mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 03:10:52 +07:00
8df6516864
Use memblock information to setup lowmem mappings rather than the membank array. This allows platforms to manipulate the memblock information during initialization to reserve (and remove) memory from the kernel's view of memory - and thus allowing platforms to setup their own private mappings for this memory without causing problems with multiple aliasing mappings: size = min(size, SZ_2M); base = memblock_alloc(size, min(align, SZ_2M)); memblock_free(base, size); memblock_remove(base, size); This is needed because multiple mappings of regions with differing attributes (sharability, type, cache) are not permitted with ARMv6 and above. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
1082 lines
29 KiB
C
1082 lines
29 KiB
C
/*
|
|
* linux/arch/arm/mm/mmu.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/fs.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/cachetype.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/highmem.h>
|
|
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/mach/map.h>
|
|
|
|
#include "mm.h"
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
/*
|
|
* empty_zero_page is a special page that is used for
|
|
* zero-initialized data and COW.
|
|
*/
|
|
struct page *empty_zero_page;
|
|
EXPORT_SYMBOL(empty_zero_page);
|
|
|
|
/*
|
|
* The pmd table for the upper-most set of pages.
|
|
*/
|
|
pmd_t *top_pmd;
|
|
|
|
#define CPOLICY_UNCACHED 0
|
|
#define CPOLICY_BUFFERED 1
|
|
#define CPOLICY_WRITETHROUGH 2
|
|
#define CPOLICY_WRITEBACK 3
|
|
#define CPOLICY_WRITEALLOC 4
|
|
|
|
static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
|
|
static unsigned int ecc_mask __initdata = 0;
|
|
pgprot_t pgprot_user;
|
|
pgprot_t pgprot_kernel;
|
|
|
|
EXPORT_SYMBOL(pgprot_user);
|
|
EXPORT_SYMBOL(pgprot_kernel);
|
|
|
|
struct cachepolicy {
|
|
const char policy[16];
|
|
unsigned int cr_mask;
|
|
unsigned int pmd;
|
|
unsigned int pte;
|
|
};
|
|
|
|
static struct cachepolicy cache_policies[] __initdata = {
|
|
{
|
|
.policy = "uncached",
|
|
.cr_mask = CR_W|CR_C,
|
|
.pmd = PMD_SECT_UNCACHED,
|
|
.pte = L_PTE_MT_UNCACHED,
|
|
}, {
|
|
.policy = "buffered",
|
|
.cr_mask = CR_C,
|
|
.pmd = PMD_SECT_BUFFERED,
|
|
.pte = L_PTE_MT_BUFFERABLE,
|
|
}, {
|
|
.policy = "writethrough",
|
|
.cr_mask = 0,
|
|
.pmd = PMD_SECT_WT,
|
|
.pte = L_PTE_MT_WRITETHROUGH,
|
|
}, {
|
|
.policy = "writeback",
|
|
.cr_mask = 0,
|
|
.pmd = PMD_SECT_WB,
|
|
.pte = L_PTE_MT_WRITEBACK,
|
|
}, {
|
|
.policy = "writealloc",
|
|
.cr_mask = 0,
|
|
.pmd = PMD_SECT_WBWA,
|
|
.pte = L_PTE_MT_WRITEALLOC,
|
|
}
|
|
};
|
|
|
|
/*
|
|
* These are useful for identifying cache coherency
|
|
* problems by allowing the cache or the cache and
|
|
* writebuffer to be turned off. (Note: the write
|
|
* buffer should not be on and the cache off).
|
|
*/
|
|
static int __init early_cachepolicy(char *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
|
|
int len = strlen(cache_policies[i].policy);
|
|
|
|
if (memcmp(p, cache_policies[i].policy, len) == 0) {
|
|
cachepolicy = i;
|
|
cr_alignment &= ~cache_policies[i].cr_mask;
|
|
cr_no_alignment &= ~cache_policies[i].cr_mask;
|
|
break;
|
|
}
|
|
}
|
|
if (i == ARRAY_SIZE(cache_policies))
|
|
printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
|
|
/*
|
|
* This restriction is partly to do with the way we boot; it is
|
|
* unpredictable to have memory mapped using two different sets of
|
|
* memory attributes (shared, type, and cache attribs). We can not
|
|
* change these attributes once the initial assembly has setup the
|
|
* page tables.
