced due to packing.
|
|
*/
|
|
static int check_asym_packing(struct sched_domain *sd,
|
|
struct sd_lb_stats *sds,
|
|
int this_cpu, unsigned long *imbalance)
|
|
{
|
|
int busiest_cpu;
|
|
|
|
if (!(sd->flags & SD_ASYM_PACKING))
|
|
return 0;
|
|
|
|
if (!sds->busiest)
|
|
return 0;
|
|
|
|
busiest_cpu = group_first_cpu(sds->busiest);
|
|
if (this_cpu > busiest_cpu)
|
|
return 0;
|
|
|
|
*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
|
|
SCHED_POWER_SCALE);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* fix_small_imbalance - Calculate the minor imbalance that exists
|
|
* amongst the groups of a sched_domain, during
|
|
* load balancing.
|
|
* @sds: Statistics of the sched_domain whose imbalance is to be calculated.
|
|
* @this_cpu: The cpu at whose sched_domain we're performing load-balance.
|
|
* @imbalance: Variable to store the imbalance.
|
|
*/
|
|
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
|
|
int this_cpu, unsigned long *imbalance)
|
|
{
|
|
unsigned long tmp, pwr_now = 0, pwr_move = 0;
|
|
unsigned int imbn = 2;
|
|
unsigned long scaled_busy_load_per_task;
|
|
|
|
if (sds->this_nr_running) {
|
|
sds->this_load_per_task /= sds->this_nr_running;
|
|
if (sds->busiest_load_per_task >
|
|
sds->this_load_per_task)
|
|
imbn = 1;
|
|
} else
|
|
sds->this_load_per_task =
|
|
cpu_avg_load_per_task(this_cpu);
|
|
|
|
scaled_busy_load_per_task = sds->busiest_load_per_task
|
|
* SCHED_POWER_SCALE;
|
|
scaled_busy_load_per_task /= sds->busiest->sgp->power;
|
|
|
|
if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
|
|
(scaled_busy_load_per_task * imbn)) {
|
|
*imbalance = sds->busiest_load_per_task;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* OK, we don't have enough imbalance to justify moving tasks,
|
|
* however we may be able to increase total CPU power used by
|
|
* moving them.
|
|
*/
|
|
|
|
pwr_now += sds->busiest->sgp->power *
|
|
min(sds->busiest_load_per_task, sds->max_load);
|
|
pwr_now += sds->this->sgp->power *
|
|
min(sds->this_load_per_task, sds->this_load);
|
|
pwr_now /= SCHED_POWER_SCALE;
|
|
|
|
/* Amount of load we'd subtract */
|
|
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
|
|
sds->busiest->sgp->power;
|
|
if (sds->max_load > tmp)
|
|
pwr_move += sds->busiest->sgp->power *
|
|
min(sds->busiest_load_per_task, sds->max_load - tmp);
|
|
|
|
/* Amount of load we'd add */
|
|
if (sds->max_load * sds->busiest->sgp->power <
|
|
sds->busiest_load_per_task * SCHED_POWER_SCALE)
|
|
tmp = (sds->max_load * sds->busiest->sgp->power) /
|
|
sds->this->sgp->power;
|
|
else
|
|
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
|
|
sds->this->sgp->power;
|
|
pwr_move += sds->this->sgp->power *
|
|
min(sds->this_load_per_task, sds->this_load + tmp);
|
|
pwr_move /= SCHED_POWER_SCALE;
|
|
|
|
/* Move if we gain throughput */
|
|
if (pwr_move > pwr_now)
|
|
*imbalance = sds->busiest_load_per_task;
|
|
}
|
|
|
|
/**
|
|
* calculate_imbalance - Calculate the amount of imbalance present within the
|
|
* groups of a given sched_domain during load balance.
|
|
* @sds: statistics of the sched_domain whose imbalance is to be calculated.
|
|
* @this_cpu: Cpu for which currently load balance is being performed.
|
|
* @imbalance: The variable to store the imbalance.
|
|
*/
|
|
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
|
|
unsigned long *imbalance)
|
|
{
|
|
unsigned long max_pull, load_above_capacity = ~0UL;
|
|
|
|
sds->busiest_load_per_task /= sds->busiest_nr_running;
|
|
if (sds->group_imb) {
|
|
sds->busiest_load_per_task =
|
|
min(sds->busiest_load_per_task, sds->avg_load);
|
|
}
|
|
|
|
/*
|
|
* In the presence of smp nice balancing, certain scenarios can have
|
|
* max load less than avg load(as we skip the groups at or below
|
|
* its cpu_power, while calculating max_load..)
|
|
*/
|
|
if (sds->max_load < sds->avg_load) {
|
|
*imbalance = 0;
|
|
return fix_small_imbalance(sds, this_cpu, imbalance);
|
|
}
|
|
|
|
if (!sds->group_imb) {
|
|
/*
|
|
* Don't want to pull so many tasks that a group would go idle.
|
|
*/
|
|
load_above_capacity = (sds->busiest_nr_running -
|
|
sds->busiest_group_capacity);
|
|
|
|
load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
|
|
|
|
load_above_capacity /= sds->busiest->sgp->power;
|
|
}
|
|
|
|
/*
|
|
* We're trying to get all the cpus to the average_load, so we don't
|
|
* want to push ourselves above the average load, nor do we wish to
|
|
* reduce the max loaded cpu below the average load. At the same time,
|
|
* we also don't want to reduce the group load below the group capacity
|
|
* (so that we can implement power-savings policies etc). Thus we look
|
|
* for the minimum possible imbalance.
|
|
* Be careful of negative numbers as they'll appear as very large values
|
|
* with unsigned longs.
|
|
*/
|
|
max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
|
|
|
|
/* How much load to actually move to equalise the imbalance */
|
|
*imbalance = min(max_pull * sds->busiest->sgp->power,
|
|
(sds->avg_load - sds->this_load) * sds->this->sgp->power)
|
|
/ SCHED_POWER_SCALE;
|
|
|
|
/*
|
|
* if *imbalance is less than the average load per runnable task
|
|
* there is no guarantee that any tasks will be moved so we'll have
|
|
* a think about bumping its value to force at least one task to be
|
|
* moved
|
|
*/
|
|
if (*imbalance < sds->busiest_load_per_task)
|
|
return fix_small_imbalance(sds, this_cpu, imbalance);
|
|
|
|
}
|
|
|
|
/******* find_busiest_group() helpers end here *********************/
|
|
|
|
/**
|
|
* find_busiest_group - Returns the busiest group within the sched_domain
|
|
* if there is an imbalance. If there isn't an imbalance, and
|
|
* the user has opted for power-savings, it returns a group whose
|
|
* CPUs can be put to idle by rebalancing those tasks elsewhere, if
|
|
* such a group exists.
