mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-01 05:46:40 +07:00
d016bf7ece
LKP has triggered a compiler warning after my recent patch "mm: account pmd page tables to the process": mm/mmap.c: In function 'exit_mmap': >> mm/mmap.c:2857:2: warning: right shift count >= width of type [enabled by default] The code: > 2857 WARN_ON(mm_nr_pmds(mm) > 2858 round_up(FIRST_USER_ADDRESS, PUD_SIZE) >> PUD_SHIFT); In this, on tile, we have FIRST_USER_ADDRESS defined as 0. round_up() has the same type -- int. PUD_SHIFT. I think the best way to fix it is to define FIRST_USER_ADDRESS as unsigned long. On every arch for consistency. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
452 lines
14 KiB
C
452 lines
14 KiB
C
/*
|
|
* OpenRISC Linux
|
|
*
|
|
* Linux architectural port borrowing liberally from similar works of
|
|
* others. All original copyrights apply as per the original source
|
|
* declaration.
|
|
*
|
|
* OpenRISC implementation:
|
|
* Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
|
|
* Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
|
|
* et al.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
/* or32 pgtable.h - macros and functions to manipulate page tables
|
|
*
|
|
* Based on:
|
|
* include/asm-cris/pgtable.h
|
|
*/
|
|
|
|
#ifndef __ASM_OPENRISC_PGTABLE_H
|
|
#define __ASM_OPENRISC_PGTABLE_H
|
|
|
|
#include <asm-generic/pgtable-nopmd.h>
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <asm/mmu.h>
|
|
#include <asm/fixmap.h>
|
|
|
|
/*
|
|
* The Linux memory management assumes a three-level page table setup. On
|
|
* or32, we use that, but "fold" the mid level into the top-level page
|
|
* table. Since the MMU TLB is software loaded through an interrupt, it
|
|
* supports any page table structure, so we could have used a three-level
|
|
* setup, but for the amounts of memory we normally use, a two-level is
|
|
* probably more efficient.
|
|
*
|
|
* This file contains the functions and defines necessary to modify and use
|
|
* the or32 page table tree.
|
|
*/
|
|
|
|
extern void paging_init(void);
|
|
|
|
/* Certain architectures need to do special things when pte's
|
|
* within a page table are directly modified. Thus, the following
|
|
* hook is made available.
|
|
*/
|
|
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
|
#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
|
|
/*
|
|
* (pmds are folded into pgds so this doesn't get actually called,
|
|
* but the define is needed for a generic inline function.)
|
|
*/
|
|
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
|
|
|
|
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
/*
|
|
* entries per page directory level: we use a two-level, so
|
|
* we don't really have any PMD directory physically.
|
|
* pointers are 4 bytes so we can use the page size and
|
|
* divide it by 4 (shift by 2).
|
|
*/
|
|
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
|
|
|
|
#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2))
|
|
|
|
/* calculate how many PGD entries a user-level program can use
|
|
* the first mappable virtual address is 0
|
|
* (TASK_SIZE is the maximum virtual address space)
|
|
*/
|
|
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
|
|
#define FIRST_USER_ADDRESS 0UL
|
|
|
|
/*
|
|
* Kernels own virtual memory area.
|
|
*/
|
|
|
|
/*
|
|
* The size and location of the vmalloc area are chosen so that modules
|
|
* placed in this area aren't more than a 28-bit signed offset from any
|
|
* kernel functions that they may need. This greatly simplifies handling
|
|
* of the relocations for l.j and l.jal instructions as we don't need to
|
|
* introduce any trampolines for reaching "distant" code.
|
|
*
|
|
* 64 MB of vmalloc area is comparable to what's available on other arches.
|
|
*/
|
|
|
|
#define VMALLOC_START (PAGE_OFFSET-0x04000000)
|
|
#define VMALLOC_END (PAGE_OFFSET)
|
|
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
|
|
|
/* Define some higher level generic page attributes.
|
|
*
|
|
* If you change _PAGE_CI definition be sure to change it in
|
|
* io.h for ioremap_nocache() too.
