mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 04:56:48 +07:00
be2864cfff
The RX code in ath9k uses sc_keymap to figure out whether a default key was used. However, the default key entries in sc_keymap were always set and as such, frames could have been claimed to be decrypted by hardware when they were not. This can cause problems especially with TKIP since mac80211 is validating the Michael MIC in the frame and this will result in MIC failure and potentially TKIP countermeasures if the frame was not decrypted correctly. Change key cache slot allocation to mark only the keys that really have been used in sc_keymap to avoid the issue. The key cache slot selection routines are now internally avoiding the slots that may be needed for TKIP group keys. Signed-off-by: Jouni Malinen <jouni.malinen@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2801 lines
71 KiB
C
2801 lines
71 KiB
C
/*
|
|
* Copyright (c) 2008 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/nl80211.h>
|
|
#include "core.h"
|
|
#include "reg.h"
|
|
#include "hw.h"
|
|
|
|
#define ATH_PCI_VERSION "0.1"
|
|
|
|
static char *dev_info = "ath9k";
|
|
|
|
MODULE_AUTHOR("Atheros Communications");
|
|
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
|
|
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
|
|
static struct pci_device_id ath_pci_id_table[] __devinitdata = {
|
|
{ PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
|
|
{ PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
|
|
{ PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
|
|
{ PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
|
|
{ PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
|
|
{ PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
|
|
{ 0 }
|
|
};
|
|
|
|
static void ath_detach(struct ath_softc *sc);
|
|
|
|
/* return bus cachesize in 4B word units */
|
|
|
|
static void bus_read_cachesize(struct ath_softc *sc, int *csz)
|
|
{
|
|
u8 u8tmp;
|
|
|
|
pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
|
|
*csz = (int)u8tmp;
|
|
|
|
/*
|
|
* This check was put in to avoid "unplesant" consequences if
|
|
* the bootrom has not fully initialized all PCI devices.
|
|
* Sometimes the cache line size register is not set
|
|
*/
|
|
|
|
if (*csz == 0)
|
|
*csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
|
|
}
|
|
|
|
static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
|
|
{
|
|
sc->cur_rate_table = sc->hw_rate_table[mode];
|
|
/*
|
|
* All protection frames are transmited at 2Mb/s for
|
|
* 11g, otherwise at 1Mb/s.
|
|
* XXX select protection rate index from rate table.
|
|
*/
|
|
sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
|
|
}
|
|
|
|
static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
|
|
{
|
|
if (chan->chanmode == CHANNEL_A)
|
|
return ATH9K_MODE_11A;
|
|
else if (chan->chanmode == CHANNEL_G)
|
|
return ATH9K_MODE_11G;
|
|
else if (chan->chanmode == CHANNEL_B)
|
|
return ATH9K_MODE_11B;
|
|
else if (chan->chanmode == CHANNEL_A_HT20)
|
|
return ATH9K_MODE_11NA_HT20;
|
|
else if (chan->chanmode == CHANNEL_G_HT20)
|
|
return ATH9K_MODE_11NG_HT20;
|
|
else if (chan->chanmode == CHANNEL_A_HT40PLUS)
|
|
return ATH9K_MODE_11NA_HT40PLUS;
|
|
else if (chan->chanmode == CHANNEL_A_HT40MINUS)
|
|
return ATH9K_MODE_11NA_HT40MINUS;
|
|
else if (chan->chanmode == CHANNEL_G_HT40PLUS)
|
|
return ATH9K_MODE_11NG_HT40PLUS;
|
|
else if (chan->chanmode == CHANNEL_G_HT40MINUS)
|
|
return ATH9K_MODE_11NG_HT40MINUS;
|
|
|
|
WARN_ON(1); /* should not get here */
|
|
|
|
return ATH9K_MODE_11B;
|
|
}
|
|
|
|
static void ath_update_txpow(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u32 txpow;
|
|
|
|
if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
|
|
ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
|
|
/* read back in case value is clamped */
|
|
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
|
|
sc->sc_curtxpow = txpow;
|
|
}
|
|
}
|
|
|
|
static u8 parse_mpdudensity(u8 mpdudensity)
|
|
{
|
|
/*
|
|
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
|
|
* 0 for no restriction
|
|
* 1 for 1/4 us
|
|
* 2 for 1/2 us
|
|
* 3 for 1 us
|
|
* 4 for 2 us
|
|
* 5 for 4 us
|
|
* 6 for 8 us
|
|
* 7 for 16 us
|
|
*/
|
|
switch (mpdudensity) {
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
/* Our lower layer calculations limit our precision to
|
|
1 microsecond */
|
|
return 1;
|
|
case 4:
|
|
return 2;
|
|
case 5:
|
|
return 4;
|
|
case 6:
|
|
return 8;
|
|
case 7:
|
|
return 16;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
|
|
{
|
|
struct ath_rate_table *rate_table = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_rate *rate;
|
|
int i, maxrates;
|
|
|
|
switch (band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (rate_table == NULL)
|
|
return;
|
|
|
|
sband = &sc->sbands[band];
|
|
rate = sc->rates[band];
|
|
|
|
if (rate_table->rate_cnt > ATH_RATE_MAX)
|
|
maxrates = ATH_RATE_MAX;
|
|
else
|
|
maxrates = rate_table->rate_cnt;
|
|
|
|
for (i = 0; i < maxrates; i++) {
|
|
rate[i].bitrate = rate_table->info[i].ratekbps / 100;
|
|
rate[i].hw_value = rate_table->info[i].ratecode;
|
|
sband->n_bitrates++;
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
|
|
rate[i].bitrate / 10, rate[i].hw_value);
|
|
}
|
|
}
|
|
|
|
static int ath_setup_channels(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int nchan, i, a = 0, b = 0;
|
|
u8 regclassids[ATH_REGCLASSIDS_MAX];
|
|
u32 nregclass = 0;
|
|
struct ieee80211_supported_band *band_2ghz;
|
|
struct ieee80211_supported_band *band_5ghz;
|
|
struct ieee80211_channel *chan_2ghz;
|
|
struct ieee80211_channel *chan_5ghz;
|
|
struct ath9k_channel *c;
|
|
|
|
/* Fill in ah->ah_channels */
|
|
if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
|
|
regclassids, ATH_REGCLASSIDS_MAX,
|
|
&nregclass, CTRY_DEFAULT, false, 1)) {
|
|
u32 rd = ah->ah_currentRD;
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to collect channel list; "
|
|
"regdomain likely %u country code %u\n",
|
|
rd, CTRY_DEFAULT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
|
|
band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
|
|
chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
|
|
chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
|
|
|
|
for (i = 0; i < nchan; i++) {
|
|
c = &ah->ah_channels[i];
|
|
if (IS_CHAN_2GHZ(c)) {
|
|
chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
|
|
chan_2ghz[a].center_freq = c->channel;
|
|
chan_2ghz[a].max_power = c->maxTxPower;
|
|
|
|
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
|
|
chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (c->channelFlags & CHANNEL_PASSIVE)
|
|
chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
|
|
band_2ghz->n_channels = ++a;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
|
|
"channelFlags: 0x%x\n",
|
|
c->channel, c->channelFlags);
|
|
} else if (IS_CHAN_5GHZ(c)) {
|
|
chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
|
|
chan_5ghz[b].center_freq = c->channel;
|
|
chan_5ghz[b].max_power = c->maxTxPower;
|
|
|
|
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
|
|
chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (c->channelFlags & CHANNEL_PASSIVE)
|
|
chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
|
|
band_5ghz->n_channels = ++b;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
|
|
"channelFlags: 0x%x\n",
|
|
c->channel, c->channelFlags);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed, it's done
|
|
* by reseting the chip. To accomplish this we must first cleanup any pending
|
|
* DMA, then restart stuff.
|
|
*/
|
|
static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
bool fastcc = true, stopped;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID)
|
|
return -EIO;
|
|
|
|
if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
|
|
hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
|
|
(sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
|
|
(sc->sc_flags & SC_OP_FULL_RESET)) {
|
|
int status;
|
|
/*
|
|
* This is only performed if the channel settings have
|
|
* actually changed.
|
|
*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
ath_draintxq(sc, false);
|
|
stopped = ath_stoprecv(sc);
|
|
|
|
/* XXX: do not flush receive queue here. We don't want
|
|
* to flush data frames already in queue because of
|
|
* changing channel. */
|
|
|
|
if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
|
|
fastcc = false;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
|
|
sc->sc_ah->ah_curchan->channel,
|
|
hchan->channel, hchan->channelFlags, sc->tx_chan_width);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing, fastcc, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset channel %u (%uMhz) "
|
|
"flags 0x%x hal status %u\n",
|
|
ath9k_hw_mhz2ieee(ah, hchan->channel,
|
|
hchan->channelFlags),
|
|
hchan->channel, hchan->channelFlags, status);
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
return -EIO;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
|
|
sc->sc_flags &= ~SC_OP_FULL_RESET;
|
|
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to restart recv logic\n");
|
|
return -EIO;
|
|
}
|
|
|
|
ath_setcurmode(sc, ath_chan2mode(hchan));
|
|
ath_update_txpow(sc);
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine performs the periodic noise floor calibration function
|
|
* that is used to adjust and optimize the chip performance. This
|
|
* takes environmental changes (location, temperature) into account.
