mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 06:27:02 +07:00
ebf0b6a8b1
Merge our fixes branch from the 4.15 cycle. Unusually the fixes branch saw some significant features merged, notably the RFI flush patches, so we want the code in next to be tested against that, to avoid any surprises when the two are merged. There's also some other work on the panic handling that was reverted in fixes and we now want to do properly in next, which would conflict. And we also fix a few other minor merge conflicts.
1396 lines
34 KiB
C
1396 lines
34 KiB
C
/*
|
|
* In-Memory Collection (IMC) Performance Monitor counter support.
|
|
*
|
|
* Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
|
|
* (C) 2017 Anju T Sudhakar, IBM Corporation.
|
|
* (C) 2017 Hemant K Shaw, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or later version.
|
|
*/
|
|
#include <linux/perf_event.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/imc-pmu.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/smp.h>
|
|
#include <linux/string.h>
|
|
|
|
/* Nest IMC data structures and variables */
|
|
|
|
/*
|
|
* Used to avoid races in counting the nest-pmu units during hotplug
|
|
* register and unregister
|
|
*/
|
|
static DEFINE_MUTEX(nest_init_lock);
|
|
static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
|
|
static struct imc_pmu **per_nest_pmu_arr;
|
|
static cpumask_t nest_imc_cpumask;
|
|
struct imc_pmu_ref *nest_imc_refc;
|
|
static int nest_pmus;
|
|
|
|
/* Core IMC data structures and variables */
|
|
|
|
static cpumask_t core_imc_cpumask;
|
|
struct imc_pmu_ref *core_imc_refc;
|
|
static struct imc_pmu *core_imc_pmu;
|
|
|
|
/* Thread IMC data structures and variables */
|
|
|
|
static DEFINE_PER_CPU(u64 *, thread_imc_mem);
|
|
static int thread_imc_mem_size;
|
|
|
|
struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
|
|
{
|
|
return container_of(event->pmu, struct imc_pmu, pmu);
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-40");
|
|
PMU_FORMAT_ATTR(offset, "config:0-31");
|
|
PMU_FORMAT_ATTR(rvalue, "config:32");
|
|
PMU_FORMAT_ATTR(mode, "config:33-40");
|
|
static struct attribute *imc_format_attrs[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_offset.attr,
|
|
&format_attr_rvalue.attr,
|
|
&format_attr_mode.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group imc_format_group = {
|
|
.name = "format",
|
|
.attrs = imc_format_attrs,
|
|
};
|
|
|
|
/* Get the cpumask printed to a buffer "buf" */
|
|
static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct pmu *pmu = dev_get_drvdata(dev);
|
|
struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
|
|
cpumask_t *active_mask;
|
|
|
|
switch(imc_pmu->domain){
|
|
case IMC_DOMAIN_NEST:
|
|
active_mask = &nest_imc_cpumask;
|
|
break;
|
|
case IMC_DOMAIN_CORE:
|
|
active_mask = &core_imc_cpumask;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return cpumap_print_to_pagebuf(true, buf, active_mask);
|
|
}
|
|
|
|
static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
|
|
|
|
static struct attribute *imc_pmu_cpumask_attrs[] = {
|
|
&dev_attr_cpumask.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group imc_pmu_cpumask_attr_group = {
|
|
.attrs = imc_pmu_cpumask_attrs,
|
|
};
|
|
|
|
/* device_str_attr_create : Populate event "name" and string "str" in attribute */
|
|
static struct attribute *device_str_attr_create(const char *name, const char *str)
|
|
{
|
|
struct perf_pmu_events_attr *attr;
|
|
|
|
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
|
|
if (!attr)
|
|
return NULL;
|
|
sysfs_attr_init(&attr->attr.attr);
|
|
|
|
attr->event_str = str;
|
|
attr->attr.attr.name = name;
|
|
attr->attr.attr.mode = 0444;
|
|
attr->attr.show = perf_event_sysfs_show;
|
|
|
|
return &attr->attr.attr;
|
|
}
|
|
|
|
static int imc_parse_event(struct device_node *np, const char *scale,
|
|
const char *unit, const char *prefix,
|
|
u32 base, struct imc_events *event)
|
|
{
|
|
const char *s;
|
|
u32 reg;
|
|
|
|
if (of_property_read_u32(np, "reg", ®))
|
|
goto error;
|
|
/* Add the base_reg value to the "reg" */
|
|
event->value = base + reg;
|
|
|
|
if (of_property_read_string(np, "event-name", &s))
|
|
goto error;
|
|
|
|
event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
|
|
if (!event->name)
|
|
goto error;
|
|
|
|
if (of_property_read_string(np, "scale", &s))
|
|
s = scale;
|
|
|
|
if (s) {
|
|
event->scale = kstrdup(s, GFP_KERNEL);
|
|
if (!event->scale)
|
|
goto error;
|
|
}
|
|
|
|
if (of_property_read_string(np, "unit", &s))
|
|
s = unit;
|
|
|
|
if (s) {
|
|
event->unit = kstrdup(s, GFP_KERNEL);
|
|
if (!event->unit)
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
kfree(event->unit);
|
|
kfree(event->scale);
|
|
kfree(event->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* imc_free_events: Function to cleanup the events list, having
|
|
* "nr_entries".