|
|
*
|
|
* Also calculates the amount of weighted load which should be moved
|
|
* to restore balance.
|
|
*
|
|
* @sd: The sched_domain whose busiest group is to be returned.
|
|
* @this_cpu: The cpu for which load balancing is currently being performed.
|
|
* @imbalance: Variable which stores amount of weighted load which should
|
|
* be moved to restore balance/put a group to idle.
|
|
* @idle: The idle status of this_cpu.
|
|
* @cpus: The set of CPUs under consideration for load-balancing.
|
|
* @balance: Pointer to a variable indicating if this_cpu
|
|
* is the appropriate cpu to perform load balancing at this_level.
|
|
*
|
|
* Returns: - the busiest group if imbalance exists.
|
|
* - If no imbalance and user has opted for power-savings balance,
|
|
* return the least loaded group whose CPUs can be
|
|
* put to idle by rebalancing its tasks onto our group.
|
|
*/
|
|
static struct sched_group *
|
|
find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|
unsigned long *imbalance, enum cpu_idle_type idle,
|
|
const struct cpumask *cpus, int *balance)
|
|
{
|
|
struct sd_lb_stats sds;
|
|
|
|
memset(&sds, 0, sizeof(sds));
|
|
|
|
/*
|
|
* Compute the various statistics relavent for load balancing at
|
|
* this level.
|
|
*/
|
|
update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
|
|
|
|
/*
|
|
* this_cpu is not the appropriate cpu to perform load balancing at
|
|
* this level.
|
|
*/
|
|
if (!(*balance))
|
|
goto ret;
|
|
|
|
if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
|
|
check_asym_packing(sd, &sds, this_cpu, imbalance))
|
|
return sds.busiest;
|
|
|
|
/* There is no busy sibling group to pull tasks from */
|
|
if (!sds.busiest || sds.busiest_nr_running == 0)
|
|
goto out_balanced;
|
|
|
|
sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
|
|
|
|
/*
|
|
* If the busiest group is imbalanced the below checks don't
|
|
* work because they assumes all things are equal, which typically
|
|
* isn't true due to cpus_allowed constraints and the like.
|
|
*/
|
|
if (sds.group_imb)
|
|
goto force_balance;
|
|
|
|
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
|
|
if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
|
|
!sds.busiest_has_capacity)
|
|
goto force_balance;
|
|
|
|
/*
|
|
* If the local group is more busy than the selected busiest group
|
|
* don't try and pull any tasks.
|
|
*/
|
|
if (sds.this_load >= sds.max_load)
|
|
goto out_balanced;
|
|
|
|
/*
|
|
* Don't pull any tasks if this group is already above the domain
|
|
* average load.
|
|
*/
|
|
if (sds.this_load >= sds.avg_load)
|
|
goto out_balanced;
|
|
|
|
if (idle == CPU_IDLE) {
|
|
/*
|
|
* This cpu is idle. If the busiest group load doesn't
|
|
* have more tasks than the number of available cpu's and
|
|
* there is no imbalance between this and busiest group
|
|
* wrt to idle cpu's, it is balanced.
|
|
*/
|
|
if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
|
|
sds.busiest_nr_running <= sds.busiest_group_weight)
|
|
goto out_balanced;
|
|
} else {
|
|
/*
|
|
* In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
|
|
* imbalance_pct to be conservative.
|
|
*/
|
|
if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
|
|
goto out_balanced;
|
|
}
|
|
|
|
force_balance:
|
|
/* Looks like there is an imbalance. Compute it */
|
|
calculate_imbalance(&sds, this_cpu, imbalance);
|
|
return sds.busiest;
|
|
|
|
out_balanced:
|
|
/*
|
|
* There is no obvious imbalance. But check if we can do some balancing
|
|
* to save power.
|
|
*/
|
|
if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
|
|
return sds.busiest;
|
|
ret:
|
|
*imbalance = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find_busiest_queue - find the busiest runqueue among the cpus in group.
|
|
*/
|
|
static struct rq *
|
|
find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
|
|
enum cpu_idle_type idle, unsigned long imbalance,
|
|
const struct cpumask *cpus)
|
|
{
|
|
struct rq *busiest = NULL, *rq;
|
|
unsigned long max_load = 0;
|
|
int i;
|
|
|
|
for_each_cpu(i, sched_group_cpus(group)) {
|
|
unsigned long power = power_of(i);
|
|
unsigned long capacity = DIV_ROUND_CLOSEST(power,
|
|
SCHED_POWER_SCALE);
|
|
unsigned long wl;
|
|
|
|
if (!capacity)
|
|
capacity = fix_small_capacity(sd, group);
|
|
|
|
if (!cpumask_test_cpu(i, cpus))
|
|
continue;
|
|
|
|
rq = cpu_rq(i);
|
|
wl = weighted_cpuload(i);
|
|
|
|
/*
|
|
* When comparing with imbalance, use weighted_cpuload()
|
|
* which is not scaled with the cpu power.
|
|
*/
|
|
if (capacity && rq->nr_running == 1 && wl > imbalance)
|
|
continue;
|
|
|
|
/*
|
|
* For the load comparisons with the other cpu's, consider
|
|
* the weighted_cpuload() scaled with the cpu power, so that
|
|
* the load can be moved away from the cpu that is potentially
|
|
* running at a lower capacity.
|
|
*/
|
|
wl = (wl * SCHED_POWER_SCALE) / power;
|
|
|
|
if (wl > max_load) {
|
|
max_load = wl;
|
|
busiest = rq;
|
|
}
|
|
}
|
|
|
|
return busiest;
|
|
}
|
|
|
|
/*
|
|
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
|
|
* so long as it is large enough.
|
|
*/
|
|
#define MAX_PINNED_INTERVAL 512
|
|
|
|
/* Working cpumask for load_balance and load_balance_newidle. */
|
|
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
|
|
|
|
static int need_active_balance(struct sched_domain *sd, int idle,
|
|
int busiest_cpu, int this_cpu)
|
|
{
|
|
if (idle == CPU_NEWLY_IDLE) {
|
|
|
|
/*
|
|
* ASYM_PACKING needs to force migrate tasks from busy but
|
|
* higher numbered CPUs in order to pack all tasks in the
|
|
* lowest numbered CPUs.