|
|
* When the task is complete, it reschedules itself depending on the
|
|
* appropriate interval that was calculated.
|
|
*/
|
|
static void ath_ani_calibrate(unsigned long data)
|
|
{
|
|
struct ath_softc *sc;
|
|
struct ath_hal *ah;
|
|
bool longcal = false;
|
|
bool shortcal = false;
|
|
bool aniflag = false;
|
|
unsigned int timestamp = jiffies_to_msecs(jiffies);
|
|
u32 cal_interval;
|
|
|
|
sc = (struct ath_softc *)data;
|
|
ah = sc->sc_ah;
|
|
|
|
/*
|
|
* don't calibrate when we're scanning.
|
|
* we are most likely not on our home channel.
|
|
*/
|
|
if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
|
|
return;
|
|
|
|
/* Long calibration runs independently of short calibration. */
|
|
if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
|
|
longcal = true;
|
|
DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
|
|
sc->sc_ani.sc_longcal_timer = timestamp;
|
|
}
|
|
|
|
/* Short calibration applies only while sc_caldone is false */
|
|
if (!sc->sc_ani.sc_caldone) {
|
|
if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
|
|
ATH_SHORT_CALINTERVAL) {
|
|
shortcal = true;
|
|
DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
|
|
sc->sc_ani.sc_shortcal_timer = timestamp;
|
|
sc->sc_ani.sc_resetcal_timer = timestamp;
|
|
}
|
|
} else {
|
|
if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
|
|
ATH_RESTART_CALINTERVAL) {
|
|
ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
|
|
&sc->sc_ani.sc_caldone);
|
|
if (sc->sc_ani.sc_caldone)
|
|
sc->sc_ani.sc_resetcal_timer = timestamp;
|
|
}
|
|
}
|
|
|
|
/* Verify whether we must check ANI */
|
|
if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
|
|
ATH_ANI_POLLINTERVAL) {
|
|
aniflag = true;
|
|
sc->sc_ani.sc_checkani_timer = timestamp;
|
|
}
|
|
|
|
/* Skip all processing if there's nothing to do. */
|
|
if (longcal || shortcal || aniflag) {
|
|
/* Call ANI routine if necessary */
|
|
if (aniflag)
|
|
ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
|
|
ah->ah_curchan);
|
|
|
|
/* Perform calibration if necessary */
|
|
if (longcal || shortcal) {
|
|
bool iscaldone = false;
|
|
|
|
if (ath9k_hw_calibrate(ah, ah->ah_curchan,
|
|
sc->sc_rx_chainmask, longcal,
|
|
&iscaldone)) {
|
|
if (longcal)
|
|
sc->sc_ani.sc_noise_floor =
|
|
ath9k_hw_getchan_noise(ah,
|
|
ah->ah_curchan);
|
|
|
|
DPRINTF(sc, ATH_DBG_ANI,
|
|
"calibrate chan %u/%x nf: %d\n",
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags,
|
|
sc->sc_ani.sc_noise_floor);
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_ANY,
|
|
"calibrate chan %u/%x failed\n",
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags);
|
|
}
|
|
sc->sc_ani.sc_caldone = iscaldone;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set timer interval based on previous results.
|
|
* The interval must be the shortest necessary to satisfy ANI,
|
|
* short calibration and long calibration.
|
|
*/
|
|
cal_interval = ATH_LONG_CALINTERVAL;
|
|
if (sc->sc_ah->ah_config.enable_ani)
|
|
cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
|
|
if (!sc->sc_ani.sc_caldone)
|
|
cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
|
|
|
|
mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
|
|
}
|
|
|
|
/*
|
|
* Update tx/rx chainmask. For legacy association,
|
|
* hard code chainmask to 1x1, for 11n association, use
|
|
* the chainmask configuration.
|
|
*/
|
|
static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
|
|
{
|
|
sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
|
|
if (is_ht) {
|
|
sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
|
|
sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
|
|
} else {
|
|
sc->sc_tx_chainmask = 1;
|
|
sc->sc_rx_chainmask = 1;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask);
|
|
}
|
|
|
|
static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_tx_node_init(sc, an);
|
|
|
|
an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
|
|
sta->ht_cap.ampdu_factor);
|
|
an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
|
|
}
|
|
|
|
static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_node *an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_tx_node_cleanup(sc, an);
|
|
}
|
|
|
|
static void ath9k_tasklet(unsigned long data)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)data;
|
|
u32 status = sc->sc_intrstatus;
|
|
|
|
if (status & ATH9K_INT_FATAL) {
|
|
/* need a chip reset */
|
|
ath_reset(sc, false);
|
|
return;
|
|
} else {
|
|
|
|
if (status &
|
|
(ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
|
|
spin_lock_bh(&sc->rx.rxflushlock);
|
|
ath_rx_tasklet(sc, 0);
|
|
spin_unlock_bh(&sc->rx.rxflushlock);
|
|
}
|
|
/* XXX: optimize this */
|
|
if (status & ATH9K_INT_TX)
|
|
ath_tx_tasklet(sc);
|
|
}
|
|
|
|
/* re-enable hardware interrupt */
|
|
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
|
|
}
|
|
|
|
static irqreturn_t ath_isr(int irq, void *dev)
|
|
{
|
|
struct ath_softc *sc = dev;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
enum ath9k_int status;
|
|
bool sched = false;
|
|
|
|
do {
|
|
if (sc->sc_flags & SC_OP_INVALID) {
|
|
/*
|
|
* The hardware is not ready/present, don't
|
|
* touch anything. Note this can happen early
|
|
* on if the IRQ is shared.
|
|
*/
|
|
return IRQ_NONE;
|
|
}
|
|
if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/*
|
|
* Figure out the reason(s) for the interrupt. Note
|
|
* that the hal returns a pseudo-ISR that may include
|
|
* bits we haven't explicitly enabled so we mask the
|
|
* value to insure we only process bits we requested.
|
|
*/
|
|
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
|
|
|
|
status &= sc->sc_imask; /* discard unasked-for bits */
|
|
|
|
/*
|
|
* If there are no status bits set, then this interrupt was not
|
|
* for me (should have been caught above).
|
|
*/
|
|
if (!status)
|
|
return IRQ_NONE;
|
|
|
|
sc->sc_intrstatus = status;
|
|
|
|
if (status & ATH9K_INT_FATAL) {
|
|
/* need a chip reset */
|
|
sched = true;
|
|
} else if (status & ATH9K_INT_RXORN) {
|
|
/* need a chip reset */
|
|
sched = true;
|
|
} else {
|
|
if (status & ATH9K_INT_SWBA) {
|
|
/* schedule a tasklet for beacon handling */
|
|
tasklet_schedule(&sc->bcon_tasklet);
|
|
}
|
|
if (status & ATH9K_INT_RXEOL) {
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work
|
|
* at least on older hardware revs.
|
|
*/
|
|
sched = true;
|
|
}
|
|
|
|
if (status & ATH9K_INT_TXURN)
|
|
/* bump tx trigger level */
|
|
ath9k_hw_updatetxtriglevel(ah, true);
|
|
/* XXX: optimize this */
|
|
if (status & ATH9K_INT_RX)
|
|
sched = true;
|
|
if (status & ATH9K_INT_TX)
|
|
sched = true;
|
|
if (status & ATH9K_INT_BMISS)
|
|
sched = true;
|
|
/* carrier sense timeout */
|
|
if (status & ATH9K_INT_CST)
|
|
sched = true;
|
|
if (status & ATH9K_INT_MIB) {
|
|
/*
|
|
* Disable interrupts until we service the MIB
|
|
* interrupt; otherwise it will continue to
|
|
* fire.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
/*
|
|
* Let the hal handle the event. We assume
|
|
* it will clear whatever condition caused
|
|
* the interrupt.
|
|
*/
|
|
ath9k_hw_procmibevent(ah, &sc->sc_halstats);
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
}
|
|
if (status & ATH9K_INT_TIM_TIMER) {
|
|
if (!(ah->ah_caps.hw_caps &
|
|
ATH9K_HW_CAP_AUTOSLEEP)) {
|
|
/* Clear RxAbort bit so that we can
|
|
* receive frames */
|
|
ath9k_hw_setrxabort(ah, 0);
|
|
sched = true;
|
|
}
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
ath_debug_stat_interrupt(sc, status);
|
|
|
|
if (sched) {
|
|
/* turn off every interrupt except SWBA */
|
|
ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
|
|
tasklet_schedule(&sc->intr_tq);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int ath_get_channel(struct ath_softc *sc,
|
|
struct ieee80211_channel *chan)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
|
|
if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static u32 ath_get_extchanmode(struct ath_softc *sc,
|
|
struct ieee80211_channel *chan,
|
|
enum nl80211_channel_type channel_type)
|
|
{
|
|
u32 chanmode = 0;
|
|
|
|
switch (chan->band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
switch(channel_type) {
|
|
case NL80211_CHAN_NO_HT:
|
|
case NL80211_CHAN_HT20:
|
|
chanmode = CHANNEL_G_HT20;
|
|
break;
|
|
case NL80211_CHAN_HT40PLUS:
|
|
chanmode = CHANNEL_G_HT40PLUS;
|
|
break;
|
|
case NL80211_CHAN_HT40MINUS:
|
|
chanmode = CHANNEL_G_HT40MINUS;
|
|
break;
|
|
}
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
switch(channel_type) {
|
|
case NL80211_CHAN_NO_HT:
|
|
case NL80211_CHAN_HT20:
|
|
chanmode = CHANNEL_A_HT20;
|
|
break;
|
|
case NL80211_CHAN_HT40PLUS:
|
|
chanmode = CHANNEL_A_HT40PLUS;
|
|
break;
|
|
case NL80211_CHAN_HT40MINUS:
|
|
chanmode = CHANNEL_A_HT40MINUS;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return chanmode;
|
|
}
|
|
|
|
static int ath_keyset(struct ath_softc *sc, u16 keyix,
|
|
struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
|
|
{
|
|
bool status;
|
|
|
|
status = ath9k_hw_set_keycache_entry(sc->sc_ah,
|
|
keyix, hk, mac, false);
|
|
|
|
return status != false;
|
|
}
|
|
|
|
static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
|
|
struct ath9k_keyval *hk,
|
|
const u8 *addr)
|
|
{
|
|
const u8 *key_rxmic;
|
|
const u8 *key_txmic;
|
|
|
|
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
|
|
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
|
|
|
|
if (addr == NULL) {
|
|
/* Group key installation */
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
return ath_keyset(sc, keyix, hk, addr);
|
|
}
|
|
if (!sc->sc_splitmic) {
|
|
/*
|
|
* data key goes at first index,
|
|
* the hal handles the MIC keys at index+64.