|
|
*/
|
|
static void imc_free_events(struct imc_events *events, int nr_entries)
|
|
{
|
|
int i;
|
|
|
|
/* Nothing to clean, return */
|
|
if (!events)
|
|
return;
|
|
for (i = 0; i < nr_entries; i++) {
|
|
kfree(events[i].unit);
|
|
kfree(events[i].scale);
|
|
kfree(events[i].name);
|
|
}
|
|
|
|
kfree(events);
|
|
}
|
|
|
|
/*
|
|
* update_events_in_group: Update the "events" information in an attr_group
|
|
* and assign the attr_group to the pmu "pmu".
|
|
*/
|
|
static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
|
|
{
|
|
struct attribute_group *attr_group;
|
|
struct attribute **attrs, *dev_str;
|
|
struct device_node *np, *pmu_events;
|
|
u32 handle, base_reg;
|
|
int i = 0, j = 0, ct, ret;
|
|
const char *prefix, *g_scale, *g_unit;
|
|
const char *ev_val_str, *ev_scale_str, *ev_unit_str;
|
|
|
|
if (!of_property_read_u32(node, "events", &handle))
|
|
pmu_events = of_find_node_by_phandle(handle);
|
|
else
|
|
return 0;
|
|
|
|
/* Did not find any node with a given phandle */
|
|
if (!pmu_events)
|
|
return 0;
|
|
|
|
/* Get a count of number of child nodes */
|
|
ct = of_get_child_count(pmu_events);
|
|
|
|
/* Get the event prefix */
|
|
if (of_property_read_string(node, "events-prefix", &prefix))
|
|
return 0;
|
|
|
|
/* Get a global unit and scale data if available */
|
|
if (of_property_read_string(node, "scale", &g_scale))
|
|
g_scale = NULL;
|
|
|
|
if (of_property_read_string(node, "unit", &g_unit))
|
|
g_unit = NULL;
|
|
|
|
/* "reg" property gives out the base offset of the counters data */
|
|
of_property_read_u32(node, "reg", &base_reg);
|
|
|
|
/* Allocate memory for the events */
|
|
pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
|
|
if (!pmu->events)
|
|
return -ENOMEM;
|
|
|
|
ct = 0;
|
|
/* Parse the events and update the struct */
|
|
for_each_child_of_node(pmu_events, np) {
|
|
ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
|
|
if (!ret)
|
|
ct++;
|
|
}
|
|
|
|
/* Allocate memory for attribute group */
|
|
attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
|
|
if (!attr_group) {
|
|
imc_free_events(pmu->events, ct);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory for attributes.
|
|
* Since we have count of events for this pmu, we also allocate
|
|
* memory for the scale and unit attribute for now.
|
|
* "ct" has the total event structs added from the events-parent node.
|
|
* So allocate three times the "ct" (this includes event, event_scale and
|
|
* event_unit).
|
|
*/
|
|
attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
|
|
if (!attrs) {
|
|
kfree(attr_group);
|
|
imc_free_events(pmu->events, ct);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
attr_group->name = "events";
|
|
attr_group->attrs = attrs;
|
|
do {
|
|
ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
|
|
dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
|
|
if (!dev_str)
|
|
continue;
|
|
|
|
attrs[j++] = dev_str;
|
|
if (pmu->events[i].scale) {
|
|
ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
|
|
dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
|
|
if (!dev_str)
|
|
continue;
|
|
|
|
attrs[j++] = dev_str;
|
|
}
|
|
|
|
if (pmu->events[i].unit) {
|
|
ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
|
|
dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
|
|
if (!dev_str)
|
|
continue;
|
|
|
|
attrs[j++] = dev_str;
|
|
}
|
|
} while (++i < ct);
|
|
|
|
/* Save the event attribute */
|
|
pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
|
|
static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
|
|
{
|
|
return per_cpu(local_nest_imc_refc, cpu);
|
|
}
|
|
|
|
static void nest_change_cpu_context(int old_cpu, int new_cpu)
|
|
{
|
|
struct imc_pmu **pn = per_nest_pmu_arr;
|
|
|
|
if (old_cpu < 0 || new_cpu < 0)
|
|
return;
|
|
|
|
while (*pn) {
|
|
perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
|
|
pn++;
|
|
}
|
|
}
|
|
|
|
static int ppc_nest_imc_cpu_offline(unsigned int cpu)
|
|
{
|
|
int nid, target = -1;
|
|
const struct cpumask *l_cpumask;
|
|
struct imc_pmu_ref *ref;
|
|
|
|
/*
|
|
* Check in the designated list for this cpu. Dont bother
|
|
* if not one of them.
|
|
*/
|
|
if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
|
|
return 0;
|
|
|
|
/*
|
|
* Check whether nest_imc is registered. We could end up here if the
|
|
* cpuhotplug callback registration fails. i.e, callback invokes the
|
|
* offline path for all successfully registered nodes. At this stage,
|
|
* nest_imc pmu will not be registered and we should return here.
|
|
*
|
|
* We return with a zero since this is not an offline failure. And
|
|
* cpuhp_setup_state() returns the actual failure reason to the caller,
|
|
* which in turn will call the cleanup routine.
|
|
*/
|
|
if (!nest_pmus)
|
|
return 0;
|
|
|
|
/*
|
|
* Now that this cpu is one of the designated,
|
|
* find a next cpu a) which is online and b) in same chip.