|
|
*/
|
|
if (cpu_architecture() >= CPU_ARCH_ARMv6) {
|
|
printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
|
|
cachepolicy = CPOLICY_WRITEBACK;
|
|
}
|
|
flush_cache_all();
|
|
set_cr(cr_alignment);
|
|
return 0;
|
|
}
|
|
early_param("cachepolicy", early_cachepolicy);
|
|
|
|
static int __init early_nocache(char *__unused)
|
|
{
|
|
char *p = "buffered";
|
|
printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
|
|
early_cachepolicy(p);
|
|
return 0;
|
|
}
|
|
early_param("nocache", early_nocache);
|
|
|
|
static int __init early_nowrite(char *__unused)
|
|
{
|
|
char *p = "uncached";
|
|
printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
|
|
early_cachepolicy(p);
|
|
return 0;
|
|
}
|
|
early_param("nowb", early_nowrite);
|
|
|
|
static int __init early_ecc(char *p)
|
|
{
|
|
if (memcmp(p, "on", 2) == 0)
|
|
ecc_mask = PMD_PROTECTION;
|
|
else if (memcmp(p, "off", 3) == 0)
|
|
ecc_mask = 0;
|
|
return 0;
|
|
}
|
|
early_param("ecc", early_ecc);
|
|
|
|
static int __init noalign_setup(char *__unused)
|
|
{
|
|
cr_alignment &= ~CR_A;
|
|
cr_no_alignment &= ~CR_A;
|
|
set_cr(cr_alignment);
|
|
return 1;
|
|
}
|
|
__setup("noalign", noalign_setup);
|
|
|
|
#ifndef CONFIG_SMP
|
|
void adjust_cr(unsigned long mask, unsigned long set)
|
|
{
|
|
unsigned long flags;
|
|
|
|
mask &= ~CR_A;
|
|
|
|
set &= mask;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cr_no_alignment = (cr_no_alignment & ~mask) | set;
|
|
cr_alignment = (cr_alignment & ~mask) | set;
|
|
|
|
set_cr((get_cr() & ~mask) | set);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
#endif
|
|
|
|
#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
|
|
#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
|
|
|
|
static struct mem_type mem_types[] = {
|
|
[MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
|
|
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
|
|
L_PTE_SHARED,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
|
|
.domain = DOMAIN_IO,
|
|
},
|
|
[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
|
|
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PROT_SECT_DEVICE,
|
|
.domain = DOMAIN_IO,
|
|
},
|
|
[MT_DEVICE_CACHED] = { /* ioremap_cached */
|
|
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
|
|
.domain = DOMAIN_IO,
|
|
},
|
|
[MT_DEVICE_WC] = { /* ioremap_wc */
|
|
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PROT_SECT_DEVICE,
|
|
.domain = DOMAIN_IO,
|
|
},
|
|
[MT_UNCACHED] = {
|
|
.prot_pte = PROT_PTE_DEVICE,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
|
|
.domain = DOMAIN_IO,
|
|
},
|
|
[MT_CACHECLEAN] = {
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_MINICLEAN] = {
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_LOW_VECTORS] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.domain = DOMAIN_USER,
|
|
},
|
|
[MT_HIGH_VECTORS] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_USER | L_PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.domain = DOMAIN_USER,
|
|
},
|
|
[MT_MEMORY] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_WRITE | L_PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_ROM] = {
|
|
.prot_sect = PMD_TYPE_SECT,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_MEMORY_NONCACHED] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_MEMORY_DTCM] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_WRITE,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
[MT_MEMORY_ITCM] = {
|
|
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
|
|
L_PTE_WRITE | L_PTE_EXEC,
|
|
.prot_l1 = PMD_TYPE_TABLE,
|
|
.domain = DOMAIN_KERNEL,
|
|
},
|
|
};
|
|
|
|
const struct mem_type *get_mem_type(unsigned int type)
|
|
{
|
|
return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
|
|
}
|
|
EXPORT_SYMBOL(get_mem_type);
|
|
|
|
/*
|
|
* Adjust the PMD section entries according to the CPU in use.