|
|
*/
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
|
|
return ath_keyset(sc, keyix, hk, addr);
|
|
}
|
|
/*
|
|
* TX key goes at first index, RX key at +32.
|
|
* The hal handles the MIC keys at index+64.
|
|
*/
|
|
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
|
|
if (!ath_keyset(sc, keyix, hk, NULL)) {
|
|
/* Txmic entry failed. No need to proceed further */
|
|
DPRINTF(sc, ATH_DBG_KEYCACHE,
|
|
"Setting TX MIC Key Failed\n");
|
|
return 0;
|
|
}
|
|
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
/* XXX delete tx key on failure? */
|
|
return ath_keyset(sc, keyix + 32, hk, addr);
|
|
}
|
|
|
|
static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
|
|
if (test_bit(i, sc->sc_keymap) ||
|
|
test_bit(i + 64, sc->sc_keymap))
|
|
continue; /* At least one part of TKIP key allocated */
|
|
if (sc->sc_splitmic &&
|
|
(test_bit(i + 32, sc->sc_keymap) ||
|
|
test_bit(i + 64 + 32, sc->sc_keymap)))
|
|
continue; /* At least one part of TKIP key allocated */
|
|
|
|
/* Found a free slot for a TKIP key */
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int ath_reserve_key_cache_slot(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* First, try to find slots that would not be available for TKIP. */
|
|
if (sc->sc_splitmic) {
|
|
for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
|
|
if (!test_bit(i, sc->sc_keymap) &&
|
|
(test_bit(i + 32, sc->sc_keymap) ||
|
|
test_bit(i + 64, sc->sc_keymap) ||
|
|
test_bit(i + 64 + 32, sc->sc_keymap)))
|
|
return i;
|
|
if (!test_bit(i + 32, sc->sc_keymap) &&
|
|
(test_bit(i, sc->sc_keymap) ||
|
|
test_bit(i + 64, sc->sc_keymap) ||
|
|
test_bit(i + 64 + 32, sc->sc_keymap)))
|
|
return i + 32;
|
|
if (!test_bit(i + 64, sc->sc_keymap) &&
|
|
(test_bit(i , sc->sc_keymap) ||
|
|
test_bit(i + 32, sc->sc_keymap) ||
|
|
test_bit(i + 64 + 32, sc->sc_keymap)))
|
|
return i + 64;
|
|
if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
|
|
(test_bit(i, sc->sc_keymap) ||
|
|
test_bit(i + 32, sc->sc_keymap) ||
|
|
test_bit(i + 64, sc->sc_keymap)))
|
|
return i + 64 + 32;
|
|
}
|
|
} else {
|
|
for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
|
|
if (!test_bit(i, sc->sc_keymap) &&
|
|
test_bit(i + 64, sc->sc_keymap))
|
|
return i;
|
|
if (test_bit(i, sc->sc_keymap) &&
|
|
!test_bit(i + 64, sc->sc_keymap))
|
|
return i + 64;
|
|
}
|
|
}
|
|
|
|
/* No partially used TKIP slots, pick any available slot */
|
|
for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
|
|
/* Do not allow slots that could be needed for TKIP group keys
|
|
* to be used. This limitation could be removed if we know that
|
|
* TKIP will not be used. */
|
|
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
if (sc->sc_splitmic) {
|
|
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
}
|
|
|
|
if (!test_bit(i, sc->sc_keymap))
|
|
return i; /* Found a free slot for a key */
|
|
}
|
|
|
|
/* No free slot found */
|
|
return -1;
|
|
}
|
|
|
|
static int ath_key_config(struct ath_softc *sc,
|
|
const u8 *addr,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct ath9k_keyval hk;
|
|
const u8 *mac = NULL;
|
|
int ret = 0;
|
|
int idx;
|
|
|
|
memset(&hk, 0, sizeof(hk));
|
|
|
|
switch (key->alg) {
|
|
case ALG_WEP:
|
|
hk.kv_type = ATH9K_CIPHER_WEP;
|
|
break;
|
|
case ALG_TKIP:
|
|
hk.kv_type = ATH9K_CIPHER_TKIP;
|
|
break;
|
|
case ALG_CCMP:
|
|
hk.kv_type = ATH9K_CIPHER_AES_CCM;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
hk.kv_len = key->keylen;
|
|
memcpy(hk.kv_val, key->key, key->keylen);
|
|
|
|
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
|
|
/* For now, use the default keys for broadcast keys. This may
|
|
* need to change with virtual interfaces. */
|
|
idx = key->keyidx;
|
|
} else if (key->keyidx) {
|
|
struct ieee80211_vif *vif;
|
|
|
|
mac = addr;
|
|
vif = sc->sc_vaps[0];
|
|
if (vif->type != NL80211_IFTYPE_AP) {
|
|
/* Only keyidx 0 should be used with unicast key, but
|
|
* allow this for client mode for now. */
|
|
idx = key->keyidx;
|
|
} else
|
|
return -EIO;
|
|
} else {
|
|
mac = addr;
|
|
if (key->alg == ALG_TKIP)
|
|
idx = ath_reserve_key_cache_slot_tkip(sc);
|
|
else
|
|
idx = ath_reserve_key_cache_slot(sc);
|
|
if (idx < 0)
|
|
return -EIO; /* no free key cache entries */
|
|
}
|
|
|
|
if (key->alg == ALG_TKIP)
|
|
ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
|
|
else
|
|
ret = ath_keyset(sc, idx, &hk, mac);
|
|
|
|
if (!ret)
|
|
return -EIO;
|
|
|
|
set_bit(idx, sc->sc_keymap);
|
|
if (key->alg == ALG_TKIP) {
|
|
set_bit(idx + 64, sc->sc_keymap);
|
|
if (sc->sc_splitmic) {
|
|
set_bit(idx + 32, sc->sc_keymap);
|
|
set_bit(idx + 64 + 32, sc->sc_keymap);
|
|
}
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
|
|
{
|
|
ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
|
|
if (key->hw_key_idx < IEEE80211_WEP_NKID)
|
|
return;
|
|
|
|
clear_bit(key->hw_key_idx, sc->sc_keymap);
|
|
if (key->alg != ALG_TKIP)
|
|
return;
|
|
|
|
clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
|
|
if (sc->sc_splitmic) {
|
|
clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
|
|
clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
|
|
}
|
|
}
|
|
|
|
static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
|
|
{
|
|
#define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
|
|
#define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
|
|
|
|
ht_info->ht_supported = true;
|
|
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
|
|
IEEE80211_HT_CAP_SM_PS |
|
|
IEEE80211_HT_CAP_SGI_40 |
|
|
IEEE80211_HT_CAP_DSSSCCK40;
|
|
|
|
ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
|
|
ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
|
|
/* set up supported mcs set */
|
|
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
|
|
ht_info->mcs.rx_mask[0] = 0xff;
|
|
ht_info->mcs.rx_mask[1] = 0xff;
|
|
ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
|
|
}
|
|
|
|
static void ath9k_bss_assoc_info(struct ath_softc *sc,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf)
|
|
{
|
|
struct ath_vap *avp = (void *)vif->drv_priv;
|
|
|
|
if (bss_conf->assoc) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
|
|
bss_conf->aid, sc->sc_curbssid);
|
|
|
|
/* New association, store aid */
|
|
if (avp->av_opmode == NL80211_IFTYPE_STATION) {
|
|
sc->sc_curaid = bss_conf->aid;
|
|
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
|
|
sc->sc_curaid);
|
|
}
|
|
|
|
/* Configure the beacon */
|
|
ath_beacon_config(sc, 0);
|
|
sc->sc_flags |= SC_OP_BEACONS;
|
|
|
|
/* Reset rssi stats */
|
|
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
|
|
|
|
/* Start ANI */
|
|
mod_timer(&sc->sc_ani.timer,
|
|
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
|
|
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
|
|
sc->sc_curaid = 0;
|
|
}
|
|
}
|
|
|
|
/********************************/
|
|
/* LED functions */
|
|
/********************************/
|
|
|
|
static void ath_led_brightness(struct led_classdev *led_cdev,
|
|
enum led_brightness brightness)
|
|
{
|
|
struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
|
|
struct ath_softc *sc = led->sc;
|
|
|
|
switch (brightness) {
|
|
case LED_OFF:
|
|
if (led->led_type == ATH_LED_ASSOC ||
|
|
led->led_type == ATH_LED_RADIO)
|
|
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
|
|
(led->led_type == ATH_LED_RADIO) ? 1 :
|
|
!!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
|
|
break;
|
|
case LED_FULL:
|
|
if (led->led_type == ATH_LED_ASSOC)
|
|
sc->sc_flags |= SC_OP_LED_ASSOCIATED;
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
|
|
char *trigger)
|
|
{
|
|
int ret;
|
|
|
|
led->sc = sc;
|
|
led->led_cdev.name = led->name;
|
|
led->led_cdev.default_trigger = trigger;
|
|
led->led_cdev.brightness_set = ath_led_brightness;
|
|
|
|
ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
|
|
if (ret)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Failed to register led:%s", led->name);
|
|
else
|
|
led->registered = 1;
|
|
return ret;
|
|
}
|
|
|
|
static void ath_unregister_led(struct ath_led *led)
|
|
{
|
|
if (led->registered) {
|
|
led_classdev_unregister(&led->led_cdev);
|
|
led->registered = 0;
|
|
}
|
|
}
|
|
|
|
static void ath_deinit_leds(struct ath_softc *sc)
|
|
{
|
|
ath_unregister_led(&sc->assoc_led);
|
|
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
|
|
ath_unregister_led(&sc->tx_led);
|
|
ath_unregister_led(&sc->rx_led);
|
|
ath_unregister_led(&sc->radio_led);
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
|
|
}
|
|
|
|
static void ath_init_leds(struct ath_softc *sc)
|
|
{
|
|
char *trigger;
|
|
int ret;
|
|
|
|
/* Configure gpio 1 for output */
|
|
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
/* LED off, active low */