|
|
*/
|
|
if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
|
|
return 1;
|
|
|
|
/*
|
|
* The only task running in a non-idle cpu can be moved to this
|
|
* cpu in an attempt to completely freeup the other CPU
|
|
* package.
|
|
*
|
|
* The package power saving logic comes from
|
|
* find_busiest_group(). If there are no imbalance, then
|
|
* f_b_g() will return NULL. However when sched_mc={1,2} then
|
|
* f_b_g() will select a group from which a running task may be
|
|
* pulled to this cpu in order to make the other package idle.
|
|
* If there is no opportunity to make a package idle and if
|
|
* there are no imbalance, then f_b_g() will return NULL and no
|
|
* action will be taken in load_balance_newidle().
|
|
*
|
|
* Under normal task pull operation due to imbalance, there
|
|
* will be more than one task in the source run queue and
|
|
* move_tasks() will succeed. ld_moved will be true and this
|
|
* active balance code will not be triggered.
|
|
*/
|
|
if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
|
|
return 0;
|
|
}
|
|
|
|
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
|
|
}
|
|
|
|
static int active_load_balance_cpu_stop(void *data);
|
|
|
|
/*
|
|
* Check this_cpu to ensure it is balanced within domain. Attempt to move
|
|
* tasks if there is an imbalance.
|
|
*/
|
|
static int load_balance(int this_cpu, struct rq *this_rq,
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
int *balance)
|
|
{
|
|
int ld_moved, active_balance = 0;
|
|
struct sched_group *group;
|
|
unsigned long imbalance;
|
|
struct rq *busiest;
|
|
unsigned long flags;
|
|
struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
|
|
|
|
struct lb_env env = {
|
|
.sd = sd,
|
|
.dst_cpu = this_cpu,
|
|
.dst_rq = this_rq,
|
|
.idle = idle,
|
|
.loop_break = sysctl_sched_nr_migrate,
|
|
};
|
|
|
|
cpumask_copy(cpus, cpu_active_mask);
|
|
|
|
schedstat_inc(sd, lb_count[idle]);
|
|
|
|
redo:
|
|
group = find_busiest_group(sd, this_cpu, &imbalance, idle,
|
|
cpus, balance);
|
|
|
|
if (*balance == 0)
|
|
goto out_balanced;
|
|
|
|
if (!group) {
|
|
schedstat_inc(sd, lb_nobusyg[idle]);
|
|
goto out_balanced;
|
|
}
|
|
|
|
busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
|
|
if (!busiest) {
|
|
schedstat_inc(sd, lb_nobusyq[idle]);
|
|
goto out_balanced;
|
|
}
|
|
|
|
BUG_ON(busiest == this_rq);
|
|
|
|
schedstat_add(sd, lb_imbalance[idle], imbalance);
|
|
|
|
ld_moved = 0;
|
|
if (busiest->nr_running > 1) {
|
|
/*
|
|
* Attempt to move tasks. If find_busiest_group has found
|
|
* an imbalance but busiest->nr_running <= 1, the group is
|
|
* still unbalanced. ld_moved simply stays zero, so it is
|
|
* correctly treated as an imbalance.
|
|
*/
|
|
env.flags |= LBF_ALL_PINNED;
|
|
env.load_move = imbalance;
|
|
env.src_cpu = busiest->cpu;
|
|
env.src_rq = busiest;
|
|
env.loop_max = busiest->nr_running;
|
|
|
|
more_balance:
|
|
local_irq_save(flags);
|
|
double_rq_lock(this_rq, busiest);
|
|
if (!env.loop)
|
|
update_h_load(env.src_cpu);
|
|
ld_moved += move_tasks(&env);
|
|
double_rq_unlock(this_rq, busiest);
|
|
local_irq_restore(flags);
|
|
|
|
if (env.flags & LBF_NEED_BREAK) {
|
|
env.flags &= ~LBF_NEED_BREAK;
|
|
goto more_balance;
|
|
}
|
|
|
|
/*
|
|
* some other cpu did the load balance for us.
|
|
*/
|
|
if (ld_moved && this_cpu != smp_processor_id())
|
|
resched_cpu(this_cpu);
|
|
|
|
/* All tasks on this runqueue were pinned by CPU affinity */
|
|
if (unlikely(env.flags & LBF_ALL_PINNED)) {
|
|
cpumask_clear_cpu(cpu_of(busiest), cpus);
|
|
if (!cpumask_empty(cpus))
|
|
goto redo;
|
|
goto out_balanced;
|
|
}
|
|
}
|
|
|
|
if (!ld_moved) {
|
|
schedstat_inc(sd, lb_failed[idle]);
|
|
/*
|
|
* Increment the failure counter only on periodic balance.
|
|
* We do not want newidle balance, which can be very
|
|
* frequent, pollute the failure counter causing
|
|
* excessive cache_hot migrations and active balances.
|
|
*/
|
|
if (idle != CPU_NEWLY_IDLE)
|
|
sd->nr_balance_failed++;
|
|
|
|
if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
|
|
raw_spin_lock_irqsave(&busiest->lock, flags);
|
|
|
|
/* don't kick the active_load_balance_cpu_stop,
|
|
* if the curr task on busiest cpu can't be
|
|
* moved to this_cpu
|
|
*/
|
|
if (!cpumask_test_cpu(this_cpu,
|
|
tsk_cpus_allowed(busiest->curr))) {
|
|
raw_spin_unlock_irqrestore(&busiest->lock,
|
|
flags);
|
|
env.flags |= LBF_ALL_PINNED;
|
|
goto out_one_pinned;
|
|
}
|
|
|
|
/*
|
|
* ->active_balance synchronizes accesses to
|
|
* ->active_balance_work. Once set, it's cleared
|
|
* only after active load balance is finished.
|
|
*/
|
|
if (!busiest->active_balance) {
|
|
busiest->active_balance = 1;
|
|
busiest->push_cpu = this_cpu;
|
|
active_balance = 1;
|
|
}
|
|
raw_spin_unlock_irqrestore(&busiest->lock, flags);
|
|
|
|
if (active_balance)
|
|
stop_one_cpu_nowait(cpu_of(busiest),
|
|
active_load_balance_cpu_stop, busiest,
|
|
&busiest->active_balance_work);
|
|
|
|
/*
|
|
* We've kicked active balancing, reset the failure
|
|
* counter.