|
|
*/
|
|
static void __init build_mem_type_table(void)
|
|
{
|
|
struct cachepolicy *cp;
|
|
unsigned int cr = get_cr();
|
|
unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
|
|
int cpu_arch = cpu_architecture();
|
|
int i;
|
|
|
|
if (cpu_arch < CPU_ARCH_ARMv6) {
|
|
#if defined(CONFIG_CPU_DCACHE_DISABLE)
|
|
if (cachepolicy > CPOLICY_BUFFERED)
|
|
cachepolicy = CPOLICY_BUFFERED;
|
|
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
|
|
if (cachepolicy > CPOLICY_WRITETHROUGH)
|
|
cachepolicy = CPOLICY_WRITETHROUGH;
|
|
#endif
|
|
}
|
|
if (cpu_arch < CPU_ARCH_ARMv5) {
|
|
if (cachepolicy >= CPOLICY_WRITEALLOC)
|
|
cachepolicy = CPOLICY_WRITEBACK;
|
|
ecc_mask = 0;
|
|
}
|
|
if (is_smp())
|
|
cachepolicy = CPOLICY_WRITEALLOC;
|
|
|
|
/*
|
|
* Strip out features not present on earlier architectures.
|
|
* Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
|
|
* without extended page tables don't have the 'Shared' bit.
|
|
*/
|
|
if (cpu_arch < CPU_ARCH_ARMv5)
|
|
for (i = 0; i < ARRAY_SIZE(mem_types); i++)
|
|
mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
|
|
if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
|
|
for (i = 0; i < ARRAY_SIZE(mem_types); i++)
|
|
mem_types[i].prot_sect &= ~PMD_SECT_S;
|
|
|
|
/*
|
|
* ARMv5 and lower, bit 4 must be set for page tables (was: cache
|
|
* "update-able on write" bit on ARM610). However, Xscale and
|
|
* Xscale3 require this bit to be cleared.
|
|
*/
|
|
if (cpu_is_xscale() || cpu_is_xsc3()) {
|
|
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
|
|
mem_types[i].prot_sect &= ~PMD_BIT4;
|
|
mem_types[i].prot_l1 &= ~PMD_BIT4;
|
|
}
|
|
} else if (cpu_arch < CPU_ARCH_ARMv6) {
|
|
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
|
|
if (mem_types[i].prot_l1)
|
|
mem_types[i].prot_l1 |= PMD_BIT4;
|
|
if (mem_types[i].prot_sect)
|
|
mem_types[i].prot_sect |= PMD_BIT4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the device areas according to the CPU/architecture.
|
|
*/
|
|
if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
|
|
if (!cpu_is_xsc3()) {
|
|
/*
|
|
* Mark device regions on ARMv6+ as execute-never
|
|
* to prevent speculative instruction fetches.
|
|
*/
|
|
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
|
|
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
|
|
mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
|
|
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
|
|
}
|
|
if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
|
|
/*
|
|
* For ARMv7 with TEX remapping,
|
|
* - shared device is SXCB=1100
|
|
* - nonshared device is SXCB=0100
|
|
* - write combine device mem is SXCB=0001
|
|
* (Uncached Normal memory)
|
|
*/
|
|
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
|
|
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
|
|
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
|
|
} else if (cpu_is_xsc3()) {
|
|
/*
|
|
* For Xscale3,
|
|
* - shared device is TEXCB=00101
|
|
* - nonshared device is TEXCB=01000
|
|
* - write combine device mem is TEXCB=00100
|
|
* (Inner/Outer Uncacheable in xsc3 parlance)
|
|
*/
|
|
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
|
|
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
|
|
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
|
|
} else {
|
|
/*
|
|
* For ARMv6 and ARMv7 without TEX remapping,
|
|
* - shared device is TEXCB=00001
|
|
* - nonshared device is TEXCB=01000
|
|
* - write combine device mem is TEXCB=00100
|
|
* (Uncached Normal in ARMv6 parlance).
|
|
*/
|
|
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
|
|
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
|
|
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
|
|
}
|
|
} else {
|
|
/*
|
|
* On others, write combining is "Uncached/Buffered"
|
|
*/
|
|
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
|
|
}
|
|
|
|
/*
|
|
* Now deal with the memory-type mappings
|
|
*/
|
|
cp = &cache_policies[cachepolicy];
|
|
vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
|
|
|
|
/*
|
|
* Only use write-through for non-SMP systems
|
|
*/
|
|
if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
|
|
vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
|
|
|
|
/*
|
|
* Enable CPU-specific coherency if supported.
