linux_dsm_epyc7002/virt/kvm/arm/vgic/vgic-v3.c
Christoffer Dall 006df0f349 KVM: arm/arm64: Support calling vgic_update_irq_pending from irq context
We are about to optimize our timer handling logic which involves
injecting irqs to the vgic directly from the irq handler.

Unfortunately, the injection path can take any AP list lock and irq lock
and we must therefore make sure to use spin_lock_irqsave where ever
interrupts are enabled and we are taking any of those locks, to avoid
deadlocking between process context and the ISR.

This changes a lot of the VGIC code, but the good news are that the
changes are mostly mechanical.

Acked-by: Marc Zyngier <marc,zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-11-06 16:23:10 +01:00

557 lines
15 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
#include "vgic.h"
static bool group0_trap;
static bool group1_trap;
static bool common_trap;
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
cpuif->vgic_hcr |= ICH_HCR_UIE;
}
static bool lr_signals_eoi_mi(u64 lr_val)
{
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
!(lr_val & ICH_LR_HW);
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
unsigned long flags;
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid;
struct vgic_irq *irq;
if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
intid = val & ICH_LR_VIRTUAL_ID_MASK;
else
intid = val & GICH_LR_VIRTUALID;
/* Notify fds when the guest EOI'ed a level-triggered IRQ */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
if (!irq) /* An LPI could have been unmapped. */
continue;
spin_lock_irqsave(&irq->irq_lock, flags);
/* Always preserve the active bit */
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & ICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (vgic_irq_is_sgi(intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
irq->source |= (1 << cpuid);
}
}
/*
* Clear soft pending state when level irqs have been acked.
* Always regenerate the pending state.
*/
if (irq->config == VGIC_CONFIG_LEVEL) {
if (!(val & ICH_LR_PENDING_BIT))
irq->pending_latch = false;
}
spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = irq->intid;
if (irq_is_pending(irq)) {
val |= ICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 src = ffs(irq->source);
BUG_ON(!src);
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source)
irq->pending_latch = true;
}
}
if (irq->active)
val |= ICH_LR_ACTIVE_BIT;
if (irq->hw) {
val |= ICH_LR_HW;
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
/*
* Never set pending+active on a HW interrupt, as the
* pending state is kept at the physical distributor
* level.
*/
if (irq->active && irq_is_pending(irq))
val &= ~ICH_LR_PENDING_BIT;
} else {
if (irq->config == VGIC_CONFIG_LEVEL)
val |= ICH_LR_EOI;
}
/*
* We currently only support Group1 interrupts, which is a
* known defect. This needs to be addressed at some point.
*/
if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
val |= ICH_LR_GROUP;
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
ICH_VMCR_ACK_CTL_MASK;
vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
ICH_VMCR_FIQ_EN_MASK;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcr = ICH_VMCR_FIQ_EN_MASK;
}
vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
ICH_VMCR_ACK_CTL_SHIFT;
vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
ICH_VMCR_FIQ_EN_SHIFT;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcrp->fiqen = 1;
vmcrp->ackctl = 0;
}
vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
}
#define INITIAL_PENDBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vgic_v3->vgic_vmcr = 0;
vgic_v3->vgic_elrsr = ~0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* Also, we don't support any form of IRQ/FIQ bypass.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
ICC_SRE_EL1_DFB |
ICC_SRE_EL1_SRE);
vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
} else {
vgic_v3->vgic_sre = 0;
}
vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_ID_BITS_MASK) >>
ICH_VTR_ID_BITS_SHIFT;
vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_PRI_BITS_MASK) >>
ICH_VTR_PRI_BITS_SHIFT) + 1;
/* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN;
if (group0_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
if (group1_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
if (common_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TC;
}
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
struct kvm_vcpu *vcpu;
int byte_offset, bit_nr;
gpa_t pendbase, ptr;
bool status;
u8 val;
int ret;
unsigned long flags;
retry:
vcpu = irq->target_vcpu;
if (!vcpu)
return 0;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
ret = kvm_read_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
status = val & (1 << bit_nr);
spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->target_vcpu != vcpu) {
spin_unlock_irqrestore(&irq->irq_lock, flags);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
if (status) {
/* clear consumed data */
val &= ~(1 << bit_nr);
ret = kvm_write_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_its_save_pending_tables - Save the pending tables into guest RAM
* kvm lock and all vcpu lock must be held
*/
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int last_byte_offset = -1;
struct vgic_irq *irq;
int ret;
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
int byte_offset, bit_nr;
struct kvm_vcpu *vcpu;
gpa_t pendbase, ptr;
bool stored;
u8 val;
vcpu = irq->target_vcpu;
if (!vcpu)
continue;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
if (byte_offset != last_byte_offset) {
ret = kvm_read_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
last_byte_offset = byte_offset;
}
stored = val & (1U << bit_nr);
if (stored == irq->pending_latch)
continue;
if (irq->pending_latch)
val |= 1 << bit_nr;
else
val &= ~(1 << bit_nr);
ret = kvm_write_guest(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/*
* Check for overlapping regions and for regions crossing the end of memory
* for base addresses which have already been set.
*/
bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE;
redist_size *= atomic_read(&kvm->online_vcpus);
if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
if (!IS_VGIC_ADDR_UNDEF(d->vgic_redist_base) &&
d->vgic_redist_base + redist_size < d->vgic_redist_base)
return false;
/* Both base addresses must be set to check if they overlap */
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(d->vgic_redist_base))
return true;
if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base)
return true;
if (d->vgic_redist_base + redist_size <= d->vgic_dist_base)
return true;
return false;
}
int vgic_v3_map_resources(struct kvm *kvm)
{
int ret = 0;
struct vgic_dist *dist = &kvm->arch.vgic;
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
ret = -ENXIO;
goto out;
}
if (!vgic_v3_check_base(kvm)) {
kvm_err("VGIC redist and dist frames overlap\n");
ret = -EINVAL;
goto out;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
ret = -EBUSY;
goto out;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
if (ret) {
kvm_err("Unable to register VGICv3 dist MMIO regions\n");
goto out;
}
dist->ready = true;
out:
return ret;
}
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
static int __init early_group0_trap_cfg(char *buf)
{
return strtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
static int __init early_group1_trap_cfg(char *buf)
{
return strtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
static int __init early_common_trap_cfg(char *buf)
{
return strtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
/**
* vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
* @node: pointer to the DT node
*
* Returns 0 if a GICv3 has been found, returns an error code otherwise
*/
int vgic_v3_probe(const struct gic_kvm_info *info)
{
u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
int ret;
/*
* The ListRegs field is 5 bits, but there is a architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
kvm_vgic_global_state.can_emulate_gicv2 = false;
kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
if (!info->vcpu.start) {
kvm_info("GICv3: no GICV resource entry\n");
kvm_vgic_global_state.vcpu_base = 0;
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)info->vcpu.start);
kvm_vgic_global_state.vcpu_base = 0;
} else if (!PAGE_ALIGNED(resource_size(&info->vcpu))) {
pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n",
(unsigned long long)resource_size(&info->vcpu),
PAGE_SIZE);
kvm_vgic_global_state.vcpu_base = 0;
} else {
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
#ifdef CONFIG_ARM64
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
group0_trap = true;
group1_trap = true;
}
#endif
if (group0_trap || group1_trap || common_trap) {
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
group0_trap ? "G0" : "",
group1_trap ? "G1" : "",
common_trap ? "C" : "");
static_branch_enable(&vgic_v3_cpuif_trap);
}
kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
return 0;
}
void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (likely(cpu_if->vgic_sre))
cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
}