|
|
*/
|
|
sd->nr_balance_failed = sd->cache_nice_tries+1;
|
|
}
|
|
} else
|
|
sd->nr_balance_failed = 0;
|
|
|
|
if (likely(!active_balance)) {
|
|
/* We were unbalanced, so reset the balancing interval */
|
|
sd->balance_interval = sd->min_interval;
|
|
} else {
|
|
/*
|
|
* If we've begun active balancing, start to back off. This
|
|
* case may not be covered by the all_pinned logic if there
|
|
* is only 1 task on the busy runqueue (because we don't call
|
|
* move_tasks).
|
|
*/
|
|
if (sd->balance_interval < sd->max_interval)
|
|
sd->balance_interval *= 2;
|
|
}
|
|
|
|
goto out;
|
|
|
|
out_balanced:
|
|
schedstat_inc(sd, lb_balanced[idle]);
|
|
|
|
sd->nr_balance_failed = 0;
|
|
|
|
out_one_pinned:
|
|
/* tune up the balancing interval */
|
|
if (((env.flags & LBF_ALL_PINNED) &&
|
|
sd->balance_interval < MAX_PINNED_INTERVAL) ||
|
|
(sd->balance_interval < sd->max_interval))
|
|
sd->balance_interval *= 2;
|
|
|
|
ld_moved = 0;
|
|
out:
|
|
return ld_moved;
|
|
}
|
|
|
|
/*
|
|
* idle_balance is called by schedule() if this_cpu is about to become
|
|
* idle. Attempts to pull tasks from other CPUs.
|
|
*/
|
|
void idle_balance(int this_cpu, struct rq *this_rq)
|
|
{
|
|
struct sched_domain *sd;
|
|
int pulled_task = 0;
|
|
unsigned long next_balance = jiffies + HZ;
|
|
|
|
this_rq->idle_stamp = this_rq->clock;
|
|
|
|
if (this_rq->avg_idle < sysctl_sched_migration_cost)
|
|
return;
|
|
|
|
/*
|
|
* Drop the rq->lock, but keep IRQ/preempt disabled.
|
|
*/
|
|
raw_spin_unlock(&this_rq->lock);
|
|
|
|
update_shares(this_cpu);
|
|
rcu_read_lock();
|
|
for_each_domain(this_cpu, sd) {
|
|
unsigned long interval;
|
|
int balance = 1;
|
|
|
|
if (!(sd->flags & SD_LOAD_BALANCE))
|
|
continue;
|
|
|
|
if (sd->flags & SD_BALANCE_NEWIDLE) {
|
|
/* If we've pulled tasks over stop searching: */
|
|
pulled_task = load_balance(this_cpu, this_rq,
|
|
sd, CPU_NEWLY_IDLE, &balance);
|
|
}
|
|
|
|
interval = msecs_to_jiffies(sd->balance_interval);
|
|
if (time_after(next_balance, sd->last_balance + interval))
|
|
next_balance = sd->last_balance + interval;
|
|
if (pulled_task) {
|
|
this_rq->idle_stamp = 0;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
raw_spin_lock(&this_rq->lock);
|
|
|
|
if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
|
|
/*
|
|
* We are going idle. next_balance may be set based on
|
|
* a busy processor. So reset next_balance.
|
|
*/
|
|
this_rq->next_balance = next_balance;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* active_load_balance_cpu_stop is run by cpu stopper. It pushes
|
|
* running tasks off the busiest CPU onto idle CPUs. It requires at
|
|
* least 1 task to be running on each physical CPU where possible, and
|
|
* avoids physical / logical imbalances.
|
|
*/
|
|
static int active_load_balance_cpu_stop(void *data)
|
|
{
|
|
struct rq *busiest_rq = data;
|
|
int busiest_cpu = cpu_of(busiest_rq);
|
|
int target_cpu = busiest_rq->push_cpu;
|
|
struct rq *target_rq = cpu_rq(target_cpu);
|
|
struct sched_domain *sd;
|
|
|
|
raw_spin_lock_irq(&busiest_rq->lock);
|
|
|
|
/* make sure the requested cpu hasn't gone down in the meantime */
|
|
if (unlikely(busiest_cpu != smp_processor_id() ||
|
|
!busiest_rq->active_balance))
|
|
goto out_unlock;
|
|
|
|
/* Is there any task to move? */
|
|
if (busiest_rq->nr_running <= 1)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* This condition is "impossible", if it occurs
|
|
* we need to fix it. Originally reported by
|
|
* Bjorn Helgaas on a 128-cpu setup.
|
|
*/
|
|
BUG_ON(busiest_rq == target_rq);
|
|
|
|
/* move a task from busiest_rq to target_rq */
|
|
double_lock_balance(busiest_rq, target_rq);
|
|
|
|
/* Search for an sd spanning us and the target CPU. */
|
|
rcu_read_lock();
|
|
for_each_domain(target_cpu, sd) {
|
|
if ((sd->flags & SD_LOAD_BALANCE) &&
|
|
cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
|
|
break;
|
|
}
|
|
|
|
if (likely(sd)) {
|
|
struct lb_env env = {
|
|
.sd = sd,
|
|
.dst_cpu = target_cpu,
|
|
.dst_rq = target_rq,
|
|
.src_cpu = busiest_rq->cpu,
|
|
.src_rq = busiest_rq,
|
|
.idle = CPU_IDLE,
|
|
};
|
|
|
|
schedstat_inc(sd, alb_count);
|
|
|
|
if (move_one_task(&env))
|
|
schedstat_inc(sd, alb_pushed);
|
|
else
|
|
schedstat_inc(sd, alb_failed);
|
|
}
|
|
rcu_read_unlock();
|
|
double_unlock_balance(busiest_rq, target_rq);
|
|
out_unlock:
|
|
busiest_rq->active_balance = 0;
|
|
raw_spin_unlock_irq(&busiest_rq->lock);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* idle load balancing details
|
|
* - When one of the busy CPUs notice that there may be an idle rebalancing
|
|
* needed, they will kick the idle load balancer, which then does idle
|
|
* load balancing for all the idle CPUs.
|
|
*/
|
|
static struct {
|
|
cpumask_var_t idle_cpus_mask;
|
|
atomic_t nr_cpus;
|
|
unsigned long next_balance; /* in jiffy units */
|
|
} nohz ____cacheline_aligned;
|
|
|
|
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
|
|
/**
|
|
* lowest_flag_domain - Return lowest sched_domain containing flag.