|
|
* (Only available on XSC3 at the moment.)
|
|
*/
|
|
if (arch_is_coherent() && cpu_is_xsc3()) {
|
|
mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
|
|
mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
|
|
mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
|
|
mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
|
|
}
|
|
/*
|
|
* ARMv6 and above have extended page tables.
|
|
*/
|
|
if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
|
|
/*
|
|
* Mark cache clean areas and XIP ROM read only
|
|
* from SVC mode and no access from userspace.
|
|
*/
|
|
mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
|
|
mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
|
|
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
|
|
|
|
if (is_smp()) {
|
|
/*
|
|
* Mark memory with the "shared" attribute
|
|
* for SMP systems
|
|
*/
|
|
user_pgprot |= L_PTE_SHARED;
|
|
kern_pgprot |= L_PTE_SHARED;
|
|
vecs_pgprot |= L_PTE_SHARED;
|
|
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
|
|
mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
|
|
mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
|
|
mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
|
|
mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
|
|
mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
|
|
mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
|
|
mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Non-cacheable Normal - intended for memory areas that must
|
|
* not cause dirty cache line writebacks when used
|
|
*/
|
|
if (cpu_arch >= CPU_ARCH_ARMv6) {
|
|
if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
|
|
/* Non-cacheable Normal is XCB = 001 */
|
|
mem_types[MT_MEMORY_NONCACHED].prot_sect |=
|
|
PMD_SECT_BUFFERED;
|
|
} else {
|
|
/* For both ARMv6 and non-TEX-remapping ARMv7 */
|
|
mem_types[MT_MEMORY_NONCACHED].prot_sect |=
|
|
PMD_SECT_TEX(1);
|
|
}
|
|
} else {
|
|
mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned long v = pgprot_val(protection_map[i]);
|
|
protection_map[i] = __pgprot(v | user_pgprot);
|
|
}
|
|
|
|
mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
|
|
mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
|
|
|
|
pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
|
|
pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
|
|
L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
|
|
|
|
mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
|
|
mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
|
|
mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
|
|
mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
|
|
mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
|
|
mem_types[MT_ROM].prot_sect |= cp->pmd;
|
|
|
|
switch (cp->pmd) {
|
|
case PMD_SECT_WT:
|
|
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
|
|
break;
|
|
case PMD_SECT_WB:
|
|
case PMD_SECT_WBWA:
|
|
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
|
|
break;
|
|
}
|
|
printk("Memory policy: ECC %sabled, Data cache %s\n",
|
|
ecc_mask ? "en" : "dis", cp->policy);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
|
|
struct mem_type *t = &mem_types[i];
|
|
if (t->prot_l1)
|
|
t->prot_l1 |= PMD_DOMAIN(t->domain);
|
|
if (t->prot_sect)
|
|
t->prot_sect |= PMD_DOMAIN(t->domain);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (!pfn_valid(pfn))
|
|
return pgprot_noncached(vma_prot);
|
|
else if (file->f_flags & O_SYNC)
|
|
return pgprot_writecombine(vma_prot);
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|
|
#endif
|
|
|
|
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
|
|
|
|
static void __init *early_alloc(unsigned long sz)
|
|
{
|
|
void *ptr = __va(memblock_alloc(sz, sz));
|
|
memset(ptr, 0, sz);
|
|
return ptr;
|
|
}
|
|
|
|
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
|
|
{
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
|
|
__pmd_populate(pmd, __pa(pte) | prot);
|
|
}
|
|
BUG_ON(pmd_bad(*pmd));
|
|
return pte_offset_kernel(pmd, addr);
|
|
}
|
|
|
|
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, unsigned long pfn,
|
|
const struct mem_type *type)
|
|
{
|
|
pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
|
|
do {
|
|
set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
|
|
pfn++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, unsigned long phys,
|
|
const struct mem_type *type)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pgd, addr);
|
|
|
|
/*
|
|
* Try a section mapping - end, addr and phys must all be aligned
|
|
* to a section boundary. Note that PMDs refer to the individual
|
|
* L1 entries, whereas PGDs refer to a group of L1 entries making
|
|
* up one logical pointer to an L2 table.