|
|
*/
|
|
nid = cpu_to_node(cpu);
|
|
l_cpumask = cpumask_of_node(nid);
|
|
target = cpumask_any_but(l_cpumask, cpu);
|
|
|
|
/*
|
|
* Update the cpumask with the target cpu and
|
|
* migrate the context if needed
|
|
*/
|
|
if (target >= 0 && target < nr_cpu_ids) {
|
|
cpumask_set_cpu(target, &nest_imc_cpumask);
|
|
nest_change_cpu_context(cpu, target);
|
|
} else {
|
|
opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
|
|
get_hard_smp_processor_id(cpu));
|
|
/*
|
|
* If this is the last cpu in this chip then, skip the reference
|
|
* count mutex lock and make the reference count on this chip zero.
|
|
*/
|
|
ref = get_nest_pmu_ref(cpu);
|
|
if (!ref)
|
|
return -EINVAL;
|
|
|
|
ref->refc = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_nest_imc_cpu_online(unsigned int cpu)
|
|
{
|
|
const struct cpumask *l_cpumask;
|
|
static struct cpumask tmp_mask;
|
|
int res;
|
|
|
|
/* Get the cpumask of this node */
|
|
l_cpumask = cpumask_of_node(cpu_to_node(cpu));
|
|
|
|
/*
|
|
* If this is not the first online CPU on this node, then
|
|
* just return.
|
|
*/
|
|
if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is the first online cpu on this node
|
|
* disable the nest counters by making an OPAL call.
|
|
*/
|
|
res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
|
|
get_hard_smp_processor_id(cpu));
|
|
if (res)
|
|
return res;
|
|
|
|
/* Make this CPU the designated target for counter collection */
|
|
cpumask_set_cpu(cpu, &nest_imc_cpumask);
|
|
return 0;
|
|
}
|
|
|
|
static int nest_pmu_cpumask_init(void)
|
|
{
|
|
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
|
|
"perf/powerpc/imc:online",
|
|
ppc_nest_imc_cpu_online,
|
|
ppc_nest_imc_cpu_offline);
|
|
}
|
|
|
|
static void nest_imc_counters_release(struct perf_event *event)
|
|
{
|
|
int rc, node_id;
|
|
struct imc_pmu_ref *ref;
|
|
|
|
if (event->cpu < 0)
|
|
return;
|
|
|
|
node_id = cpu_to_node(event->cpu);
|
|
|
|
/*
|
|
* See if we need to disable the nest PMU.
|
|
* If no events are currently in use, then we have to take a
|
|
* mutex to ensure that we don't race with another task doing
|
|
* enable or disable the nest counters.
|
|
*/
|
|
ref = get_nest_pmu_ref(event->cpu);
|
|
if (!ref)
|
|
return;
|
|
|
|
/* Take the mutex lock for this node and then decrement the reference count */
|
|
mutex_lock(&ref->lock);
|
|
if (ref->refc == 0) {
|
|
/*
|
|
* The scenario where this is true is, when perf session is
|
|
* started, followed by offlining of all cpus in a given node.
|
|
*
|
|
* In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
|
|
* function set the ref->count to zero, if the cpu which is
|
|
* about to offline is the last cpu in a given node and make
|
|
* an OPAL call to disable the engine in that node.
|
|
*
|
|
*/
|
|
mutex_unlock(&ref->lock);
|
|
return;
|
|
}
|
|
ref->refc--;
|
|
if (ref->refc == 0) {
|
|
rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
|
|
get_hard_smp_processor_id(event->cpu));
|
|
if (rc) {
|
|
mutex_unlock(&ref->lock);
|
|
pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
|
|
return;
|
|
}
|
|
} else if (ref->refc < 0) {
|
|
WARN(1, "nest-imc: Invalid event reference count\n");
|
|
ref->refc = 0;
|
|
}
|
|
mutex_unlock(&ref->lock);
|
|
}
|
|
|
|
static int nest_imc_event_init(struct perf_event *event)
|
|
{
|
|
int chip_id, rc, node_id;
|
|
u32 l_config, config = event->attr.config;
|
|
struct imc_mem_info *pcni;
|
|
struct imc_pmu *pmu;
|
|
struct imc_pmu_ref *ref;
|
|
bool flag = false;
|
|
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
/* Sampling not supported */
|
|
if (event->hw.sample_period)
|
|
return -EINVAL;
|
|
|
|
/* unsupported modes and filters */
|
|
if (event->attr.exclude_user ||
|
|
event->attr.exclude_kernel ||
|
|
event->attr.exclude_hv ||
|
|
event->attr.exclude_idle ||
|
|
event->attr.exclude_host ||
|
|
event->attr.exclude_guest)
|
|
return -EINVAL;
|
|
|
|
if (event->cpu < 0)
|
|
return -EINVAL;
|
|
|
|
pmu = imc_event_to_pmu(event);
|
|
|
|
/* Sanity check for config (event offset) */
|
|
if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
|
|
* Get the base memory addresss for this cpu.
|
|
*/
|
|
chip_id = cpu_to_chip_id(event->cpu);
|
|
pcni = pmu->mem_info;
|
|
do {
|
|
if (pcni->id == chip_id) {
|
|
flag = true;
|
|
break;
|
|
}
|
|
pcni++;
|
|
} while (pcni);
|
|
|
|
if (!flag)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Add the event offset to the base address.
|
|
*/
|
|
l_config = config & IMC_EVENT_OFFSET_MASK;
|
|
event->hw.event_base = (u64)pcni->vbase + l_config;
|
|
node_id = cpu_to_node(event->cpu);
|
|
|
|
/*
|
|
* Get the imc_pmu_ref struct for this node.