|
|
* @cpu: The cpu whose lowest level of sched domain is to
|
|
* be returned.
|
|
* @flag: The flag to check for the lowest sched_domain
|
|
* for the given cpu.
|
|
*
|
|
* Returns the lowest sched_domain of a cpu which contains the given flag.
|
|
*/
|
|
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
for_each_domain(cpu, sd)
|
|
if (sd->flags & flag)
|
|
break;
|
|
|
|
return sd;
|
|
}
|
|
|
|
/**
|
|
* for_each_flag_domain - Iterates over sched_domains containing the flag.
|
|
* @cpu: The cpu whose domains we're iterating over.
|
|
* @sd: variable holding the value of the power_savings_sd
|
|
* for cpu.
|
|
* @flag: The flag to filter the sched_domains to be iterated.
|
|
*
|
|
* Iterates over all the scheduler domains for a given cpu that has the 'flag'
|
|
* set, starting from the lowest sched_domain to the highest.
|
|
*/
|
|
#define for_each_flag_domain(cpu, sd, flag) \
|
|
for (sd = lowest_flag_domain(cpu, flag); \
|
|
(sd && (sd->flags & flag)); sd = sd->parent)
|
|
|
|
/**
|
|
* find_new_ilb - Finds the optimum idle load balancer for nomination.
|
|
* @cpu: The cpu which is nominating a new idle_load_balancer.
|
|
*
|
|
* Returns: Returns the id of the idle load balancer if it exists,
|
|
* Else, returns >= nr_cpu_ids.
|
|
*
|
|
* This algorithm picks the idle load balancer such that it belongs to a
|
|
* semi-idle powersavings sched_domain. The idea is to try and avoid
|
|
* completely idle packages/cores just for the purpose of idle load balancing
|
|
* when there are other idle cpu's which are better suited for that job.
|
|
*/
|
|
static int find_new_ilb(int cpu)
|
|
{
|
|
int ilb = cpumask_first(nohz.idle_cpus_mask);
|
|
struct sched_group *ilbg;
|
|
struct sched_domain *sd;
|
|
|
|
/*
|
|
* Have idle load balancer selection from semi-idle packages only
|
|
* when power-aware load balancing is enabled
|
|
*/
|
|
if (!(sched_smt_power_savings || sched_mc_power_savings))
|
|
goto out_done;
|
|
|
|
/*
|
|
* Optimize for the case when we have no idle CPUs or only one
|
|
* idle CPU. Don't walk the sched_domain hierarchy in such cases
|
|
*/
|
|
if (cpumask_weight(nohz.idle_cpus_mask) < 2)
|
|
goto out_done;
|
|
|
|
rcu_read_lock();
|
|
for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
|
|
ilbg = sd->groups;
|
|
|
|
do {
|
|
if (ilbg->group_weight !=
|
|
atomic_read(&ilbg->sgp->nr_busy_cpus)) {
|
|
ilb = cpumask_first_and(nohz.idle_cpus_mask,
|
|
sched_group_cpus(ilbg));
|
|
goto unlock;
|
|
}
|
|
|
|
ilbg = ilbg->next;
|
|
|
|
} while (ilbg != sd->groups);
|
|
}
|
|
unlock:
|
|
rcu_read_unlock();
|
|
|
|
out_done:
|
|
if (ilb < nr_cpu_ids && idle_cpu(ilb))
|
|
return ilb;
|
|
|
|
return nr_cpu_ids;
|
|
}
|
|
#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
|
|
static inline int find_new_ilb(int call_cpu)
|
|
{
|
|
return nr_cpu_ids;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Kick a CPU to do the nohz balancing, if it is time for it. We pick the
|
|
* nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
|
|
* CPU (if there is one).
|
|
*/
|
|
static void nohz_balancer_kick(int cpu)
|
|
{
|
|
int ilb_cpu;
|
|
|
|
nohz.next_balance++;
|
|
|
|
ilb_cpu = find_new_ilb(cpu);
|
|
|
|
if (ilb_cpu >= nr_cpu_ids)
|
|
return;
|
|
|
|
if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
|
|
return;
|
|
/*
|
|
* Use smp_send_reschedule() instead of resched_cpu().
|
|
* This way we generate a sched IPI on the target cpu which
|
|
* is idle. And the softirq performing nohz idle load balance
|
|
* will be run before returning from the IPI.
|
|
*/
|
|
smp_send_reschedule(ilb_cpu);
|
|
return;
|
|
}
|
|
|
|
static inline void clear_nohz_tick_stopped(int cpu)
|
|
{
|
|
if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
|
|
cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
|
|
atomic_dec(&nohz.nr_cpus);
|
|
clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
|
|
}
|
|
}
|
|
|
|
static inline void set_cpu_sd_state_busy(void)
|
|
{
|
|
struct sched_domain *sd;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
|
|
return;
|
|
clear_bit(NOHZ_IDLE, nohz_flags(cpu));
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd)
|
|
atomic_inc(&sd->groups->sgp->nr_busy_cpus);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void set_cpu_sd_state_idle(void)
|
|
{
|
|
struct sched_domain *sd;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
|
|
return;
|
|
set_bit(NOHZ_IDLE, nohz_flags(cpu));
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd)
|
|
atomic_dec(&sd->groups->sgp->nr_busy_cpus);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* This routine will record that this cpu is going idle with tick stopped.
|
|
* This info will be used in performing idle load balancing in the future.
|
|
*/
|
|
void select_nohz_load_balancer(int stop_tick)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/*
|
|
* If this cpu is going down, then nothing needs to be done.
|
|
*/
|
|
if (!cpu_active(cpu))
|
|
return;
|
|
|
|
if (stop_tick) {
|
|
if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
|
|
return;
|
|
|
|
cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
|
|
atomic_inc(&nohz.nr_cpus);
|
|
set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
|
|
}
|
|
return;
|
|
}
|
|
|
|
static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_DYING:
|
|
clear_nohz_tick_stopped(smp_processor_id());
|
|
return NOTIFY_OK;
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(balancing);
|
|
|
|
/*
|
|
* Scale the max load_balance interval with the number of CPUs in the system.
|
|
* This trades load-balance latency on larger machines for less cross talk.