|
|
*/
|
|
if (((addr | end | phys) & ~SECTION_MASK) == 0) {
|
|
pmd_t *p = pmd;
|
|
|
|
if (addr & SECTION_SIZE)
|
|
pmd++;
|
|
|
|
do {
|
|
*pmd = __pmd(phys | type->prot_sect);
|
|
phys += SECTION_SIZE;
|
|
} while (pmd++, addr += SECTION_SIZE, addr != end);
|
|
|
|
flush_pmd_entry(p);
|
|
} else {
|
|
/*
|
|
* No need to loop; pte's aren't interested in the
|
|
* individual L1 entries.
|
|
*/
|
|
alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
|
|
}
|
|
}
|
|
|
|
static void __init create_36bit_mapping(struct map_desc *md,
|
|
const struct mem_type *type)
|
|
{
|
|
unsigned long phys, addr, length, end;
|
|
pgd_t *pgd;
|
|
|
|
addr = md->virtual;
|
|
phys = (unsigned long)__pfn_to_phys(md->pfn);
|
|
length = PAGE_ALIGN(md->length);
|
|
|
|
if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
|
|
printk(KERN_ERR "MM: CPU does not support supersection "
|
|
"mapping for 0x%08llx at 0x%08lx\n",
|
|
__pfn_to_phys((u64)md->pfn), addr);
|
|
return;
|
|
}
|
|
|
|
/* N.B. ARMv6 supersections are only defined to work with domain 0.
|
|
* Since domain assignments can in fact be arbitrary, the
|
|
* 'domain == 0' check below is required to insure that ARMv6
|
|
* supersections are only allocated for domain 0 regardless
|
|
* of the actual domain assignments in use.
|
|
*/
|
|
if (type->domain) {
|
|
printk(KERN_ERR "MM: invalid domain in supersection "
|
|
"mapping for 0x%08llx at 0x%08lx\n",
|
|
__pfn_to_phys((u64)md->pfn), addr);
|
|
return;
|
|
}
|
|
|
|
if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
|
|
printk(KERN_ERR "MM: cannot create mapping for "
|
|
"0x%08llx at 0x%08lx invalid alignment\n",
|
|
__pfn_to_phys((u64)md->pfn), addr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Shift bits [35:32] of address into bits [23:20] of PMD
|
|
* (See ARMv6 spec).
|
|
*/
|
|
phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
end = addr + length;
|
|
do {
|
|
pmd_t *pmd = pmd_offset(pgd, addr);
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
|
|
|
|
addr += SUPERSECTION_SIZE;
|
|
phys += SUPERSECTION_SIZE;
|
|
pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
|
|
} while (addr != end);
|
|
}
|
|
|
|
/*
|
|
* Create the page directory entries and any necessary
|
|
* page tables for the mapping specified by `md'. We
|
|
* are able to cope here with varying sizes and address
|
|
* offsets, and we take full advantage of sections and
|
|
* supersections.
|
|
*/
|
|
static void __init create_mapping(struct map_desc *md)
|
|
{
|
|
unsigned long phys, addr, length, end;
|
|
const struct mem_type *type;
|
|
pgd_t *pgd;
|
|
|
|
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
|
|
printk(KERN_WARNING "BUG: not creating mapping for "
|
|
"0x%08llx at 0x%08lx in user region\n",
|
|
__pfn_to_phys((u64)md->pfn), md->virtual);
|
|
return;
|
|
}
|
|
|
|
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
|
|
md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
|
|
printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
|
|
"overlaps vmalloc space\n",
|
|
__pfn_to_phys((u64)md->pfn), md->virtual);
|
|
}
|
|
|
|
type = &mem_types[md->type];
|
|
|
|
/*
|
|
* Catch 36-bit addresses
|
|
*/
|
|
if (md->pfn >= 0x100000) {
|
|
create_36bit_mapping(md, type);
|
|
return;
|
|
}
|
|
|
|
addr = md->virtual & PAGE_MASK;
|
|
phys = (unsigned long)__pfn_to_phys(md->pfn);
|
|
length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
|
|
|
|
if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
|
|
printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
|
|
"be mapped using pages, ignoring.\n",
|
|
__pfn_to_phys(md->pfn), addr);
|
|
return;
|
|
}
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
end = addr + length;
|
|
do {
|
|
unsigned long next = pgd_addr_end(addr, end);
|
|
|
|
alloc_init_section(pgd, addr, next, phys, type);
|
|
|
|
phys += next - addr;
|
|
addr = next;
|
|
} while (pgd++, addr != end);
|
|
}
|
|
|
|
/*
|
|
* Create the architecture specific mappings
|
|
*/
|
|
void __init iotable_init(struct map_desc *io_desc, int nr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr; i++)
|
|
create_mapping(io_desc + i);
|
|
}
|
|
|
|
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
|
|
|
|
/*
|
|
* vmalloc=size forces the vmalloc area to be exactly 'size'
|
|
* bytes. This can be used to increase (or decrease) the vmalloc
|
|
* area - the default is 128m.