|
|
*/
|
|
|
|
/*
|
|
* An OR32 PTE looks like this:
|
|
*
|
|
* | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|
|
* Phys pg.num L PP Index D A WOM WBC CI CC
|
|
*
|
|
* L : link
|
|
* PPI: Page protection index
|
|
* D : Dirty
|
|
* A : Accessed
|
|
* WOM: Weakly ordered memory
|
|
* WBC: Write-back cache
|
|
* CI : Cache inhibit
|
|
* CC : Cache coherent
|
|
*
|
|
* The protection bits below should correspond to the layout of the actual
|
|
* PTE as per above
|
|
*/
|
|
|
|
#define _PAGE_CC 0x001 /* software: pte contains a translation */
|
|
#define _PAGE_CI 0x002 /* cache inhibit */
|
|
#define _PAGE_WBC 0x004 /* write back cache */
|
|
#define _PAGE_WOM 0x008 /* weakly ordered memory */
|
|
|
|
#define _PAGE_A 0x010 /* accessed */
|
|
#define _PAGE_D 0x020 /* dirty */
|
|
#define _PAGE_URE 0x040 /* user read enable */
|
|
#define _PAGE_UWE 0x080 /* user write enable */
|
|
|
|
#define _PAGE_SRE 0x100 /* superuser read enable */
|
|
#define _PAGE_SWE 0x200 /* superuser write enable */
|
|
#define _PAGE_EXEC 0x400 /* software: page is executable */
|
|
#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
|
|
|
|
/* 0x001 is cache coherency bit, which should always be set to
|
|
* 1 - for SMP (when we support it)
|
|
* 0 - otherwise
|
|
*
|
|
* we just reuse this bit in software for _PAGE_PRESENT and
|
|
* force it to 0 when loading it into TLB.
|
|
*/
|
|
#define _PAGE_PRESENT _PAGE_CC
|
|
#define _PAGE_USER _PAGE_URE
|
|
#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
|
|
#define _PAGE_DIRTY _PAGE_D
|
|
#define _PAGE_ACCESSED _PAGE_A
|
|
#define _PAGE_NO_CACHE _PAGE_CI
|
|
#define _PAGE_SHARED _PAGE_U_SHARED
|
|
#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
|
|
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
|
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
|
|
#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
|
|
#define _KERNPG_TABLE \
|
|
(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
|
|
|
|
#define PAGE_NONE __pgprot(_PAGE_ALL)
|
|
#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
|
|
#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
|
|
#define PAGE_SHARED \
|
|
__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
|
|
| _PAGE_SHARED)
|
|
#define PAGE_SHARED_X \
|
|
__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
|
|
| _PAGE_SHARED | _PAGE_EXEC)
|
|
#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
|
|
#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
|
|
|
|
#define PAGE_KERNEL \
|
|
__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
|
|
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
|
|
#define PAGE_KERNEL_RO \
|
|
__pgprot(_PAGE_ALL | _PAGE_SRE \
|
|
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
|
|
#define PAGE_KERNEL_NOCACHE \
|
|
__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
|
|
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
|
|
|
|
#define __P000 PAGE_NONE
|
|
#define __P001 PAGE_READONLY_X
|
|
#define __P010 PAGE_COPY
|
|
#define __P011 PAGE_COPY_X
|
|
#define __P100 PAGE_READONLY
|
|
#define __P101 PAGE_READONLY_X
|
|
#define __P110 PAGE_COPY
|
|
#define __P111 PAGE_COPY_X
|
|
|
|
#define __S000 PAGE_NONE
|
|
#define __S001 PAGE_READONLY_X
|
|
#define __S010 PAGE_SHARED
|
|
#define __S011 PAGE_SHARED_X
|
|
#define __S100 PAGE_READONLY
|
|
#define __S101 PAGE_READONLY_X
|
|
#define __S110 PAGE_SHARED
|
|
#define __S111 PAGE_SHARED_X
|
|
|
|
/* zero page used for uninitialized stuff */
|
|
extern unsigned long empty_zero_page[2048];
|
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
|
|
|
/* number of bits that fit into a memory pointer */
|
|
#define BITS_PER_PTR (8*sizeof(unsigned long))
|
|
|
|
/* to align the pointer to a pointer address */
|
|
#define PTR_MASK (~(sizeof(void *)-1))
|
|
|
|
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
|
|
/* 64-bit machines, beware! SRB. */
|
|
#define SIZEOF_PTR_LOG2 2
|
|
|
|
/* to find an entry in a page-table */
|
|
#define PAGE_PTR(address) \
|
|
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
|
|
|
|
/* to set the page-dir */
|
|
#define SET_PAGE_DIR(tsk, pgdir)
|
|
|
|
#define pte_none(x) (!pte_val(x))
|
|
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
|
|
#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
|
|
|
|
#define pmd_none(x) (!pmd_val(x))
|
|
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
|
|
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
|
|
#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
|
|
|
|
/*
|
|
* The following only work if pte_present() is true.
|
|
* Undefined behaviour if not..
