mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-03 02:16:40 +07:00
10917b8393
We can use debug_pagealloc_enabled() to check if we can map the identity mapping with 1MB/2GB pages as well as to print the current setting in dump_stack. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
415 lines
9.3 KiB
C
415 lines
9.3 KiB
C
/*
|
|
* Copyright IBM Corp. 2006
|
|
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
*/
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/memblock.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
|
|
static DEFINE_MUTEX(vmem_mutex);
|
|
|
|
struct memory_segment {
|
|
struct list_head list;
|
|
unsigned long start;
|
|
unsigned long size;
|
|
};
|
|
|
|
static LIST_HEAD(mem_segs);
|
|
|
|
static void __ref *vmem_alloc_pages(unsigned int order)
|
|
{
|
|
if (slab_is_available())
|
|
return (void *)__get_free_pages(GFP_KERNEL, order);
|
|
return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
|
|
}
|
|
|
|
static inline pud_t *vmem_pud_alloc(void)
|
|
{
|
|
pud_t *pud = NULL;
|
|
|
|
pud = vmem_alloc_pages(2);
|
|
if (!pud)
|
|
return NULL;
|
|
clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
|
|
return pud;
|
|
}
|
|
|
|
static inline pmd_t *vmem_pmd_alloc(void)
|
|
{
|
|
pmd_t *pmd = NULL;
|
|
|
|
pmd = vmem_alloc_pages(2);
|
|
if (!pmd)
|
|
return NULL;
|
|
clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
|
|
return pmd;
|
|
}
|
|
|
|
static pte_t __ref *vmem_pte_alloc(unsigned long address)
|
|
{
|
|
pte_t *pte;
|
|
|
|
if (slab_is_available())
|
|
pte = (pte_t *) page_table_alloc(&init_mm);
|
|
else
|
|
pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
|
|
PTRS_PER_PTE * sizeof(pte_t));
|
|
if (!pte)
|
|
return NULL;
|
|
clear_table((unsigned long *) pte, _PAGE_INVALID,
|
|
PTRS_PER_PTE * sizeof(pte_t));
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* Add a physical memory range to the 1:1 mapping.
|
|
*/
|
|
static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
|
|
{
|
|
unsigned long end = start + size;
|
|
unsigned long address = start;
|
|
pgd_t *pg_dir;
|
|
pud_t *pu_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
int ret = -ENOMEM;
|
|
|
|
while (address < end) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
pu_dir = vmem_pud_alloc();
|
|
if (!pu_dir)
|
|
goto out;
|
|
pgd_populate(&init_mm, pg_dir, pu_dir);
|
|
}
|
|
pu_dir = pud_offset(pg_dir, address);
|
|
if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
|
|
!(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
|
|
!debug_pagealloc_enabled()) {
|
|
pud_val(*pu_dir) = __pa(address) |
|
|
_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
|
|
(ro ? _REGION_ENTRY_PROTECT : 0);
|
|
address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
if (pud_none(*pu_dir)) {
|
|
pm_dir = vmem_pmd_alloc();
|
|
if (!pm_dir)
|
|
goto out;
|
|
pud_populate(&init_mm, pu_dir, pm_dir);
|
|
}
|
|
pm_dir = pmd_offset(pu_dir, address);
|
|
if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
|
|
!(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
|
|
!debug_pagealloc_enabled()) {
|
|
pmd_val(*pm_dir) = __pa(address) |
|
|
_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
|
|
_SEGMENT_ENTRY_YOUNG |
|
|
(ro ? _SEGMENT_ENTRY_PROTECT : 0);
|
|
address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
if (pmd_none(*pm_dir)) {
|
|
pt_dir = vmem_pte_alloc(address);
|
|
if (!pt_dir)
|
|
goto out;
|
|
pmd_populate(&init_mm, pm_dir, pt_dir);
|
|
}
|
|
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
pte_val(*pt_dir) = __pa(address) |
|
|
pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
|
|
address += PAGE_SIZE;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a physical memory range from the 1:1 mapping.