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
|
|
|
|
trigger = ieee80211_get_radio_led_name(sc->hw);
|
|
snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
|
|
"ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->radio_led, trigger);
|
|
sc->radio_led.led_type = ATH_LED_RADIO;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
trigger = ieee80211_get_assoc_led_name(sc->hw);
|
|
snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
|
|
"ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->assoc_led, trigger);
|
|
sc->assoc_led.led_type = ATH_LED_ASSOC;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
trigger = ieee80211_get_tx_led_name(sc->hw);
|
|
snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
|
|
"ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->tx_led, trigger);
|
|
sc->tx_led.led_type = ATH_LED_TX;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
trigger = ieee80211_get_rx_led_name(sc->hw);
|
|
snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
|
|
"ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
|
|
ret = ath_register_led(sc, &sc->rx_led, trigger);
|
|
sc->rx_led.led_type = ATH_LED_RX;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
ath_deinit_leds(sc);
|
|
}
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
|
|
/*******************/
|
|
/* Rfkill */
|
|
/*******************/
|
|
|
|
static void ath_radio_enable(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int status;
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, ah->ah_curchan,
|
|
sc->tx_chan_width,
|
|
sc->sc_tx_chainmask,
|
|
sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing,
|
|
false, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset channel %u (%uMhz) "
|
|
"flags 0x%x hal status %u\n",
|
|
ath9k_hw_mhz2ieee(ah,
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags),
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags, status);
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
ath_update_txpow(sc);
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to restart recv logic\n");
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_flags & SC_OP_BEACONS)
|
|
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
|
|
|
|
/* Re-Enable interrupts */
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
|
|
/* Enable LED */
|
|
ath9k_hw_cfg_output(ah, ATH_LED_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
|
|
|
|
ieee80211_wake_queues(sc->hw);
|
|
}
|
|
|
|
static void ath_radio_disable(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int status;
|
|
|
|
|
|
ieee80211_stop_queues(sc->hw);
|
|
|
|
/* Disable LED */
|
|
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
|
|
ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
|
|
|
|
/* Disable interrupts */
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
|
|
ath_draintxq(sc, false); /* clear pending tx frames */
|
|
ath_stoprecv(sc); /* turn off frame recv */
|
|
ath_flushrecv(sc); /* flush recv queue */
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, ah->ah_curchan,
|
|
sc->tx_chan_width,
|
|
sc->sc_tx_chainmask,
|
|
sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing,
|
|
false, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset channel %u (%uMhz) "
|
|
"flags 0x%x hal status %u\n",
|
|
ath9k_hw_mhz2ieee(ah,
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags),
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags, status);
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
ath9k_hw_phy_disable(ah);
|
|
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
|
|
}
|
|
|
|
static bool ath_is_rfkill_set(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
|
|
ah->ah_rfkill_polarity;
|
|
}
|
|
|
|
/* h/w rfkill poll function */
|
|
static void ath_rfkill_poll(struct work_struct *work)
|
|
{
|
|
struct ath_softc *sc = container_of(work, struct ath_softc,
|
|
rf_kill.rfkill_poll.work);
|
|
bool radio_on;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID)
|
|
return;
|
|
|
|
radio_on = !ath_is_rfkill_set(sc);
|
|
|
|
/*
|
|
* enable/disable radio only when there is a
|
|
* state change in RF switch
|
|
*/
|
|
if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
|
|
enum rfkill_state state;
|
|
|
|
if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
|
|
state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
|
|
: RFKILL_STATE_HARD_BLOCKED;
|
|
} else if (radio_on) {
|
|
ath_radio_enable(sc);
|
|
state = RFKILL_STATE_UNBLOCKED;
|
|
} else {
|
|
ath_radio_disable(sc);
|
|
state = RFKILL_STATE_HARD_BLOCKED;
|
|
}
|
|
|
|
if (state == RFKILL_STATE_HARD_BLOCKED)
|
|
sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
|
|
else
|
|
sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
|
|
|
|
rfkill_force_state(sc->rf_kill.rfkill, state);
|
|
}
|
|
|
|
queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
|
|
msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
|
|
}
|
|
|
|
/* s/w rfkill handler */
|
|
static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
|
|
{
|
|
struct ath_softc *sc = data;
|
|
|
|
switch (state) {
|
|
case RFKILL_STATE_SOFT_BLOCKED:
|
|
if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
|
|
SC_OP_RFKILL_SW_BLOCKED)))
|
|
ath_radio_disable(sc);
|
|
sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
|
|
return 0;
|
|
case RFKILL_STATE_UNBLOCKED:
|
|
if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
|
|
sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
|
|
if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
|
|
"radio as it is disabled by h/w\n");
|
|
return -EPERM;
|
|
}
|
|
ath_radio_enable(sc);
|
|
}
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Init s/w rfkill */
|
|
static int ath_init_sw_rfkill(struct ath_softc *sc)
|
|
{
|
|
sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
|
|
RFKILL_TYPE_WLAN);
|
|
if (!sc->rf_kill.rfkill) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
|
|
"ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
|
|
sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
|
|
sc->rf_kill.rfkill->data = sc;
|
|
sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
|
|
sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
|
|
sc->rf_kill.rfkill->user_claim_unsupported = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Deinitialize rfkill */
|
|
static void ath_deinit_rfkill(struct ath_softc *sc)
|
|
{
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
|
|
|
|
if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
|
|
rfkill_unregister(sc->rf_kill.rfkill);
|
|
sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
|
|
sc->rf_kill.rfkill = NULL;
|
|
}
|
|
}
|
|
|
|
static int ath_start_rfkill_poll(struct ath_softc *sc)
|
|
{
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
queue_delayed_work(sc->hw->workqueue,
|
|
&sc->rf_kill.rfkill_poll, 0);
|
|
|
|
if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
|
|
if (rfkill_register(sc->rf_kill.rfkill)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to register rfkill\n");
|
|
rfkill_free(sc->rf_kill.rfkill);
|
|
|
|
/* Deinitialize the device */
|
|
ath_detach(sc);
|
|
if (sc->pdev->irq)
|
|
free_irq(sc->pdev->irq, sc);
|
|
pci_iounmap(sc->pdev, sc->mem);
|
|
pci_release_region(sc->pdev, 0);
|
|
pci_disable_device(sc->pdev);
|
|
ieee80211_free_hw(sc->hw);
|
|
return -EIO;
|
|
} else {
|
|
sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_RFKILL */
|
|
|
|
static void ath_detach(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
int i = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
ath_deinit_rfkill(sc);
|
|
#endif
|
|
ath_deinit_leds(sc);
|
|
|
|
ieee80211_unregister_hw(hw);
|
|
ath_rx_cleanup(sc);
|
|
ath_tx_cleanup(sc);
|
|
|
|
tasklet_kill(&sc->intr_tq);
|
|
tasklet_kill(&sc->bcon_tasklet);
|
|
|
|
if (!(sc->sc_flags & SC_OP_INVALID))
|
|
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
|
|
|
|
/* cleanup tx queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
|
|
|
|
ath9k_hw_detach(sc->sc_ah);
|
|
ath9k_exit_debug(sc);
|
|
}
|
|
|
|
static int ath_init(u16 devid, struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = NULL;
|
|
int status;
|
|
int error = 0, i;
|
|
int csz = 0;
|
|
|
|
/* XXX: hardware will not be ready until ath_open() being called */
|
|
sc->sc_flags |= SC_OP_INVALID;
|
|
|
|
if (ath9k_init_debug(sc) < 0)
|
|
printk(KERN_ERR "Unable to create debugfs files\n");
|
|
|
|
spin_lock_init(&sc->sc_resetlock);
|
|
mutex_init(&sc->mutex);
|
|
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
|
|
tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
|
|
(unsigned long)sc);
|
|
|
|
/*
|
|
* Cache line size is used to size and align various
|
|
* structures used to communicate with the hardware.