|
|
*/
|
|
static int __init early_vmalloc(char *arg)
|
|
{
|
|
unsigned long vmalloc_reserve = memparse(arg, NULL);
|
|
|
|
if (vmalloc_reserve < SZ_16M) {
|
|
vmalloc_reserve = SZ_16M;
|
|
printk(KERN_WARNING
|
|
"vmalloc area too small, limiting to %luMB\n",
|
|
vmalloc_reserve >> 20);
|
|
}
|
|
|
|
if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
|
|
vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
|
|
printk(KERN_WARNING
|
|
"vmalloc area is too big, limiting to %luMB\n",
|
|
vmalloc_reserve >> 20);
|
|
}
|
|
|
|
vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
|
|
return 0;
|
|
}
|
|
early_param("vmalloc", early_vmalloc);
|
|
|
|
static phys_addr_t lowmem_limit __initdata = 0;
|
|
|
|
static void __init sanity_check_meminfo(void)
|
|
{
|
|
int i, j, highmem = 0;
|
|
|
|
lowmem_limit = __pa(vmalloc_min - 1) + 1;
|
|
memblock_set_current_limit(lowmem_limit);
|
|
|
|
for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
|
|
struct membank *bank = &meminfo.bank[j];
|
|
*bank = meminfo.bank[i];
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (__va(bank->start) > vmalloc_min ||
|
|
__va(bank->start) < (void *)PAGE_OFFSET)
|
|
highmem = 1;
|
|
|
|
bank->highmem = highmem;
|
|
|
|
/*
|
|
* Split those memory banks which are partially overlapping
|
|
* the vmalloc area greatly simplifying things later.
|
|
*/
|
|
if (__va(bank->start) < vmalloc_min &&
|
|
bank->size > vmalloc_min - __va(bank->start)) {
|
|
if (meminfo.nr_banks >= NR_BANKS) {
|
|
printk(KERN_CRIT "NR_BANKS too low, "
|
|
"ignoring high memory\n");
|
|
} else {
|
|
memmove(bank + 1, bank,
|
|
(meminfo.nr_banks - i) * sizeof(*bank));
|
|
meminfo.nr_banks++;
|
|
i++;
|
|
bank[1].size -= vmalloc_min - __va(bank->start);
|
|
bank[1].start = __pa(vmalloc_min - 1) + 1;
|
|
bank[1].highmem = highmem = 1;
|
|
j++;
|
|
}
|
|
bank->size = vmalloc_min - __va(bank->start);
|
|
}
|
|
#else
|
|
bank->highmem = highmem;
|
|
|
|
/*
|
|
* Check whether this memory bank would entirely overlap
|
|
* the vmalloc area.
|
|
*/
|
|
if (__va(bank->start) >= vmalloc_min ||
|
|
__va(bank->start) < (void *)PAGE_OFFSET) {
|
|
printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
|
|
"(vmalloc region overlap).\n",
|
|
bank->start, bank->start + bank->size - 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check whether this memory bank would partially overlap
|
|
* the vmalloc area.