|
|
* Take the mutex lock and then increment the count of nest pmu events
|
|
* inited.
|
|
*/
|
|
ref = get_nest_pmu_ref(event->cpu);
|
|
if (!ref)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&ref->lock);
|
|
if (ref->refc == 0) {
|
|
rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
|
|
get_hard_smp_processor_id(event->cpu));
|
|
if (rc) {
|
|
mutex_unlock(&ref->lock);
|
|
pr_err("nest-imc: Unable to start the counters for node %d\n",
|
|
node_id);
|
|
return rc;
|
|
}
|
|
}
|
|
++ref->refc;
|
|
mutex_unlock(&ref->lock);
|
|
|
|
event->destroy = nest_imc_counters_release;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* core_imc_mem_init : Initializes memory for the current core.
|
|
*
|
|
* Uses alloc_pages_node() and uses the returned address as an argument to
|
|
* an opal call to configure the pdbar. The address sent as an argument is
|
|
* converted to physical address before the opal call is made. This is the
|
|
* base address at which the core imc counters are populated.
|
|
*/
|
|
static int core_imc_mem_init(int cpu, int size)
|
|
{
|
|
int nid, rc = 0, core_id = (cpu / threads_per_core);
|
|
struct imc_mem_info *mem_info;
|
|
|
|
/*
|
|
* alloc_pages_node() will allocate memory for core in the
|
|
* local node only.
|
|
*/
|
|
nid = cpu_to_node(cpu);
|
|
mem_info = &core_imc_pmu->mem_info[core_id];
|
|
mem_info->id = core_id;
|
|
|
|
/* We need only vbase for core counters */
|
|
mem_info->vbase = page_address(alloc_pages_node(nid,
|
|
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
|
|
__GFP_NOWARN, get_order(size)));
|
|
if (!mem_info->vbase)
|
|
return -ENOMEM;
|
|
|
|
/* Init the mutex */
|
|
core_imc_refc[core_id].id = core_id;
|
|
mutex_init(&core_imc_refc[core_id].lock);
|
|
|
|
rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
|
|
__pa((void *)mem_info->vbase),
|
|
get_hard_smp_processor_id(cpu));
|
|
if (rc) {
|
|
free_pages((u64)mem_info->vbase, get_order(size));
|
|
mem_info->vbase = NULL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool is_core_imc_mem_inited(int cpu)
|
|
{
|
|
struct imc_mem_info *mem_info;
|
|
int core_id = (cpu / threads_per_core);
|
|
|
|
mem_info = &core_imc_pmu->mem_info[core_id];
|
|
if (!mem_info->vbase)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int ppc_core_imc_cpu_online(unsigned int cpu)
|
|
{
|
|
const struct cpumask *l_cpumask;
|
|
static struct cpumask tmp_mask;
|
|
int ret = 0;
|
|
|
|
/* Get the cpumask for this core */
|
|
l_cpumask = cpu_sibling_mask(cpu);
|
|
|
|
/* If a cpu for this core is already set, then, don't do anything */
|
|
if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
|
|
return 0;
|
|
|
|
if (!is_core_imc_mem_inited(cpu)) {
|
|
ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
|
|
if (ret) {
|
|
pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* set the cpu in the mask */
|
|
cpumask_set_cpu(cpu, &core_imc_cpumask);
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_core_imc_cpu_offline(unsigned int cpu)
|
|
{
|
|
unsigned int core_id;
|
|
int ncpu;
|
|
struct imc_pmu_ref *ref;
|
|
|
|
/*
|
|
* clear this cpu out of the mask, if not present in the mask,
|
|
* don't bother doing anything.
|
|
*/
|
|
if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
|
|
return 0;
|
|
|
|
/*
|
|
* Check whether core_imc is registered. We could end up here
|
|
* if the cpuhotplug callback registration fails. i.e, callback
|
|
* invokes the offline path for all sucessfully registered cpus.
|
|
* At this stage, core_imc pmu will not be registered and we
|
|
* should return here.
|
|
*
|
|
* We return with a zero since this is not an offline failure.
|
|
* And cpuhp_setup_state() returns the actual failure reason
|
|
* to the caller, which inturn will call the cleanup routine.
|
|
*/
|
|
if (!core_imc_pmu->pmu.event_init)
|
|
return 0;
|
|
|
|
/* Find any online cpu in that core except the current "cpu" */
|
|
ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
|
|
|
|
if (ncpu >= 0 && ncpu < nr_cpu_ids) {
|
|
cpumask_set_cpu(ncpu, &core_imc_cpumask);
|
|
perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
|
|
} else {
|
|
/*
|
|
* If this is the last cpu in this core then, skip taking refernce
|
|
* count mutex lock for this core and directly zero "refc" for
|
|
* this core.
|
|
*/
|
|
opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
|
|
get_hard_smp_processor_id(cpu));
|
|
core_id = cpu / threads_per_core;
|
|
ref = &core_imc_refc[core_id];
|
|
if (!ref)
|
|
return -EINVAL;
|
|
|
|
ref->refc = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int core_imc_pmu_cpumask_init(void)
|
|
{
|
|
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
|
|
"perf/powerpc/imc_core:online",
|
|
ppc_core_imc_cpu_online,
|
|
ppc_core_imc_cpu_offline);
|
|
}
|
|
|
|
static void core_imc_counters_release(struct perf_event *event)
|
|
{
|
|
int rc, core_id;
|
|
struct imc_pmu_ref *ref;
|
|
|
|
if (event->cpu < 0)
|
|
return;
|
|
/*
|
|
* See if we need to disable the IMC PMU.