|
|
* Currently only invalidates page table entries.
|
|
*/
|
|
static void vmem_remove_range(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long end = start + size;
|
|
unsigned long address = start;
|
|
pgd_t *pg_dir;
|
|
pud_t *pu_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
pte_t pte;
|
|
|
|
pte_val(pte) = _PAGE_INVALID;
|
|
while (address < end) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
address += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
pu_dir = pud_offset(pg_dir, address);
|
|
if (pud_none(*pu_dir)) {
|
|
address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
if (pud_large(*pu_dir)) {
|
|
pud_clear(pu_dir);
|
|
address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
pm_dir = pmd_offset(pu_dir, address);
|
|
if (pmd_none(*pm_dir)) {
|
|
address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
if (pmd_large(*pm_dir)) {
|
|
pmd_clear(pm_dir);
|
|
address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
*pt_dir = pte;
|
|
address += PAGE_SIZE;
|
|
}
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
/*
|
|
* Add a backed mem_map array to the virtual mem_map array.
|
|
*/
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
|
|
{
|
|
unsigned long address = start;
|
|
pgd_t *pg_dir;
|
|
pud_t *pu_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
int ret = -ENOMEM;
|
|
|
|
for (address = start; address < end;) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
pu_dir = vmem_pud_alloc();
|
|
if (!pu_dir)
|
|
goto out;
|
|
pgd_populate(&init_mm, pg_dir, pu_dir);
|
|
}
|
|
|
|
pu_dir = pud_offset(pg_dir, address);
|
|
if (pud_none(*pu_dir)) {
|
|
pm_dir = vmem_pmd_alloc();
|
|
if (!pm_dir)
|
|
goto out;
|
|
pud_populate(&init_mm, pu_dir, pm_dir);
|
|
}
|
|
|
|
pm_dir = pmd_offset(pu_dir, address);
|
|
if (pmd_none(*pm_dir)) {
|
|
/* Use 1MB frames for vmemmap if available. We always
|
|
* use large frames even if they are only partially
|
|
* used.
|
|
* Otherwise we would have also page tables since
|
|
* vmemmap_populate gets called for each section
|
|
* separately. */
|
|
if (MACHINE_HAS_EDAT1) {
|
|
void *new_page;
|
|
|
|
new_page = vmemmap_alloc_block(PMD_SIZE, node);
|
|
if (!new_page)
|
|
goto out;
|
|
pmd_val(*pm_dir) = __pa(new_page) |
|
|
_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
|
|
address = (address + PMD_SIZE) & PMD_MASK;
|
|
continue;
|
|
}
|
|
pt_dir = vmem_pte_alloc(address);
|
|
if (!pt_dir)
|
|
goto out;
|
|
pmd_populate(&init_mm, pm_dir, pt_dir);
|
|
} else if (pmd_large(*pm_dir)) {
|
|
address = (address + PMD_SIZE) & PMD_MASK;
|
|
continue;
|
|
}
|
|
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
if (pte_none(*pt_dir)) {
|
|
void *new_page;
|
|
|
|
new_page = vmemmap_alloc_block(PAGE_SIZE, node);
|
|
if (!new_page)
|
|
goto out;
|
|
pte_val(*pt_dir) =
|
|
__pa(new_page) | pgprot_val(PAGE_KERNEL);
|
|
}
|
|
address += PAGE_SIZE;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void vmemmap_free(unsigned long start, unsigned long end)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Add memory segment to the segment list if it doesn't overlap with
|
|
* an already present segment.
|
|
*/
|
|
static int insert_memory_segment(struct memory_segment *seg)
|
|
{
|
|
struct memory_segment *tmp;
|
|
|
|
if (seg->start + seg->size > VMEM_MAX_PHYS ||
|
|
seg->start + seg->size < seg->start)
|
|
return -ERANGE;
|
|
|
|
list_for_each_entry(tmp, &mem_segs, list) {
|
|
if (seg->start >= tmp->start + tmp->size)
|
|
continue;
|
|
if (seg->start + seg->size <= tmp->start)
|
|
continue;
|
|
return -ENOSPC;
|
|
}
|
|
list_add(&seg->list, &mem_segs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove memory segment from the segment list.