|
|
*/
|
|
bus_read_cachesize(sc, &csz);
|
|
/* XXX assert csz is non-zero */
|
|
sc->sc_cachelsz = csz << 2; /* convert to bytes */
|
|
|
|
ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
|
|
if (ah == NULL) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to attach hardware; HAL status %u\n", status);
|
|
error = -ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
|
|
/* Get the hardware key cache size. */
|
|
sc->sc_keymax = ah->ah_caps.keycache_size;
|
|
if (sc->sc_keymax > ATH_KEYMAX) {
|
|
DPRINTF(sc, ATH_DBG_KEYCACHE,
|
|
"Warning, using only %u entries in %u key cache\n",
|
|
ATH_KEYMAX, sc->sc_keymax);
|
|
sc->sc_keymax = ATH_KEYMAX;
|
|
}
|
|
|
|
/*
|
|
* Reset the key cache since some parts do not
|
|
* reset the contents on initial power up.
|
|
*/
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath9k_hw_keyreset(ah, (u16) i);
|
|
|
|
/* Collect the channel list using the default country code */
|
|
|
|
error = ath_setup_channels(sc);
|
|
if (error)
|
|
goto bad;
|
|
|
|
/* default to MONITOR mode */
|
|
sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
|
|
|
|
|
|
/* Setup rate tables */
|
|
|
|
ath_rate_attach(sc);
|
|
ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
|
|
ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
|
|
|
|
/*
|
|
* Allocate hardware transmit queues: one queue for
|
|
* beacon frames and one data queue for each QoS
|
|
* priority. Note that the hal handles reseting
|
|
* these queues at the needed time.
|
|
*/
|
|
sc->beacon.beaconq = ath_beaconq_setup(ah);
|
|
if (sc->beacon.beaconq == -1) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup a beacon xmit queue\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
|
|
if (sc->beacon.cabq == NULL) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup CAB xmit queue\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
|
|
ath_cabq_update(sc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
|
|
sc->tx.hwq_map[i] = -1;
|
|
|
|
/* Setup data queues */
|
|
/* NB: ensure BK queue is the lowest priority h/w queue */
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for BK traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for BE traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for VI traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to setup xmit queue for VO traffic\n");
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Initializes the noise floor to a reasonable default value.
|
|
* Later on this will be updated during ANI processing. */
|
|
|
|
sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
|
|
setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
|
|
|
|
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_TKIP, NULL)) {
|
|
/*
|
|
* Whether we should enable h/w TKIP MIC.
|
|
* XXX: if we don't support WME TKIP MIC, then we wouldn't
|
|
* report WMM capable, so it's always safe to turn on
|
|
* TKIP MIC in this case.
|
|
*/
|
|
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
|
|
0, 1, NULL);
|
|
}
|
|
|
|
/*
|
|
* Check whether the separate key cache entries
|
|
* are required to handle both tx+rx MIC keys.
|
|
* With split mic keys the number of stations is limited
|
|
* to 27 otherwise 59.
|
|
*/
|
|
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_TKIP, NULL)
|
|
&& ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_MIC, NULL)
|
|
&& ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
|
|
0, NULL))
|
|
sc->sc_splitmic = 1;
|
|
|
|
/* turn on mcast key search if possible */
|
|
if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
|
|
(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
|
|
1, NULL);
|
|
|
|
sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
|
|
sc->sc_config.txpowlimit_override = 0;
|
|
|
|
/* 11n Capabilities */
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
|
|
sc->sc_flags |= SC_OP_TXAGGR;
|
|
sc->sc_flags |= SC_OP_RXAGGR;
|
|
}
|
|
|
|
sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
|
|
sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
|
|
|
|
ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
|
|
sc->rx.defant = ath9k_hw_getdefantenna(ah);
|
|
|
|
ath9k_hw_getmac(ah, sc->sc_myaddr);
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
|
|
ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
|
|
ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
|
|
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
|
|
}
|
|
|
|
sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
|
|
|
|
/* initialize beacon slots */
|
|
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
|
|
sc->beacon.bslot[i] = ATH_IF_ID_ANY;
|
|
|
|
/* save MISC configurations */
|
|
sc->sc_config.swBeaconProcess = 1;
|
|
|
|
/* setup channels and rates */
|
|
|
|
sc->sbands[IEEE80211_BAND_2GHZ].channels =
|
|
sc->channels[IEEE80211_BAND_2GHZ];
|
|
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
|
|
sc->rates[IEEE80211_BAND_2GHZ];
|
|
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
|
|
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
|
|
sc->sbands[IEEE80211_BAND_5GHZ].channels =
|
|
sc->channels[IEEE80211_BAND_5GHZ];
|
|
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
|
|
sc->rates[IEEE80211_BAND_5GHZ];
|
|
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
|
|
}
|
|
|
|
return 0;
|
|
bad2:
|
|
/* cleanup tx queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
|
|
bad:
|
|
if (ah)
|
|
ath9k_hw_detach(ah);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int ath_attach(u16 devid, struct ath_softc *sc)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
int error = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
|
|
|
|
error = ath_init(devid, sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* get mac address from hardware and set in mac80211 */
|
|
|
|
SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
|
|
|
|
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
|
|
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
|
|
IEEE80211_HW_SIGNAL_DBM |
|
|
IEEE80211_HW_AMPDU_AGGREGATION;
|
|
|
|
hw->wiphy->interface_modes =
|
|
BIT(NL80211_IFTYPE_AP) |
|
|
BIT(NL80211_IFTYPE_STATION) |
|
|
BIT(NL80211_IFTYPE_ADHOC);
|
|
|
|
hw->queues = 4;
|
|
hw->max_rates = 4;
|
|
hw->max_rate_tries = ATH_11N_TXMAXTRY;
|
|
hw->sta_data_size = sizeof(struct ath_node);
|
|
hw->vif_data_size = sizeof(struct ath_vap);
|
|
|
|
hw->rate_control_algorithm = "ath9k_rate_control";
|
|
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
|
|
setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
|
|
setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
|
|
}
|
|
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
|
|
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
|
|
&sc->sbands[IEEE80211_BAND_5GHZ];
|
|
|
|
/* initialize tx/rx engine */
|
|
error = ath_tx_init(sc, ATH_TXBUF);
|
|
if (error != 0)
|
|
goto detach;
|
|
|
|
error = ath_rx_init(sc, ATH_RXBUF);
|
|
if (error != 0)
|
|
goto detach;
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
/* Initialze h/w Rfkill */
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
|
|
|
|
/* Initialize s/w rfkill */
|
|
if (ath_init_sw_rfkill(sc))
|
|
goto detach;
|
|
#endif
|
|
|
|
error = ieee80211_register_hw(hw);
|
|
|
|
/* Initialize LED control */
|
|
ath_init_leds(sc);
|
|
|
|
return 0;
|
|
detach:
|
|
ath_detach(sc);
|
|
return error;
|
|
}
|
|
|
|
int ath_reset(struct ath_softc *sc, bool retry_tx)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int status;
|
|
int error = 0;
|
|
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
ath_draintxq(sc, retry_tx);
|
|
ath_stoprecv(sc);
|
|
ath_flushrecv(sc);
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
|
|
sc->tx_chan_width,
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing, false, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset hardware; hal status %u\n", status);
|
|
error = -EIO;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
if (ath_startrecv(sc) != 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
|
|
|
|
/*
|
|
* We may be doing a reset in response to a request
|
|
* that changes the channel so update any state that
|
|
* might change as a result.
|
|
*/
|
|
ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
|
|
|
|
ath_update_txpow(sc);
|
|
|
|
if (sc->sc_flags & SC_OP_BEACONS)
|
|
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
|
|
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
|
|
if (retry_tx) {
|
|
int i;
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
spin_lock_bh(&sc->tx.txq[i].axq_lock);
|
|
ath_txq_schedule(sc, &sc->tx.txq[i]);
|
|
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This function will allocate both the DMA descriptor structure, and the
|
|
* buffers it contains. These are used to contain the descriptors used
|
|
* by the system.
|
|
*/
|
|
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
|
|
struct list_head *head, const char *name,
|
|
int nbuf, int ndesc)
|
|
{
|
|
#define DS2PHYS(_dd, _ds) \
|
|
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
|
|
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
|
|
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
|
|
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
int i, bsize, error;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
|
|
name, nbuf, ndesc);
|
|
|
|
/* ath_desc must be a multiple of DWORDs */
|
|
if ((sizeof(struct ath_desc) % 4) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
|
|
ASSERT((sizeof(struct ath_desc) % 4) == 0);
|
|
error = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
dd->dd_name = name;
|
|
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
|
|
|
|
/*
|
|
* Need additional DMA memory because we can't use
|
|
* descriptors that cross the 4K page boundary. Assume
|
|
* one skipped descriptor per 4K page.