|
|
*/
|
|
void update_max_interval(void)
|
|
{
|
|
max_load_balance_interval = HZ*num_online_cpus()/10;
|
|
}
|
|
|
|
/*
|
|
* It checks each scheduling domain to see if it is due to be balanced,
|
|
* and initiates a balancing operation if so.
|
|
*
|
|
* Balancing parameters are set up in arch_init_sched_domains.
|
|
*/
|
|
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
|
|
{
|
|
int balance = 1;
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long interval;
|
|
struct sched_domain *sd;
|
|
/* Earliest time when we have to do rebalance again */
|
|
unsigned long next_balance = jiffies + 60*HZ;
|
|
int update_next_balance = 0;
|
|
int need_serialize;
|
|
|
|
update_shares(cpu);
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
if (!(sd->flags & SD_LOAD_BALANCE))
|
|
continue;
|
|
|
|
interval = sd->balance_interval;
|
|
if (idle != CPU_IDLE)
|
|
interval *= sd->busy_factor;
|
|
|
|
/* scale ms to jiffies */
|
|
interval = msecs_to_jiffies(interval);
|
|
interval = clamp(interval, 1UL, max_load_balance_interval);
|
|
|
|
need_serialize = sd->flags & SD_SERIALIZE;
|
|
|
|
if (need_serialize) {
|
|
if (!spin_trylock(&balancing))
|
|
goto out;
|
|
}
|
|
|
|
if (time_after_eq(jiffies, sd->last_balance + interval)) {
|
|
if (load_balance(cpu, rq, sd, idle, &balance)) {
|
|
/*
|
|
* We've pulled tasks over so either we're no
|
|
* longer idle.
|
|
*/
|
|
idle = CPU_NOT_IDLE;
|
|
}
|
|
sd->last_balance = jiffies;
|
|
}
|
|
if (need_serialize)
|
|
spin_unlock(&balancing);
|
|
out:
|
|
if (time_after(next_balance, sd->last_balance + interval)) {
|
|
next_balance = sd->last_balance + interval;
|
|
update_next_balance = 1;
|
|
}
|
|
|
|
/*
|
|
* Stop the load balance at this level. There is another
|
|
* CPU in our sched group which is doing load balancing more
|
|
* actively.
|
|
*/
|
|
if (!balance)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* next_balance will be updated only when there is a need.
|
|
* When the cpu is attached to null domain for ex, it will not be
|
|
* updated.
|
|
*/
|
|
if (likely(update_next_balance))
|
|
rq->next_balance = next_balance;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* In CONFIG_NO_HZ case, the idle balance kickee will do the
|
|
* rebalancing for all the cpus for whom scheduler ticks are stopped.
|
|
*/
|
|
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
|
|
{
|
|
struct rq *this_rq = cpu_rq(this_cpu);
|
|
struct rq *rq;
|
|
int balance_cpu;
|
|
|
|
if (idle != CPU_IDLE ||
|
|
!test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
|
|
goto end;
|
|
|
|
for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
|
|
if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
|
|
continue;
|
|
|
|
/*
|
|
* If this cpu gets work to do, stop the load balancing
|
|
* work being done for other cpus. Next load
|
|
* balancing owner will pick it up.
|
|
*/
|
|
if (need_resched())
|
|
break;
|
|
|
|
raw_spin_lock_irq(&this_rq->lock);
|
|
update_rq_clock(this_rq);
|
|
update_cpu_load(this_rq);
|
|
raw_spin_unlock_irq(&this_rq->lock);
|
|
|
|
rebalance_domains(balance_cpu, CPU_IDLE);
|
|
|
|
rq = cpu_rq(balance_cpu);
|
|
if (time_after(this_rq->next_balance, rq->next_balance))
|
|
this_rq->next_balance = rq->next_balance;
|
|
}
|
|
nohz.next_balance = this_rq->next_balance;
|
|
end:
|
|
clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
|
|
}
|
|
|
|
/*
|
|
* Current heuristic for kicking the idle load balancer in the presence
|
|
* of an idle cpu is the system.
|
|
* - This rq has more than one task.
|
|
* - At any scheduler domain level, this cpu's scheduler group has multiple
|
|
* busy cpu's exceeding the group's power.
|
|
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
|
|
* domain span are idle.
|
|
*/
|
|
static inline int nohz_kick_needed(struct rq *rq, int cpu)
|
|
{
|
|
unsigned long now = jiffies;
|
|
struct sched_domain *sd;
|
|
|
|
if (unlikely(idle_cpu(cpu)))
|
|
return 0;
|
|
|
|
/*
|
|
* We may be recently in ticked or tickless idle mode. At the first
|
|
* busy tick after returning from idle, we will update the busy stats.
|
|
*/
|
|
set_cpu_sd_state_busy();
|
|
clear_nohz_tick_stopped(cpu);
|
|
|
|
/*
|
|
* None are in tickless mode and hence no need for NOHZ idle load
|
|
* balancing.
|
|
*/
|
|
if (likely(!atomic_read(&nohz.nr_cpus)))
|
|
return 0;
|
|
|
|
if (time_before(now, nohz.next_balance))
|
|
return 0;
|
|
|
|
if (rq->nr_running >= 2)
|
|
goto need_kick;
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
struct sched_group *sg = sd->groups;
|
|
struct sched_group_power *sgp = sg->sgp;
|
|
int nr_busy = atomic_read(&sgp->nr_busy_cpus);
|
|
|
|
if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
|
|
goto need_kick_unlock;
|
|
|
|
if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
|
|
&& (cpumask_first_and(nohz.idle_cpus_mask,
|
|
sched_domain_span(sd)) < cpu))
|
|
goto need_kick_unlock;
|
|
|
|
if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
return 0;
|
|
|
|
need_kick_unlock:
|
|
rcu_read_unlock();
|
|
need_kick:
|
|
return 1;
|
|
}
|
|
#else
|
|
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
|
|
#endif
|
|
|
|
/*
|
|
* run_rebalance_domains is triggered when needed from the scheduler tick.
|
|
* Also triggered for nohz idle balancing (with nohz_balancing_kick set).
|
|
*/
|
|
static void run_rebalance_domains(struct softirq_action *h)
|
|
{
|
|
int this_cpu = smp_processor_id();
|
|
struct rq *this_rq = cpu_rq(this_cpu);
|
|
enum cpu_idle_type idle = this_rq->idle_balance ?