|
|
*/
|
|
static void remove_memory_segment(struct memory_segment *seg)
|
|
{
|
|
list_del(&seg->list);
|
|
}
|
|
|
|
static void __remove_shared_memory(struct memory_segment *seg)
|
|
{
|
|
remove_memory_segment(seg);
|
|
vmem_remove_range(seg->start, seg->size);
|
|
}
|
|
|
|
int vmem_remove_mapping(unsigned long start, unsigned long size)
|
|
{
|
|
struct memory_segment *seg;
|
|
int ret;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
|
|
ret = -ENOENT;
|
|
list_for_each_entry(seg, &mem_segs, list) {
|
|
if (seg->start == start && seg->size == size)
|
|
break;
|
|
}
|
|
|
|
if (seg->start != start || seg->size != size)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
__remove_shared_memory(seg);
|
|
kfree(seg);
|
|
out:
|
|
mutex_unlock(&vmem_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int vmem_add_mapping(unsigned long start, unsigned long size)
|
|
{
|
|
struct memory_segment *seg;
|
|
int ret;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
ret = -ENOMEM;
|
|
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
|
|
if (!seg)
|
|
goto out;
|
|
seg->start = start;
|
|
seg->size = size;
|
|
|
|
ret = insert_memory_segment(seg);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = vmem_add_mem(start, size, 0);
|
|
if (ret)
|
|
goto out_remove;
|
|
goto out;
|
|
|
|
out_remove:
|
|
__remove_shared_memory(seg);
|
|
out_free:
|
|
kfree(seg);
|
|
out:
|
|
mutex_unlock(&vmem_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* map whole physical memory to virtual memory (identity mapping)
|
|
* we reserve enough space in the vmalloc area for vmemmap to hotplug
|
|
* additional memory segments.
|
|
*/
|
|
void __init vmem_map_init(void)
|
|
{
|
|
unsigned long ro_start, ro_end;
|
|
struct memblock_region *reg;
|
|
phys_addr_t start, end;
|
|
|
|
ro_start = PFN_ALIGN((unsigned long)&_stext);
|
|
ro_end = (unsigned long)&_eshared & PAGE_MASK;
|
|
for_each_memblock(memory, reg) {
|
|
start = reg->base;
|
|
end = reg->base + reg->size - 1;
|
|
if (start >= ro_end || end <= ro_start)
|
|
vmem_add_mem(start, end - start, 0);
|
|
else if (start >= ro_start && end <= ro_end)
|
|
vmem_add_mem(start, end - start, 1);
|
|
else if (start >= ro_start) {
|
|
vmem_add_mem(start, ro_end - start, 1);
|
|
vmem_add_mem(ro_end, end - ro_end, 0);
|
|
} else if (end < ro_end) {
|
|
vmem_add_mem(start, ro_start - start, 0);
|
|
vmem_add_mem(ro_start, end - ro_start, 1);
|
|
} else {
|
|
vmem_add_mem(start, ro_start - start, 0);
|
|
vmem_add_mem(ro_start, ro_end - ro_start, 1);
|
|
vmem_add_mem(ro_end, end - ro_end, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert memblock.memory to a memory segment list so there is a single
|
|
* list that contains all memory segments.
|
|
*/
|
|
static int __init vmem_convert_memory_chunk(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
struct memory_segment *seg;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
for_each_memblock(memory, reg) {
|
|
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
|
|
if (!seg)
|
|
panic("Out of memory...\n");
|
|
seg->start = reg->base;
|
|
seg->size = reg->size;
|
|
insert_memory_segment(seg);
|
|
}
|
|
mutex_unlock(&vmem_mutex);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(vmem_convert_memory_chunk);
|