|
|
* If no events are currently in use, then we have to take a
|
|
* mutex to ensure that we don't race with another task doing
|
|
* enable or disable the core counters.
|
|
*/
|
|
core_id = event->cpu / threads_per_core;
|
|
|
|
/* Take the mutex lock and decrement the refernce count for this core */
|
|
ref = &core_imc_refc[core_id];
|
|
if (!ref)
|
|
return;
|
|
|
|
mutex_lock(&ref->lock);
|
|
if (ref->refc == 0) {
|
|
/*
|
|
* The scenario where this is true is, when perf session is
|
|
* started, followed by offlining of all cpus in a given core.
|
|
*
|
|
* In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
|
|
* function set the ref->count to zero, if the cpu which is
|
|
* about to offline is the last cpu in a given core and make
|
|
* an OPAL call to disable the engine in that core.
|
|
*
|
|
*/
|
|
mutex_unlock(&ref->lock);
|
|
return;
|
|
}
|
|
ref->refc--;
|
|
if (ref->refc == 0) {
|
|
rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
|
|
get_hard_smp_processor_id(event->cpu));
|
|
if (rc) {
|
|
mutex_unlock(&ref->lock);
|
|
pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
|
|
return;
|
|
}
|
|
} else if (ref->refc < 0) {
|
|
WARN(1, "core-imc: Invalid event reference count\n");
|
|
ref->refc = 0;
|
|
}
|
|
mutex_unlock(&ref->lock);
|
|
}
|
|
|
|
static int core_imc_event_init(struct perf_event *event)
|
|
{
|
|
int core_id, rc;
|
|
u64 config = event->attr.config;
|
|
struct imc_mem_info *pcmi;
|
|
struct imc_pmu *pmu;
|
|
struct imc_pmu_ref *ref;
|
|
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
/* Sampling not supported */
|
|
if (event->hw.sample_period)
|
|
return -EINVAL;
|
|
|
|
/* unsupported modes and filters */
|
|
if (event->attr.exclude_user ||
|
|
event->attr.exclude_kernel ||
|
|
event->attr.exclude_hv ||
|
|
event->attr.exclude_idle ||
|
|
event->attr.exclude_host ||
|
|
event->attr.exclude_guest)
|
|
return -EINVAL;
|
|
|
|
if (event->cpu < 0)
|
|
return -EINVAL;
|
|
|
|
event->hw.idx = -1;
|
|
pmu = imc_event_to_pmu(event);
|
|
|
|
/* Sanity check for config (event offset) */
|
|
if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
|
|
return -EINVAL;
|
|
|
|
if (!is_core_imc_mem_inited(event->cpu))
|
|
return -ENODEV;
|
|
|
|
core_id = event->cpu / threads_per_core;
|
|
pcmi = &core_imc_pmu->mem_info[core_id];
|
|
if ((!pcmi->vbase))
|
|
return -ENODEV;
|
|
|
|
/* Get the core_imc mutex for this core */
|
|
ref = &core_imc_refc[core_id];
|
|
if (!ref)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Core pmu units are enabled only when it is used.
|
|
* See if this is triggered for the first time.
|
|
* If yes, take the mutex lock and enable the core counters.
|
|
* If not, just increment the count in core_imc_refc struct.
|
|
*/
|
|
mutex_lock(&ref->lock);
|
|
if (ref->refc == 0) {
|
|
rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
|
|
get_hard_smp_processor_id(event->cpu));
|
|
if (rc) {
|
|
mutex_unlock(&ref->lock);
|
|
pr_err("core-imc: Unable to start the counters for core %d\n",
|
|
core_id);
|
|
return rc;
|
|
}
|
|
}
|
|
++ref->refc;
|
|
mutex_unlock(&ref->lock);
|
|
|
|
event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
|
|
event->destroy = core_imc_counters_release;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocates a page of memory for each of the online cpus, and write the
|
|
* physical base address of that page to the LDBAR for that cpu.
|
|
*
|
|
* LDBAR Register Layout:
|
|
*
|
|
* 0 4 8 12 16 20 24 28
|
|
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
|
|
* | | [ ] [ Counter Address [8:50]
|
|
* | * Mode |
|
|
* | * PB Scope
|
|
* * Enable/Disable
|
|
*
|
|
* 32 36 40 44 48 52 56 60
|
|
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
|
|
* Counter Address [8:50] ]
|
|
*
|
|
*/
|
|
static int thread_imc_mem_alloc(int cpu_id, int size)
|
|
{
|
|
u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
|
|
int nid = cpu_to_node(cpu_id);
|
|
|
|
if (!local_mem) {
|
|
/*
|
|
* This case could happen only once at start, since we dont
|
|
* free the memory in cpu offline path.