|
|
CPU_IDLE : CPU_NOT_IDLE;
|
|
|
|
rebalance_domains(this_cpu, idle);
|
|
|
|
/*
|
|
* If this cpu has a pending nohz_balance_kick, then do the
|
|
* balancing on behalf of the other idle cpus whose ticks are
|
|
* stopped.
|
|
*/
|
|
nohz_idle_balance(this_cpu, idle);
|
|
}
|
|
|
|
static inline int on_null_domain(int cpu)
|
|
{
|
|
return !rcu_dereference_sched(cpu_rq(cpu)->sd);
|
|
}
|
|
|
|
/*
|
|
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
|
|
*/
|
|
void trigger_load_balance(struct rq *rq, int cpu)
|
|
{
|
|
/* Don't need to rebalance while attached to NULL domain */
|
|
if (time_after_eq(jiffies, rq->next_balance) &&
|
|
likely(!on_null_domain(cpu)))
|
|
raise_softirq(SCHED_SOFTIRQ);
|
|
#ifdef CONFIG_NO_HZ
|
|
if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
|
|
nohz_balancer_kick(cpu);
|
|
#endif
|
|
}
|
|
|
|
static void rq_online_fair(struct rq *rq)
|
|
{
|
|
update_sysctl();
|
|
}
|
|
|
|
static void rq_offline_fair(struct rq *rq)
|
|
{
|
|
update_sysctl();
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* scheduler tick hitting a task of our scheduling class:
|
|
*/
|
|
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &curr->se;
|
|
|
|
for_each_sched_entity(se) {
|
|
cfs_rq = cfs_rq_of(se);
|
|
entity_tick(cfs_rq, se, queued);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called on fork with the child task as argument from the parent's context
|
|
* - child not yet on the tasklist
|
|
* - preemption disabled
|
|
*/
|
|
static void task_fork_fair(struct task_struct *p)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se = &p->se, *curr;
|
|
int this_cpu = smp_processor_id();
|
|
struct rq *rq = this_rq();
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
|
|
update_rq_clock(rq);
|
|
|
|
cfs_rq = task_cfs_rq(current);
|
|
curr = cfs_rq->curr;
|
|
|
|
if (unlikely(task_cpu(p) != this_cpu)) {
|
|
rcu_read_lock();
|
|
__set_task_cpu(p, this_cpu);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
update_curr(cfs_rq);
|
|
|
|
if (curr)
|
|
se->vruntime = curr->vruntime;
|
|
place_entity(cfs_rq, se, 1);
|
|
|
|
if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
|
|
/*
|
|
* Upon rescheduling, sched_class::put_prev_task() will place
|
|
* 'current' within the tree based on its new key value.
|
|
*/
|
|
swap(curr->vruntime, se->vruntime);
|
|
resched_task(rq->curr);
|
|
}
|
|
|
|
se->vruntime -= cfs_rq->min_vruntime;
|
|
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Priority of the task has changed. Check to see if we preempt
|
|
* the current task.
|
|
*/
|
|
static void
|
|
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
|
|
{
|
|
if (!p->se.on_rq)
|
|
return;
|
|
|
|
/*
|
|
* Reschedule if we are currently running on this runqueue and
|
|
* our priority decreased, or if we are not currently running on
|
|
* this runqueue and our priority is higher than the current's
|
|
*/
|
|
if (rq->curr == p) {
|
|
if (p->prio > oldprio)
|
|
resched_task(rq->curr);
|
|
} else
|
|
check_preempt_curr(rq, p, 0);
|
|
}
|
|
|
|
static void switched_from_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct sched_entity *se = &p->se;
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
|
/*
|
|
* Ensure the task's vruntime is normalized, so that when its
|
|
* switched back to the fair class the enqueue_entity(.flags=0) will
|
|
* do the right thing.
|
|
*
|
|
* If it was on_rq, then the dequeue_entity(.flags=0) will already
|
|
* have normalized the vruntime, if it was !on_rq, then only when
|
|
* the task is sleeping will it still have non-normalized vruntime.
|
|
*/
|
|
if (!se->on_rq && p->state != TASK_RUNNING) {
|
|
/*
|
|
* Fix up our vruntime so that the current sleep doesn't
|
|
* cause 'unlimited' sleep bonus.
|
|
*/
|
|
place_entity(cfs_rq, se, 0);
|
|
se->vruntime -= cfs_rq->min_vruntime;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We switched to the sched_fair class.
|
|
*/
|
|
static void switched_to_fair(struct rq *rq, struct task_struct *p)
|
|
{
|
|
if (!p->se.on_rq)
|
|
return;
|
|
|
|
/*
|
|
* We were most likely switched from sched_rt, so
|
|
* kick off the schedule if running, otherwise just see
|
|
* if we can still preempt the current task.
|
|
*/
|
|
if (rq->curr == p)
|
|
resched_task(rq->curr);
|
|
else
|
|
check_preempt_curr(rq, p, 0);
|
|
}
|
|
|
|
/* Account for a task changing its policy or group.
|
|
*
|
|
* This routine is mostly called to set cfs_rq->curr field when a task
|
|
* migrates between groups/classes.
|
|
*/
|
|
static void set_curr_task_fair(struct rq *rq)
|
|
{
|
|
struct sched_entity *se = &rq->curr->se;
|
|
|
|
for_each_sched_entity(se) {
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
|
set_next_entity(cfs_rq, se);
|
|
/* ensure bandwidth has been allocated on our new cfs_rq */
|
|
account_cfs_rq_runtime(cfs_rq, 0);
|
|
}
|
|
}
|
|
|
|
void init_cfs_rq(struct cfs_rq *cfs_rq)
|
|
{
|
|
cfs_rq->tasks_timeline = RB_ROOT;
|
|
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
|
|
#ifndef CONFIG_64BIT
|
|
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
static void task_move_group_fair(struct task_struct *p, int on_rq)
|
|
{
|
|
/*
|
|
* If the task was not on the rq at the time of this cgroup movement
|
|
* it must have been asleep, sleeping tasks keep their ->vruntime
|
|
* absolute on their old rq until wakeup (needed for the fair sleeper
|
|
* bonus in place_entity()).
|
|
*
|
|
* If it was on the rq, we've just 'preempted' it, which does convert
|
|
* ->vruntime to a relative base.
|
|
*
|
|
* Make sure both cases convert their relative position when migrating
|
|
* to another cgroup's rq. This does somewhat interfere with the
|
|
* fair sleeper stuff for the first placement, but who cares.