|
|
*/
|
|
if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
|
|
u32 ndesc_skipped =
|
|
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
|
|
u32 dma_len;
|
|
|
|
while (ndesc_skipped) {
|
|
dma_len = ndesc_skipped * sizeof(struct ath_desc);
|
|
dd->dd_desc_len += dma_len;
|
|
|
|
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
|
|
};
|
|
}
|
|
|
|
/* allocate descriptors */
|
|
dd->dd_desc = pci_alloc_consistent(sc->pdev,
|
|
dd->dd_desc_len,
|
|
&dd->dd_desc_paddr);
|
|
if (dd->dd_desc == NULL) {
|
|
error = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
ds = dd->dd_desc;
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
|
|
dd->dd_name, ds, (u32) dd->dd_desc_len,
|
|
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
|
|
|
|
/* allocate buffers */
|
|
bsize = sizeof(struct ath_buf) * nbuf;
|
|
bf = kmalloc(bsize, GFP_KERNEL);
|
|
if (bf == NULL) {
|
|
error = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
memset(bf, 0, bsize);
|
|
dd->dd_bufptr = bf;
|
|
|
|
INIT_LIST_HEAD(head);
|
|
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
|
|
if (!(sc->sc_ah->ah_caps.hw_caps &
|
|
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
|
|
/*
|
|
* Skip descriptor addresses which can cause 4KB
|
|
* boundary crossing (addr + length) with a 32 dword
|
|
* descriptor fetch.
|
|
*/
|
|
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
|
|
ASSERT((caddr_t) bf->bf_desc <
|
|
((caddr_t) dd->dd_desc +
|
|
dd->dd_desc_len));
|
|
|
|
ds += ndesc;
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
}
|
|
}
|
|
list_add_tail(&bf->list, head);
|
|
}
|
|
return 0;
|
|
fail2:
|
|
pci_free_consistent(sc->pdev,
|
|
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
|
|
fail:
|
|
memset(dd, 0, sizeof(*dd));
|
|
return error;
|
|
#undef ATH_DESC_4KB_BOUND_CHECK
|
|
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
|
|
#undef DS2PHYS
|
|
}
|
|
|
|
void ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *dd,
|
|
struct list_head *head)
|
|
{
|
|
pci_free_consistent(sc->pdev,
|
|
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
|
|
|
|
INIT_LIST_HEAD(head);
|
|
kfree(dd->dd_bufptr);
|
|
memset(dd, 0, sizeof(*dd));
|
|
}
|
|
|
|
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
|
|
{
|
|
int qnum;
|
|
|
|
switch (queue) {
|
|
case 0:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
|
|
break;
|
|
case 1:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
|
|
break;
|
|
case 2:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
|
|
break;
|
|
case 3:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
|
|
break;
|
|
default:
|
|
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
|
|
break;
|
|
}
|
|
|
|
return qnum;
|
|
}
|
|
|
|
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
|
|
{
|
|
int qnum;
|
|
|
|
switch (queue) {
|
|
case ATH9K_WME_AC_VO:
|
|
qnum = 0;
|
|
break;
|
|
case ATH9K_WME_AC_VI:
|
|
qnum = 1;
|
|
break;
|
|
case ATH9K_WME_AC_BE:
|
|
qnum = 2;
|
|
break;
|
|
case ATH9K_WME_AC_BK:
|
|
qnum = 3;
|
|
break;
|
|
default:
|
|
qnum = -1;
|
|
break;
|
|
}
|
|
|
|
return qnum;
|
|
}
|
|
|
|
/**********************/
|
|
/* mac80211 callbacks */
|
|
/**********************/
|
|
|
|
static int ath9k_start(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ieee80211_channel *curchan = hw->conf.channel;
|
|
struct ath9k_channel *init_channel;
|
|
int error = 0, pos, status;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
|
|
"initial channel: %d MHz\n", curchan->center_freq);
|
|
|
|
/* setup initial channel */
|
|
|
|
pos = ath_get_channel(sc, curchan);
|
|
if (pos == -1) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
|
|
error = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
sc->tx_chan_width = ATH9K_HT_MACMODE_20;
|
|
sc->sc_ah->ah_channels[pos].chanmode =
|
|
(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
|
|
init_channel = &sc->sc_ah->ah_channels[pos];
|
|
|
|
/* Reset SERDES registers */
|
|
ath9k_hw_configpcipowersave(sc->sc_ah, 0);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(sc->sc_ah, init_channel,
|
|
sc->tx_chan_width,
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing, false, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to reset hardware; hal status %u "
|
|
"(freq %u flags 0x%x)\n", status,
|
|
init_channel->channel, init_channel->channelFlags);
|
|
error = -EIO;
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
goto error;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
/*
|
|
* This is needed only to setup initial state
|
|
* but it's best done after a reset.
|
|
*/
|
|
ath_update_txpow(sc);
|
|
|
|
/*
|
|
* Setup the hardware after reset:
|
|
* The receive engine is set going.
|
|
* Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to start recv logic\n");
|
|
error = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
/* Setup our intr mask. */
|
|
sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
|
|
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
|
|
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
|
|
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
|
|
sc->sc_imask |= ATH9K_INT_GTT;
|
|
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
|
|
sc->sc_imask |= ATH9K_INT_CST;
|
|
|
|
/*
|
|
* Enable MIB interrupts when there are hardware phy counters.
|
|
* Note we only do this (at the moment) for station mode.
|
|
*/
|
|
if (ath9k_hw_phycounters(sc->sc_ah) &&
|
|
((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
|
|
(sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
|
|
sc->sc_imask |= ATH9K_INT_MIB;
|
|
/*
|
|
* Some hardware processes the TIM IE and fires an
|
|
* interrupt when the TIM bit is set. For hardware
|
|
* that does, if not overridden by configuration,
|
|
* enable the TIM interrupt when operating as station.
|
|
*/
|
|
if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
|
|
(sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
|
|
!sc->sc_config.swBeaconProcess)
|
|
sc->sc_imask |= ATH9K_INT_TIM;
|
|
|
|
ath_setcurmode(sc, ath_chan2mode(init_channel));
|
|
|
|
sc->sc_flags &= ~SC_OP_INVALID;
|
|
|
|
/* Disable BMISS interrupt when we're not associated */
|
|
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
|
|
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
|
|
|
|
ieee80211_wake_queues(sc->hw);
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
error = ath_start_rfkill_poll(sc);
|
|
#endif
|
|
|
|
error:
|
|
return error;
|
|
}
|
|
|
|
static int ath9k_tx(struct ieee80211_hw *hw,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_tx_control txctl;
|
|
int hdrlen, padsize;
|
|
|
|
memset(&txctl, 0, sizeof(struct ath_tx_control));
|
|
|
|
/*
|
|
* As a temporary workaround, assign seq# here; this will likely need
|
|
* to be cleaned up to work better with Beacon transmission and virtual
|
|
* BSSes.
|
|
*/
|
|
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
|
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
|
|
sc->tx.seq_no += 0x10;
|
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
|
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
|
|
}
|
|
|
|
/* Add the padding after the header if this is not already done */
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
if (hdrlen & 3) {
|
|
padsize = hdrlen % 4;
|
|
if (skb_headroom(skb) < padsize)
|
|
return -1;
|
|
skb_push(skb, padsize);
|
|
memmove(skb->data, skb->data + padsize, hdrlen);
|
|
}
|
|
|
|
/* Check if a tx queue is available */
|
|
|
|
txctl.txq = ath_test_get_txq(sc, skb);
|
|
if (!txctl.txq)
|
|
goto exit;
|
|
|
|
DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
|
|
|
|
if (ath_tx_start(sc, skb, &txctl) != 0) {
|
|
DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
|
|
goto exit;
|
|
}
|
|
|
|
return 0;
|
|
exit:
|
|
dev_kfree_skb_any(skb);
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_stop(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID) {
|
|
DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
|
|
return;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
|
|
|
|
ieee80211_stop_queues(sc->hw);
|
|
|
|
/* make sure h/w will not generate any interrupt
|
|
* before setting the invalid flag. */
|
|
ath9k_hw_set_interrupts(sc->sc_ah, 0);
|
|
|
|
if (!(sc->sc_flags & SC_OP_INVALID)) {
|
|
ath_draintxq(sc, false);
|
|
ath_stoprecv(sc);
|
|
ath9k_hw_phy_disable(sc->sc_ah);
|
|
} else
|
|
sc->rx.rxlink = NULL;
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
|
|
#endif
|
|
/* disable HAL and put h/w to sleep */
|
|
ath9k_hw_disable(sc->sc_ah);
|
|
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
|
|
|
|
sc->sc_flags |= SC_OP_INVALID;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
|
|
}
|
|
|
|
static int ath9k_add_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_if_init_conf *conf)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_vap *avp = (void *)conf->vif->drv_priv;
|
|
enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
|
|
|
|
/* Support only vap for now */
|
|
|
|
if (sc->sc_nvaps)
|
|
return -ENOBUFS;
|
|
|
|
switch (conf->type) {
|
|
case NL80211_IFTYPE_STATION:
|
|
ic_opmode = NL80211_IFTYPE_STATION;
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
ic_opmode = NL80211_IFTYPE_ADHOC;
|
|
break;
|
|
case NL80211_IFTYPE_AP:
|
|
ic_opmode = NL80211_IFTYPE_AP;
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Interface type %d not yet supported\n", conf->type);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
|
|
|
|
/* Set the VAP opmode */
|
|
avp->av_opmode = ic_opmode;
|
|
avp->av_bslot = -1;
|
|
|
|
if (ic_opmode == NL80211_IFTYPE_AP)
|
|
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
|
|
|
|
sc->sc_vaps[0] = conf->vif;
|
|
sc->sc_nvaps++;
|
|
|
|
/* Set the device opmode */
|
|
sc->sc_ah->ah_opmode = ic_opmode;
|
|
|
|
if (conf->type == NL80211_IFTYPE_AP) {
|
|
/* TODO: is this a suitable place to start ANI for AP mode? */
|
|
/* Start ANI */
|
|
mod_timer(&sc->sc_ani.timer,
|
|
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_remove_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_if_init_conf *conf)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_vap *avp = (void *)conf->vif->drv_priv;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
|
|
|
|
/* Stop ANI */
|
|
del_timer_sync(&sc->sc_ani.timer);
|
|
|
|
/* Reclaim beacon resources */
|
|
if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
|
|
sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
|
|
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
|
|
ath_beacon_return(sc, avp);
|
|
}
|
|
|
|
sc->sc_flags &= ~SC_OP_BEACONS;
|
|
|
|
sc->sc_vaps[0] = NULL;
|
|
sc->sc_nvaps--;
|
|
}
|
|
|
|
static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ieee80211_conf *conf = &hw->conf;
|
|
|
|
mutex_lock(&sc->mutex);
|
|
if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
|
|
IEEE80211_CONF_CHANGE_HT)) {
|
|
struct ieee80211_channel *curchan = hw->conf.channel;
|
|
int pos;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
|
|
curchan->center_freq);
|
|
|
|
pos = ath_get_channel(sc, curchan);
|
|
if (pos == -1) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
|
|
curchan->center_freq);
|
|
mutex_unlock(&sc->mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sc->tx_chan_width = ATH9K_HT_MACMODE_20;
|
|
sc->sc_ah->ah_channels[pos].chanmode =
|
|
(curchan->band == IEEE80211_BAND_2GHZ) ?