|
|
*/
|
|
if (__va(bank->start + bank->size) > vmalloc_min ||
|
|
__va(bank->start + bank->size) < __va(bank->start)) {
|
|
unsigned long newsize = vmalloc_min - __va(bank->start);
|
|
printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
|
|
"to -%.8lx (vmalloc region overlap).\n",
|
|
bank->start, bank->start + bank->size - 1,
|
|
bank->start + newsize - 1);
|
|
bank->size = newsize;
|
|
}
|
|
#endif
|
|
j++;
|
|
}
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (highmem) {
|
|
const char *reason = NULL;
|
|
|
|
if (cache_is_vipt_aliasing()) {
|
|
/*
|
|
* Interactions between kmap and other mappings
|
|
* make highmem support with aliasing VIPT caches
|
|
* rather difficult.
|
|
*/
|
|
reason = "with VIPT aliasing cache";
|
|
} else if (is_smp() && tlb_ops_need_broadcast()) {
|
|
/*
|
|
* kmap_high needs to occasionally flush TLB entries,
|
|
* however, if the TLB entries need to be broadcast
|
|
* we may deadlock:
|
|
* kmap_high(irqs off)->flush_all_zero_pkmaps->
|
|
* flush_tlb_kernel_range->smp_call_function_many
|
|
* (must not be called with irqs off)
|
|
*/
|
|
reason = "without hardware TLB ops broadcasting";
|
|
}
|
|
if (reason) {
|
|
printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
|
|
reason);
|
|
while (j > 0 && meminfo.bank[j - 1].highmem)
|
|
j--;
|
|
}
|
|
}
|
|
#endif
|
|
meminfo.nr_banks = j;
|
|
}
|
|
|
|
static inline void prepare_page_table(void)
|
|
{
|
|
unsigned long addr;
|
|
phys_addr_t end;
|
|
|
|
/*
|
|
* Clear out all the mappings below the kernel image.
|
|
*/
|
|
for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
/* The XIP kernel is mapped in the module area -- skip over it */
|
|
addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
|
|
#endif
|
|
for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
/*
|
|
* Find the end of the first block of lowmem.
|
|
*/
|
|
end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
|
|
if (end >= lowmem_limit)
|
|
end = lowmem_limit;
|
|
|
|
/*
|
|
* Clear out all the kernel space mappings, except for the first
|
|
* memory bank, up to the end of the vmalloc region.
|
|
*/
|
|
for (addr = __phys_to_virt(end);
|
|
addr < VMALLOC_END; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
}
|
|
|
|
/*
|
|
* Reserve the special regions of memory
|
|
*/
|
|
void __init arm_mm_memblock_reserve(void)
|
|
{
|
|
/*
|
|
* Reserve the page tables. These are already in use,
|
|
* and can only be in node 0.
|
|
*/
|
|
memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
|
|
|
|
#ifdef CONFIG_SA1111
|
|
/*
|
|
* Because of the SA1111 DMA bug, we want to preserve our
|
|
* precious DMA-able memory...
|
|
*/
|
|
memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set up device the mappings. Since we clear out the page tables for all
|
|
* mappings above VMALLOC_END, we will remove any debug device mappings.
|
|
* This means you have to be careful how you debug this function, or any
|
|
* called function. This means you can't use any function or debugging
|
|
* method which may touch any device, otherwise the kernel _will_ crash.
|
|
*/
|
|
static void __init devicemaps_init(struct machine_desc *mdesc)
|
|
{
|
|
struct map_desc map;
|
|
unsigned long addr;
|
|
void *vectors;
|
|
|
|
/*
|
|
* Allocate the vector page early.
|
|
*/
|
|
vectors = early_alloc(PAGE_SIZE);
|
|
|
|
for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
/*
|
|
* Map the kernel if it is XIP.
|
|
* It is always first in the modulearea.
|
|
*/
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
|
|
map.virtual = MODULES_VADDR;
|
|
map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
|
|
map.type = MT_ROM;
|
|
create_mapping(&map);
|
|
#endif
|
|
|
|
/*
|
|
* Map the cache flushing regions.