|
|
*/
|
|
local_mem = page_address(alloc_pages_node(nid,
|
|
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
|
|
__GFP_NOWARN, get_order(size)));
|
|
if (!local_mem)
|
|
return -ENOMEM;
|
|
|
|
per_cpu(thread_imc_mem, cpu_id) = local_mem;
|
|
}
|
|
|
|
ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
|
|
|
|
mtspr(SPRN_LDBAR, ldbar_value);
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_thread_imc_cpu_online(unsigned int cpu)
|
|
{
|
|
return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
|
|
}
|
|
|
|
static int ppc_thread_imc_cpu_offline(unsigned int cpu)
|
|
{
|
|
mtspr(SPRN_LDBAR, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int thread_imc_cpu_init(void)
|
|
{
|
|
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
|
|
"perf/powerpc/imc_thread:online",
|
|
ppc_thread_imc_cpu_online,
|
|
ppc_thread_imc_cpu_offline);
|
|
}
|
|
|
|
void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
|
|
bool sched_in)
|
|
{
|
|
int core_id;
|
|
struct imc_pmu_ref *ref;
|
|
|
|
if (!is_core_imc_mem_inited(smp_processor_id()))
|
|
return;
|
|
|
|
core_id = smp_processor_id() / threads_per_core;
|
|
/*
|
|
* imc pmus are enabled only when it is used.
|
|
* See if this is triggered for the first time.
|
|
* If yes, take the mutex lock and enable the counters.
|
|
* If not, just increment the count in ref count struct.
|
|
*/
|
|
ref = &core_imc_refc[core_id];
|
|
if (!ref)
|
|
return;
|
|
|
|
if (sched_in) {
|
|
mutex_lock(&ref->lock);
|
|
if (ref->refc == 0) {
|
|
if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
|
|
get_hard_smp_processor_id(smp_processor_id()))) {
|
|
mutex_unlock(&ref->lock);
|
|
pr_err("thread-imc: Unable to start the counter\
|
|
for core %d\n", core_id);
|
|
return;
|
|
}
|
|
}
|
|
++ref->refc;
|
|
mutex_unlock(&ref->lock);
|
|
} else {
|
|
mutex_lock(&ref->lock);
|
|
ref->refc--;
|
|
if (ref->refc == 0) {
|
|
if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
|
|
get_hard_smp_processor_id(smp_processor_id()))) {
|
|
mutex_unlock(&ref->lock);
|
|
pr_err("thread-imc: Unable to stop the counters\
|
|
for core %d\n", core_id);
|
|
return;
|
|
}
|
|
} else if (ref->refc < 0) {
|
|
ref->refc = 0;
|
|
}
|
|
mutex_unlock(&ref->lock);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int thread_imc_event_init(struct perf_event *event)
|
|
{
|
|
u32 config = event->attr.config;
|
|
struct task_struct *target;
|
|
struct imc_pmu *pmu;
|
|
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
/* Sampling not supported */
|
|
if (event->hw.sample_period)
|
|
return -EINVAL;
|
|
|
|
event->hw.idx = -1;
|
|
pmu = imc_event_to_pmu(event);
|
|
|
|
/* Sanity check for config offset */
|
|
if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
|
|
return -EINVAL;
|
|
|
|
target = event->hw.target;
|
|
if (!target)
|
|
return -EINVAL;
|
|
|
|
event->pmu->task_ctx_nr = perf_sw_context;
|
|
return 0;
|
|
}
|
|
|
|
static bool is_thread_imc_pmu(struct perf_event *event)
|
|
{
|
|
if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static u64 * get_event_base_addr(struct perf_event *event)
|
|
{
|
|
u64 addr;
|
|
|
|
if (is_thread_imc_pmu(event)) {
|
|
addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
|
|
return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
|
|
}
|
|
|
|
return (u64 *)event->hw.event_base;
|
|
}
|
|
|
|
static void thread_imc_pmu_start_txn(struct pmu *pmu,
|
|
unsigned int txn_flags)
|
|
{
|
|
if (txn_flags & ~PERF_PMU_TXN_ADD)
|
|
return;
|
|
perf_pmu_disable(pmu);
|
|
}
|
|
|
|
static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
|
|
{
|
|
perf_pmu_enable(pmu);
|
|
}
|
|
|
|
static int thread_imc_pmu_commit_txn(struct pmu *pmu)
|
|
{
|
|
perf_pmu_enable(pmu);
|
|
return 0;
|
|
}
|
|
|
|
static u64 imc_read_counter(struct perf_event *event)
|
|
{
|
|
u64 *addr, data;
|
|
|
|
/*
|
|
* In-Memory Collection (IMC) counters are free flowing counters.
|
|
* So we take a snapshot of the counter value on enable and save it
|
|
* to calculate the delta at later stage to present the event counter
|
|
* value.
|
|
*/
|
|
addr = get_event_base_addr(event);
|
|
data = be64_to_cpu(READ_ONCE(*addr));
|
|
local64_set(&event->hw.prev_count, data);
|
|
|
|
return data;
|
|
}
|
|
|
|
static void imc_event_update(struct perf_event *event)
|
|
{
|
|
u64 counter_prev, counter_new, final_count;
|
|
|
|
counter_prev = local64_read(&event->hw.prev_count);
|
|
counter_new = imc_read_counter(event);
|
|
final_count = counter_new - counter_prev;
|
|
|
|
/* Update the delta to the event count */
|
|
local64_add(final_count, &event->count);
|
|
}
|
|
|
|
static void imc_event_start(struct perf_event *event, int flags)
|
|
{
|
|
/*
|
|
* In Memory Counters are free flowing counters. HW or the microcode
|
|
* keeps adding to the counter offset in memory. To get event
|
|
* counter value, we snapshot the value here and we calculate
|
|
* delta at later point.
|
|
*/
|
|
imc_read_counter(event);
|
|
}
|
|
|
|
static void imc_event_stop(struct perf_event *event, int flags)
|
|
{
|
|
/*
|
|
* Take a snapshot and calculate the delta and update
|
|
* the event counter values.