|
|
CHANNEL_G : CHANNEL_A;
|
|
|
|
if (conf->ht.enabled) {
|
|
if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
|
|
conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
|
|
sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
|
|
|
|
sc->sc_ah->ah_channels[pos].chanmode =
|
|
ath_get_extchanmode(sc, curchan,
|
|
conf->ht.channel_type);
|
|
}
|
|
|
|
if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
|
|
mutex_unlock(&sc->mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ath_update_chainmask(sc, conf->ht.enabled);
|
|
}
|
|
|
|
if (changed & IEEE80211_CONF_CHANGE_POWER)
|
|
sc->sc_config.txpowlimit = 2 * conf->power_level;
|
|
|
|
mutex_unlock(&sc->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int ath9k_config_interface(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_if_conf *conf)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_vap *avp = (void *)vif->drv_priv;
|
|
u32 rfilt = 0;
|
|
int error, i;
|
|
|
|
/* TODO: Need to decide which hw opmode to use for multi-interface
|
|
* cases */
|
|
if (vif->type == NL80211_IFTYPE_AP &&
|
|
ah->ah_opmode != NL80211_IFTYPE_AP) {
|
|
ah->ah_opmode = NL80211_IFTYPE_STATION;
|
|
ath9k_hw_setopmode(ah);
|
|
ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
|
|
/* Request full reset to get hw opmode changed properly */
|
|
sc->sc_flags |= SC_OP_FULL_RESET;
|
|
}
|
|
|
|
if ((conf->changed & IEEE80211_IFCC_BSSID) &&
|
|
!is_zero_ether_addr(conf->bssid)) {
|
|
switch (vif->type) {
|
|
case NL80211_IFTYPE_STATION:
|
|
case NL80211_IFTYPE_ADHOC:
|
|
/* Set BSSID */
|
|
memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
|
|
sc->sc_curaid = 0;
|
|
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
|
|
sc->sc_curaid);
|
|
|
|
/* Set aggregation protection mode parameters */
|
|
sc->sc_config.ath_aggr_prot = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"RX filter 0x%x bssid %pM aid 0x%x\n",
|
|
rfilt, sc->sc_curbssid, sc->sc_curaid);
|
|
|
|
/* need to reconfigure the beacon */
|
|
sc->sc_flags &= ~SC_OP_BEACONS ;
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((conf->changed & IEEE80211_IFCC_BEACON) &&
|
|
((vif->type == NL80211_IFTYPE_ADHOC) ||
|
|
(vif->type == NL80211_IFTYPE_AP))) {
|
|
/*
|
|
* Allocate and setup the beacon frame.
|
|
*
|
|
* Stop any previous beacon DMA. This may be
|
|
* necessary, for example, when an ibss merge
|
|
* causes reconfiguration; we may be called
|
|
* with beacon transmission active.
|
|
*/
|
|
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
|
|
|
|
error = ath_beacon_alloc(sc, 0);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
ath_beacon_sync(sc, 0);
|
|
}
|
|
|
|
/* Check for WLAN_CAPABILITY_PRIVACY ? */
|
|
if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
|
|
ath9k_hw_keysetmac(sc->sc_ah,
|
|
(u16)i,
|
|
sc->sc_curbssid);
|
|
}
|
|
|
|
/* Only legacy IBSS for now */
|
|
if (vif->type == NL80211_IFTYPE_ADHOC)
|
|
ath_update_chainmask(sc, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SUPPORTED_FILTERS \
|
|
(FIF_PROMISC_IN_BSS | \
|
|
FIF_ALLMULTI | \
|
|
FIF_CONTROL | \
|
|
FIF_OTHER_BSS | \
|
|
FIF_BCN_PRBRESP_PROMISC | \
|
|
FIF_FCSFAIL)
|
|
|
|
/* FIXME: sc->sc_full_reset ? */
|
|
static void ath9k_configure_filter(struct ieee80211_hw *hw,
|
|
unsigned int changed_flags,
|
|
unsigned int *total_flags,
|
|
int mc_count,
|
|
struct dev_mc_list *mclist)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
u32 rfilt;
|
|
|
|
changed_flags &= SUPPORTED_FILTERS;
|
|
*total_flags &= SUPPORTED_FILTERS;
|
|
|
|
sc->rx.rxfilter = *total_flags;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
|
|
|
|
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
|
|
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
|
|
ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
|
|
}
|
|
|
|
static void ath9k_sta_notify(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
enum sta_notify_cmd cmd,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
|
|
switch (cmd) {
|
|
case STA_NOTIFY_ADD:
|
|
ath_node_attach(sc, sta);
|
|
break;
|
|
case STA_NOTIFY_REMOVE:
|
|
ath_node_detach(sc, sta);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ath9k_conf_tx(struct ieee80211_hw *hw,
|
|
u16 queue,
|
|
const struct ieee80211_tx_queue_params *params)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath9k_tx_queue_info qi;
|
|
int ret = 0, qnum;
|
|
|
|
if (queue >= WME_NUM_AC)
|
|
return 0;
|
|
|
|
qi.tqi_aifs = params->aifs;
|
|
qi.tqi_cwmin = params->cw_min;
|
|
qi.tqi_cwmax = params->cw_max;
|
|
qi.tqi_burstTime = params->txop;
|
|
qnum = ath_get_hal_qnum(queue, sc);
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"Configure tx [queue/halq] [%d/%d], "
|
|
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
|
|
queue, qnum, params->aifs, params->cw_min,
|
|
params->cw_max, params->txop);
|
|
|
|
ret = ath_txq_update(sc, qnum, &qi);
|
|
if (ret)
|
|
DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ath9k_set_key(struct ieee80211_hw *hw,
|
|
enum set_key_cmd cmd,
|
|
const u8 *local_addr,
|
|
const u8 *addr,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
int ret = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
|
|
|
|
switch (cmd) {
|
|
case SET_KEY:
|
|
ret = ath_key_config(sc, addr, key);
|
|
if (ret >= 0) {
|
|
key->hw_key_idx = ret;
|
|
/* push IV and Michael MIC generation to stack */
|
|
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
|
|
if (key->alg == ALG_TKIP)
|
|
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
|
|
ret = 0;
|
|
}
|
|
break;
|
|
case DISABLE_KEY:
|
|
ath_key_delete(sc, key);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_bss_conf *bss_conf,
|
|
u32 changed)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
|
|
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
|
|
bss_conf->use_short_preamble);
|
|
if (bss_conf->use_short_preamble)
|
|
sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
|
|
else
|
|
sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
|
|
bss_conf->use_cts_prot);
|
|
if (bss_conf->use_cts_prot &&
|
|
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
|
|
sc->sc_flags |= SC_OP_PROTECT_ENABLE;
|
|
else
|
|
sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_ASSOC) {
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
|
|
bss_conf->assoc);
|
|
ath9k_bss_assoc_info(sc, vif, bss_conf);
|
|
}
|
|
}
|
|
|
|
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
u64 tsf;
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
|
|
return tsf;
|
|
}
|
|
|
|
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath9k_hw_reset_tsf(ah);
|
|
}
|
|
|
|
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
|
|
enum ieee80211_ampdu_mlme_action action,
|
|
struct ieee80211_sta *sta,
|
|
u16 tid, u16 *ssn)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
int ret = 0;
|
|
|
|
switch (action) {
|
|
case IEEE80211_AMPDU_RX_START:
|
|
if (!(sc->sc_flags & SC_OP_RXAGGR))
|
|
ret = -ENOTSUPP;
|
|
break;
|
|
case IEEE80211_AMPDU_RX_STOP:
|
|
break;
|
|
case IEEE80211_AMPDU_TX_START:
|
|
ret = ath_tx_aggr_start(sc, sta, tid, ssn);
|
|
if (ret < 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to start TX aggregation\n");
|
|
else
|
|
ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