|
|
*/
|
|
/*
|
|
* When !on_rq, vruntime of the task has usually NOT been normalized.
|
|
* But there are some cases where it has already been normalized:
|
|
*
|
|
* - Moving a forked child which is waiting for being woken up by
|
|
* wake_up_new_task().
|
|
* - Moving a task which has been woken up by try_to_wake_up() and
|
|
* waiting for actually being woken up by sched_ttwu_pending().
|
|
*
|
|
* To prevent boost or penalty in the new cfs_rq caused by delta
|
|
* min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
|
|
*/
|
|
if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
|
|
on_rq = 1;
|
|
|
|
if (!on_rq)
|
|
p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
|
|
set_task_rq(p, task_cpu(p));
|
|
if (!on_rq)
|
|
p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
|
|
}
|
|
|
|
void free_fair_sched_group(struct task_group *tg)
|
|
{
|
|
int i;
|
|
|
|
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
|
|
|
|
for_each_possible_cpu(i) {
|
|
if (tg->cfs_rq)
|
|
kfree(tg->cfs_rq[i]);
|
|
if (tg->se)
|
|
kfree(tg->se[i]);
|
|
}
|
|
|
|
kfree(tg->cfs_rq);
|
|
kfree(tg->se);
|
|
}
|
|
|
|
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
struct sched_entity *se;
|
|
int i;
|
|
|
|
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
|
|
if (!tg->cfs_rq)
|
|
goto err;
|
|
tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
|
|
if (!tg->se)
|
|
goto err;
|
|
|
|
tg->shares = NICE_0_LOAD;
|
|
|
|
init_cfs_bandwidth(tg_cfs_bandwidth(tg));
|
|
|
|
for_each_possible_cpu(i) {
|
|
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!cfs_rq)
|
|
goto err;
|
|
|
|
se = kzalloc_node(sizeof(struct sched_entity),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!se)
|
|
goto err_free_rq;
|
|
|
|
init_cfs_rq(cfs_rq);
|
|
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
|
|
}
|
|
|
|
return 1;
|
|
|
|
err_free_rq:
|
|
kfree(cfs_rq);
|
|
err:
|
|
return 0;
|
|
}
|
|
|
|
void unregister_fair_sched_group(struct task_group *tg, int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Only empty task groups can be destroyed; so we can speculatively
|
|
* check on_list without danger of it being re-added.
|
|
*/
|
|
if (!tg->cfs_rq[cpu]->on_list)
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
|
|
struct sched_entity *se, int cpu,
|
|
struct sched_entity *parent)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
cfs_rq->tg = tg;
|
|
cfs_rq->rq = rq;
|
|
#ifdef CONFIG_SMP
|
|
/* allow initial update_cfs_load() to truncate */
|
|
cfs_rq->load_stamp = 1;
|
|
#endif
|
|
init_cfs_rq_runtime(cfs_rq);
|
|
|
|
tg->cfs_rq[cpu] = cfs_rq;
|
|
tg->se[cpu] = se;
|
|
|
|
/* se could be NULL for root_task_group */
|
|
if (!se)
|
|
return;
|
|
|
|
if (!parent)
|
|
se->cfs_rq = &rq->cfs;
|
|
else
|
|
se->cfs_rq = parent->my_q;
|
|
|
|
se->my_q = cfs_rq;
|
|
update_load_set(&se->load, 0);
|
|
se->parent = parent;
|
|
}
|
|
|
|
static DEFINE_MUTEX(shares_mutex);
|
|
|
|
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
|
|
{
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* We can't change the weight of the root cgroup.
|
|
*/
|
|
if (!tg->se[0])
|
|
return -EINVAL;
|
|
|
|
shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
|
|
|
|
mutex_lock(&shares_mutex);
|
|
if (tg->shares == shares)
|
|
goto done;
|
|
|
|
tg->shares = shares;
|
|
for_each_possible_cpu(i) {
|
|
struct rq *rq = cpu_rq(i);
|
|
struct sched_entity *se;
|
|
|
|
se = tg->se[i];
|
|
/* Propagate contribution to hierarchy */
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
for_each_sched_entity(se)
|
|
update_cfs_shares(group_cfs_rq(se));
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
done:
|
|
mutex_unlock(&shares_mutex);
|
|
return 0;
|
|
}
|
|
#else /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
void free_fair_sched_group(struct task_group *tg) { }
|
|
|
|
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
|
|
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
|
|
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
|
|
{
|
|
struct sched_entity *se = &task->se;
|
|
unsigned int rr_interval = 0;
|
|
|
|
/*
|
|
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
|
|
* idle runqueue:
|
|
*/
|
|
if (rq->cfs.load.weight)
|
|
rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
|
|
|
|
return rr_interval;
|
|
}
|
|
|
|
/*
|
|
* All the scheduling class methods:
|
|
*/
|
|
const struct sched_class fair_sched_class = {
|
|
.next = &idle_sched_class,
|
|
.enqueue_task = enqueue_task_fair,
|
|
.dequeue_task = dequeue_task_fair,
|
|
.yield_task = yield_task_fair,
|
|
.yield_to_task = yield_to_task_fair,
|
|
|
|
.check_preempt_curr = check_preempt_wakeup,
|
|
|
|
.pick_next_task = pick_next_task_fair,
|
|
.put_prev_task = put_prev_task_fair,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.select_task_rq = select_task_rq_fair,
|
|
|
|
.rq_online = rq_online_fair,
|
|
.rq_offline = rq_offline_fair,
|
|
|
|
.task_waking = task_waking_fair,
|
|
#endif
|
|
|
|
.set_curr_task = set_curr_task_fair,
|
|
.task_tick = task_tick_fair,
|
|
.task_fork = task_fork_fair,
|
|
|
|
.prio_changed = prio_changed_fair,
|
|
.switched_from = switched_from_fair,
|
|
.switched_to = switched_to_fair,
|
|
|
|
.get_rr_interval = get_rr_interval_fair,
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
.task_move_group = task_move_group_fair,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
void print_cfs_stats(struct seq_file *m, int cpu)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
|
|
rcu_read_lock();
|
|
for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
|
|
print_cfs_rq(m, cpu, cfs_rq);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
__init void init_sched_fair_class(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
nohz.next_balance = jiffies;
|
|
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
|
|
cpu_notifier(sched_ilb_notifier, 0);
|
|
#endif
|
|
#endif /* SMP */
|
|
|
|
}
|