|
|
*/
|
|
|
|
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
|
|
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
|
|
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
|
|
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
|
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
|
static inline int pte_special(pte_t pte) { return 0; }
|
|
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
|
|
|
|
static inline pte_t pte_wrprotect(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~(_PAGE_WRITE);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_rdprotect(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~(_PAGE_READ);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_exprotect(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~(_PAGE_EXEC);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkclean(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~(_PAGE_DIRTY);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkold(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~(_PAGE_ACCESSED);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkwrite(pte_t pte)
|
|
{
|
|
pte_val(pte) |= _PAGE_WRITE;
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkread(pte_t pte)
|
|
{
|
|
pte_val(pte) |= _PAGE_READ;
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkexec(pte_t pte)
|
|
{
|
|
pte_val(pte) |= _PAGE_EXEC;
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkdirty(pte_t pte)
|
|
{
|
|
pte_val(pte) |= _PAGE_DIRTY;
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkyoung(pte_t pte)
|
|
{
|
|
pte_val(pte) |= _PAGE_ACCESSED;
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*/
|
|
|
|
/* What actually goes as arguments to the various functions is less than
|
|
* obvious, but a rule of thumb is that struct page's goes as struct page *,
|
|
* really physical DRAM addresses are unsigned long's, and DRAM "virtual"
|
|
* addresses (the 0xc0xxxxxx's) goes as void *'s.
|
|
*/
|
|
|
|
static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
|
|
{
|
|
pte_t pte;
|
|
/* the PTE needs a physical address */
|
|
pte_val(pte) = __pa(page) | pgprot_val(pgprot);
|
|
return pte;
|
|
}
|
|
|
|
#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
|
|
|
|
#define mk_pte_phys(physpage, pgprot) \
|
|
({ \
|
|
pte_t __pte; \
|
|
\
|
|
pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
|
|
__pte; \
|
|
})
|
|
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
|
return pte;
|
|
}
|
|
|
|
|
|
/*
|
|
* pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
|
|
* __pte_page(pte_val) refers to the "virtual" DRAM interval
|
|
* pte_pagenr refers to the page-number counted starting from the virtual
|
|
* DRAM start
|
|
*/
|
|
|
|
static inline unsigned long __pte_page(pte_t pte)
|
|
{
|
|
/* the PTE contains a physical address */
|
|
return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
|
|
}
|
|
|
|
#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
|
|
|
|
/* permanent address of a page */
|
|
|
|
#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
|
|
#define pte_page(pte) (mem_map+pte_pagenr(pte))
|
|
|
|
/*
|
|
* only the pte's themselves need to point to physical DRAM (see above)
|
|
* the pagetable links are purely handled within the kernel SW and thus
|
|
* don't need the __pa and __va transformations.
|
|
*/
|
|
static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
|
|
{
|
|
pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
|
|
}
|
|
|
|
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
|
|
#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
|
|
|
|
/* to find an entry in a page-table-directory. */
|
|
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
|
|
|
|
#define __pgd_offset(address) pgd_index(address)
|
|
|
|
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
|
|
|
|
/* to find an entry in a kernel page-table-directory */
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
|
#define __pmd_offset(address) \
|
|
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
|
|
|
|
/*
|
|
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
|
|
*
|
|
* this macro returns the index of the entry in the pte page which would
|
|
* control the given virtual address
|
|
*/
|
|
#define __pte_offset(address) \
|
|
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
#define pte_offset_kernel(dir, address) \
|
|
((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
|
|
#define pte_offset_map(dir, address) \
|
|
((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
|
|
#define pte_offset_map_nested(dir, address) \
|
|
pte_offset_map(dir, address)
|
|
|
|
#define pte_unmap(pte) do { } while (0)
|
|
#define pte_unmap_nested(pte) do { } while (0)
|
|
#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
|
|
#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
|
|
|
|
#define pte_ERROR(e) \
|
|
printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
|
|
__FILE__, __LINE__, &(e), pte_val(e))
|
|
#define pgd_ERROR(e) \
|
|
printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
|
|
__FILE__, __LINE__, &(e), pgd_val(e))
|
|
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
|
|
|
|
/*
|
|
* or32 doesn't have any external MMU info: the kernel page
|
|
* tables contain all the necessary information.
|
|
*
|
|
* Actually I am not sure on what this could be used for.
|
|
*/
|
|
static inline void update_mmu_cache(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *pte)
|
|
{
|
|
}
|
|
|
|
/* __PHX__ FIXME, SWAP, this probably doesn't work */
|
|
|
|
/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
|
|
/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
|
|
|
|
#define __swp_type(x) (((x).val >> 5) & 0x7f)
|
|
#define __swp_offset(x) ((x).val >> 12)
|
|
#define __swp_entry(type, offset) \
|
|
((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
|
#define kern_addr_valid(addr) (1)
|
|
|
|
#include <asm-generic/pgtable.h>
|
|
|
|
/*
|
|
* No page table caches to initialise
|
|
*/
|
|
#define pgtable_cache_init() do { } while (0)
|
|
|
|
typedef pte_t *pte_addr_t;
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* __ASM_OPENRISC_PGTABLE_H */
|