|
|
*/
|
|
imc_event_update(event);
|
|
}
|
|
|
|
static int imc_event_add(struct perf_event *event, int flags)
|
|
{
|
|
if (flags & PERF_EF_START)
|
|
imc_event_start(event, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int thread_imc_event_add(struct perf_event *event, int flags)
|
|
{
|
|
if (flags & PERF_EF_START)
|
|
imc_event_start(event, flags);
|
|
|
|
/* Enable the sched_task to start the engine */
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
return 0;
|
|
}
|
|
|
|
static void thread_imc_event_del(struct perf_event *event, int flags)
|
|
{
|
|
/*
|
|
* Take a snapshot and calculate the delta and update
|
|
* the event counter values.
|
|
*/
|
|
imc_event_update(event);
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
}
|
|
|
|
/* update_pmu_ops : Populate the appropriate operations for "pmu" */
|
|
static int update_pmu_ops(struct imc_pmu *pmu)
|
|
{
|
|
pmu->pmu.task_ctx_nr = perf_invalid_context;
|
|
pmu->pmu.add = imc_event_add;
|
|
pmu->pmu.del = imc_event_stop;
|
|
pmu->pmu.start = imc_event_start;
|
|
pmu->pmu.stop = imc_event_stop;
|
|
pmu->pmu.read = imc_event_update;
|
|
pmu->pmu.attr_groups = pmu->attr_groups;
|
|
pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
|
|
|
|
switch (pmu->domain) {
|
|
case IMC_DOMAIN_NEST:
|
|
pmu->pmu.event_init = nest_imc_event_init;
|
|
pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
|
|
break;
|
|
case IMC_DOMAIN_CORE:
|
|
pmu->pmu.event_init = core_imc_event_init;
|
|
pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
|
|
break;
|
|
case IMC_DOMAIN_THREAD:
|
|
pmu->pmu.event_init = thread_imc_event_init;
|
|
pmu->pmu.sched_task = thread_imc_pmu_sched_task;
|
|
pmu->pmu.add = thread_imc_event_add;
|
|
pmu->pmu.del = thread_imc_event_del;
|
|
pmu->pmu.start_txn = thread_imc_pmu_start_txn;
|
|
pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
|
|
pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
|
|
static int init_nest_pmu_ref(void)
|
|
{
|
|
int nid, i, cpu;
|
|
|
|
nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
|
|
GFP_KERNEL);
|
|
|
|
if (!nest_imc_refc)
|
|
return -ENOMEM;
|
|
|
|
i = 0;
|
|
for_each_node(nid) {
|
|
/*
|
|
* Mutex lock to avoid races while tracking the number of
|
|
* sessions using the chip's nest pmu units.
|
|
*/
|
|
mutex_init(&nest_imc_refc[i].lock);
|
|
|
|
/*
|
|
* Loop to init the "id" with the node_id. Variable "i" initialized to
|
|
* 0 and will be used as index to the array. "i" will not go off the
|
|
* end of the array since the "for_each_node" loops for "N_POSSIBLE"
|
|
* nodes only.
|
|
*/
|
|
nest_imc_refc[i++].id = nid;
|
|
}
|
|
|
|
/*
|
|
* Loop to init the per_cpu "local_nest_imc_refc" with the proper
|
|
* "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
nid = cpu_to_node(cpu);
|
|
for (i = 0; i < num_possible_nodes(); i++) {
|
|
if (nest_imc_refc[i].id == nid) {
|
|
per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void cleanup_all_core_imc_memory(void)
|
|
{
|
|
int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
|
|
struct imc_mem_info *ptr = core_imc_pmu->mem_info;
|
|
int size = core_imc_pmu->counter_mem_size;
|
|
|
|
/* mem_info will never be NULL */
|
|
for (i = 0; i < nr_cores; i++) {
|
|
if (ptr[i].vbase)
|
|
free_pages((u64)ptr->vbase, get_order(size));
|
|
}
|
|
|
|
kfree(ptr);
|
|
kfree(core_imc_refc);
|
|
}
|
|
|
|
static void thread_imc_ldbar_disable(void *dummy)
|
|
{
|
|
/*
|
|
* By Zeroing LDBAR, we disable thread-imc
|
|
* updates.
|
|
*/
|
|
mtspr(SPRN_LDBAR, 0);
|
|
}
|
|
|
|
void thread_imc_disable(void)
|
|
{
|
|
on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
|
|
}
|
|
|
|
static void cleanup_all_thread_imc_memory(void)
|
|
{
|
|
int i, order = get_order(thread_imc_mem_size);
|
|
|
|
for_each_online_cpu(i) {
|
|
if (per_cpu(thread_imc_mem, i))
|
|
free_pages((u64)per_cpu(thread_imc_mem, i), order);
|
|
|
|
}
|
|
}
|
|
|
|
/* Function to free the attr_groups which are dynamically allocated */
|
|
static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
|
|
{
|
|
if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
|
|
kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
|
|
kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
|
|
kfree(pmu_ptr);
|
|
}
|
|
|
|
/*
|
|
* Common function to unregister cpu hotplug callback and
|
|
* free the memory.
|
|
* TODO: Need to handle pmu unregistering, which will be
|
|
* done in followup series.