|
|
*/
|
|
#ifdef FLUSH_BASE
|
|
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
|
|
map.virtual = FLUSH_BASE;
|
|
map.length = SZ_1M;
|
|
map.type = MT_CACHECLEAN;
|
|
create_mapping(&map);
|
|
#endif
|
|
#ifdef FLUSH_BASE_MINICACHE
|
|
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
|
|
map.virtual = FLUSH_BASE_MINICACHE;
|
|
map.length = SZ_1M;
|
|
map.type = MT_MINICLEAN;
|
|
create_mapping(&map);
|
|
#endif
|
|
|
|
/*
|
|
* Create a mapping for the machine vectors at the high-vectors
|
|
* location (0xffff0000). If we aren't using high-vectors, also
|
|
* create a mapping at the low-vectors virtual address.
|
|
*/
|
|
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
|
|
map.virtual = 0xffff0000;
|
|
map.length = PAGE_SIZE;
|
|
map.type = MT_HIGH_VECTORS;
|
|
create_mapping(&map);
|
|
|
|
if (!vectors_high()) {
|
|
map.virtual = 0;
|
|
map.type = MT_LOW_VECTORS;
|
|
create_mapping(&map);
|
|
}
|
|
|
|
/*
|
|
* Ask the machine support to map in the statically mapped devices.
|
|
*/
|
|
if (mdesc->map_io)
|
|
mdesc->map_io();
|
|
|
|
/*
|
|
* Finally flush the caches and tlb to ensure that we're in a
|
|
* consistent state wrt the writebuffer. This also ensures that
|
|
* any write-allocated cache lines in the vector page are written
|
|
* back. After this point, we can start to touch devices again.
|
|
*/
|
|
local_flush_tlb_all();
|
|
flush_cache_all();
|
|
}
|
|
|
|
static void __init kmap_init(void)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
|
|
PKMAP_BASE, _PAGE_KERNEL_TABLE);
|
|
#endif
|
|
}
|
|
|
|
static void __init map_lowmem(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
|
|
/* Map all the lowmem memory banks. */
|
|
for_each_memblock(memory, reg) {
|
|
phys_addr_t start = reg->base;
|
|
phys_addr_t end = start + reg->size;
|
|
struct map_desc map;
|
|
|
|
if (end > lowmem_limit)
|
|
end = lowmem_limit;
|
|
if (start >= end)
|
|
break;
|
|
|
|
map.pfn = __phys_to_pfn(start);
|
|
map.virtual = __phys_to_virt(start);
|
|
map.length = end - start;
|
|
map.type = MT_MEMORY;
|
|
|
|
create_mapping(&map);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables, initialises the zone memory
|
|
* maps, and sets up the zero page, bad page and bad page tables.
|
|
*/
|
|
void __init paging_init(struct machine_desc *mdesc)
|
|
{
|
|
void *zero_page;
|
|
|
|
build_mem_type_table();
|
|
sanity_check_meminfo();
|
|
prepare_page_table();
|
|
map_lowmem();
|
|
devicemaps_init(mdesc);
|
|
kmap_init();
|
|
|
|
top_pmd = pmd_off_k(0xffff0000);
|
|
|
|
/* allocate the zero page. */
|
|
zero_page = early_alloc(PAGE_SIZE);
|
|
|
|
bootmem_init();
|
|
|
|
empty_zero_page = virt_to_page(zero_page);
|
|
__flush_dcache_page(NULL, empty_zero_page);
|
|
}
|
|
|
|
/*
|
|
* In order to soft-boot, we need to insert a 1:1 mapping in place of
|
|
* the user-mode pages. This will then ensure that we have predictable
|
|
* results when turning the mmu off
|
|
*/
|
|
void setup_mm_for_reboot(char mode)
|
|
{
|
|
unsigned long base_pmdval;
|
|
pgd_t *pgd;
|
|
int i;
|
|
|
|
/*
|
|
* We need to access to user-mode page tables here. For kernel threads
|
|
* we don't have any user-mode mappings so we use the context that we
|
|
* "borrowed".
|
|
*/
|
|
pgd = current->active_mm->pgd;
|
|
|
|
base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
|
|
if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
|
|
base_pmdval |= PMD_BIT4;
|
|
|
|
for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
|
|
unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_off(pgd, i << PGDIR_SHIFT);
|
|
pmd[0] = __pmd(pmdval);
|
|
pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
|
|
flush_pmd_entry(pmd);
|
|
}
|
|
|
|
local_flush_tlb_all();
|
|
}
|