|
|
*/
|
|
static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
|
|
{
|
|
if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
|
|
mutex_lock(&nest_init_lock);
|
|
if (nest_pmus == 1) {
|
|
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
|
|
kfree(nest_imc_refc);
|
|
kfree(per_nest_pmu_arr);
|
|
}
|
|
|
|
if (nest_pmus > 0)
|
|
nest_pmus--;
|
|
mutex_unlock(&nest_init_lock);
|
|
}
|
|
|
|
/* Free core_imc memory */
|
|
if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
|
|
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
|
|
cleanup_all_core_imc_memory();
|
|
}
|
|
|
|
/* Free thread_imc memory */
|
|
if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
|
|
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
|
|
cleanup_all_thread_imc_memory();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* imc_mem_init : Function to support memory allocation for core imc.
|
|
*/
|
|
static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
|
|
int pmu_index)
|
|
{
|
|
const char *s;
|
|
int nr_cores, cpu, res;
|
|
|
|
if (of_property_read_string(parent, "name", &s))
|
|
return -ENODEV;
|
|
|
|
switch (pmu_ptr->domain) {
|
|
case IMC_DOMAIN_NEST:
|
|
/* Update the pmu name */
|
|
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
|
|
if (!pmu_ptr->pmu.name)
|
|
return -ENOMEM;
|
|
|
|
/* Needed for hotplug/migration */
|
|
if (!per_nest_pmu_arr) {
|
|
per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
|
|
sizeof(struct imc_pmu *),
|
|
GFP_KERNEL);
|
|
if (!per_nest_pmu_arr)
|
|
return -ENOMEM;
|
|
}
|
|
per_nest_pmu_arr[pmu_index] = pmu_ptr;
|
|
break;
|
|
case IMC_DOMAIN_CORE:
|
|
/* Update the pmu name */
|
|
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
|
|
if (!pmu_ptr->pmu.name)
|
|
return -ENOMEM;
|
|
|
|
nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
|
|
pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
|
|
GFP_KERNEL);
|
|
|
|
if (!pmu_ptr->mem_info)
|
|
return -ENOMEM;
|
|
|
|
core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
|
|
GFP_KERNEL);
|
|
|
|
if (!core_imc_refc) {
|
|
kfree(pmu_ptr->mem_info);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
core_imc_pmu = pmu_ptr;
|
|
break;
|
|
case IMC_DOMAIN_THREAD:
|
|
/* Update the pmu name */
|
|
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
|
|
if (!pmu_ptr->pmu.name)
|
|
return -ENOMEM;
|
|
|
|
thread_imc_mem_size = pmu_ptr->counter_mem_size;
|
|
for_each_online_cpu(cpu) {
|
|
res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
|
|
if (res) {
|
|
cleanup_all_thread_imc_memory();
|
|
return res;
|
|
}
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* init_imc_pmu : Setup and register the IMC pmu device.
|
|
*
|
|
* @parent: Device tree unit node
|
|
* @pmu_ptr: memory allocated for this pmu
|
|
* @pmu_idx: Count of nest pmc registered
|
|
*
|
|
* init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
|
|
* Handles failure cases and accordingly frees memory.
|
|
*/
|
|
int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
|
|
{
|
|
int ret;
|
|
|
|
ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
|
|
if (ret) {
|
|
imc_common_mem_free(pmu_ptr);
|
|
return ret;
|
|
}
|
|
|
|
switch (pmu_ptr->domain) {
|
|
case IMC_DOMAIN_NEST:
|
|
/*
|
|
* Nest imc pmu need only one cpu per chip, we initialize the
|
|
* cpumask for the first nest imc pmu and use the same for the
|
|
* rest. To handle the cpuhotplug callback unregister, we track
|
|
* the number of nest pmus in "nest_pmus".
|
|
*/
|
|
mutex_lock(&nest_init_lock);
|
|
if (nest_pmus == 0) {
|
|
ret = init_nest_pmu_ref();
|
|
if (ret) {
|
|
mutex_unlock(&nest_init_lock);
|
|
goto err_free;
|
|
}
|
|
/* Register for cpu hotplug notification. */
|
|
ret = nest_pmu_cpumask_init();
|
|
if (ret) {
|
|
mutex_unlock(&nest_init_lock);
|
|
kfree(nest_imc_refc);
|
|
kfree(per_nest_pmu_arr);
|
|
goto err_free;
|
|
}
|
|
}
|
|
nest_pmus++;
|
|
mutex_unlock(&nest_init_lock);
|
|
break;
|
|
case IMC_DOMAIN_CORE:
|
|
ret = core_imc_pmu_cpumask_init();
|
|
if (ret) {
|
|
cleanup_all_core_imc_memory();
|
|
return ret;
|
|
}
|
|
|
|
break;
|
|
case IMC_DOMAIN_THREAD:
|
|
ret = thread_imc_cpu_init();
|
|
if (ret) {
|
|
cleanup_all_thread_imc_memory();
|
|
return ret;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return -1; /* Unknown domain */
|
|
}
|
|
|
|
ret = update_events_in_group(parent, pmu_ptr);
|
|
if (ret)
|
|
goto err_free;
|
|
|
|
ret = update_pmu_ops(pmu_ptr);
|
|
if (ret)
|
|
goto err_free;
|
|
|
|
ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
|
|
if (ret)
|
|
goto err_free;
|
|
|
|
pr_info("%s performance monitor hardware support registered\n",
|
|
pmu_ptr->pmu.name);
|
|
|
|
return 0;
|
|
|
|
err_free:
|
|
imc_common_mem_free(pmu_ptr);
|
|
imc_common_cpuhp_mem_free(pmu_ptr);
|
|
return ret;
|
|
}
|