|
|
break;
|
|
case IEEE80211_AMPDU_TX_STOP:
|
|
ret = ath_tx_aggr_stop(sc, sta, tid);
|
|
if (ret < 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"Unable to stop TX aggregation\n");
|
|
|
|
ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
|
|
break;
|
|
case IEEE80211_AMPDU_TX_RESUME:
|
|
ath_tx_aggr_resume(sc, sta, tid);
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct ieee80211_ops ath9k_ops = {
|
|
.tx = ath9k_tx,
|
|
.start = ath9k_start,
|
|
.stop = ath9k_stop,
|
|
.add_interface = ath9k_add_interface,
|
|
.remove_interface = ath9k_remove_interface,
|
|
.config = ath9k_config,
|
|
.config_interface = ath9k_config_interface,
|
|
.configure_filter = ath9k_configure_filter,
|
|
.sta_notify = ath9k_sta_notify,
|
|
.conf_tx = ath9k_conf_tx,
|
|
.bss_info_changed = ath9k_bss_info_changed,
|
|
.set_key = ath9k_set_key,
|
|
.get_tsf = ath9k_get_tsf,
|
|
.reset_tsf = ath9k_reset_tsf,
|
|
.ampdu_action = ath9k_ampdu_action,
|
|
};
|
|
|
|
static struct {
|
|
u32 version;
|
|
const char * name;
|
|
} ath_mac_bb_names[] = {
|
|
{ AR_SREV_VERSION_5416_PCI, "5416" },
|
|
{ AR_SREV_VERSION_5416_PCIE, "5418" },
|
|
{ AR_SREV_VERSION_9100, "9100" },
|
|
{ AR_SREV_VERSION_9160, "9160" },
|
|
{ AR_SREV_VERSION_9280, "9280" },
|
|
{ AR_SREV_VERSION_9285, "9285" }
|
|
};
|
|
|
|
static struct {
|
|
u16 version;
|
|
const char * name;
|
|
} ath_rf_names[] = {
|
|
{ 0, "5133" },
|
|
{ AR_RAD5133_SREV_MAJOR, "5133" },
|
|
{ AR_RAD5122_SREV_MAJOR, "5122" },
|
|
{ AR_RAD2133_SREV_MAJOR, "2133" },
|
|
{ AR_RAD2122_SREV_MAJOR, "2122" }
|
|
};
|
|
|
|
/*
|
|
* Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
|
|
*/
|
|
static const char *
|
|
ath_mac_bb_name(u32 mac_bb_version)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
|
|
if (ath_mac_bb_names[i].version == mac_bb_version) {
|
|
return ath_mac_bb_names[i].name;
|
|
}
|
|
}
|
|
|
|
return "????";
|
|
}
|
|
|
|
/*
|
|
* Return the RF name. "????" is returned if the RF is unknown.
|
|
*/
|
|
static const char *
|
|
ath_rf_name(u16 rf_version)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
|
|
if (ath_rf_names[i].version == rf_version) {
|
|
return ath_rf_names[i].name;
|
|
}
|
|
}
|
|
|
|
return "????";
|
|
}
|
|
|
|
static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
void __iomem *mem;
|
|
struct ath_softc *sc;
|
|
struct ieee80211_hw *hw;
|
|
u8 csz;
|
|
u32 val;
|
|
int ret = 0;
|
|
struct ath_hal *ah;
|
|
|
|
if (pci_enable_device(pdev))
|
|
return -EIO;
|
|
|
|
ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
|
|
goto bad;
|
|
}
|
|
|
|
ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "ath9k: 32-bit DMA consistent "
|
|
"DMA enable failed\n");
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Cache line size is used to size and align various
|
|
* structures used to communicate with the hardware.
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
|
|
if (csz == 0) {
|
|
/*
|
|
* Linux 2.4.18 (at least) writes the cache line size
|
|
* register as a 16-bit wide register which is wrong.
|
|
* We must have this setup properly for rx buffer
|
|
* DMA to work so force a reasonable value here if it
|
|
* comes up zero.
|
|
*/
|
|
csz = L1_CACHE_BYTES / sizeof(u32);
|
|
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
|
|
}
|
|
/*
|
|
* The default setting of latency timer yields poor results,
|
|
* set it to the value used by other systems. It may be worth
|
|
* tweaking this setting more.
|
|
*/
|
|
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
|
|
|
|
pci_set_master(pdev);
|
|
|
|
/*
|
|
* Disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state.
|
|
*/
|
|
pci_read_config_dword(pdev, 0x40, &val);
|
|
if ((val & 0x0000ff00) != 0)
|
|
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
|
|
|
|
ret = pci_request_region(pdev, 0, "ath9k");
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "PCI memory region reserve error\n");
|
|
ret = -ENODEV;
|
|
goto bad;
|
|
}
|
|
|
|
mem = pci_iomap(pdev, 0, 0);
|
|
if (!mem) {
|
|
printk(KERN_ERR "PCI memory map error\n") ;
|
|
ret = -EIO;
|
|
goto bad1;
|
|
}
|
|
|
|
hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
|
|
if (hw == NULL) {
|
|
printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
|
|
goto bad2;
|
|
}
|
|
|
|
SET_IEEE80211_DEV(hw, &pdev->dev);
|
|
pci_set_drvdata(pdev, hw);
|
|
|
|
sc = hw->priv;
|
|
sc->hw = hw;
|
|
sc->pdev = pdev;
|
|
sc->mem = mem;
|
|
|
|
if (ath_attach(id->device, sc) != 0) {
|
|
ret = -ENODEV;
|
|
goto bad3;
|
|
}
|
|
|
|
/* setup interrupt service routine */
|
|
|
|
if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
|
|
printk(KERN_ERR "%s: request_irq failed\n",
|
|
wiphy_name(hw->wiphy));
|
|
ret = -EIO;
|
|
goto bad4;
|
|
}
|
|
|
|
ah = sc->sc_ah;
|
|
printk(KERN_INFO
|
|
"%s: Atheros AR%s MAC/BB Rev:%x "
|
|
"AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
|
|
wiphy_name(hw->wiphy),
|
|
ath_mac_bb_name(ah->ah_macVersion),
|
|
ah->ah_macRev,
|
|
ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
|
|
ah->ah_phyRev,
|
|
(unsigned long)mem, pdev->irq);
|
|
|
|
return 0;
|
|
bad4:
|
|
ath_detach(sc);
|
|
bad3:
|
|
ieee80211_free_hw(hw);
|
|
bad2:
|
|
pci_iounmap(pdev, mem);
|
|
bad1:
|
|
pci_release_region(pdev, 0);
|
|
bad:
|
|
pci_disable_device(pdev);
|
|
return ret;
|
|
}
|
|
|
|
static void ath_pci_remove(struct pci_dev *pdev)
|
|
{
|
|
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
|
|
struct ath_softc *sc = hw->priv;
|
|
|
|
ath_detach(sc);
|
|
if (pdev->irq)
|
|
free_irq(pdev->irq, sc);
|
|
pci_iounmap(pdev, sc->mem);
|
|
pci_release_region(pdev, 0);
|
|
pci_disable_device(pdev);
|
|
ieee80211_free_hw(hw);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
|
|
struct ath_softc *sc = hw->priv;
|
|
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
|
|
#endif
|
|
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_power_state(pdev, 3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ath_pci_resume(struct pci_dev *pdev)
|
|
{
|
|
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
|
|
struct ath_softc *sc = hw->priv;
|
|
u32 val;
|
|
int err;
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err)
|
|
return err;
|
|
pci_restore_state(pdev);
|
|
/*
|
|
* Suspend/Resume resets the PCI configuration space, so we have to
|
|
* re-disable the RETRY_TIMEOUT register (0x41) to keep
|
|
* PCI Tx retries from interfering with C3 CPU state
|
|
*/
|
|
pci_read_config_dword(pdev, 0x40, &val);
|
|
if ((val & 0x0000ff00) != 0)
|
|
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
|
|
|
|
/* Enable LED */
|
|
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
|
|
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
|
|
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
/*
|
|
* check the h/w rfkill state on resume
|
|
* and start the rfkill poll timer
|
|
*/
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
queue_delayed_work(sc->hw->workqueue,
|
|
&sc->rf_kill.rfkill_poll, 0);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
|
|
|
|
static struct pci_driver ath_pci_driver = {
|
|
.name = "ath9k",
|
|
.id_table = ath_pci_id_table,
|
|
.probe = ath_pci_probe,
|
|
.remove = ath_pci_remove,
|
|
#ifdef CONFIG_PM
|
|
.suspend = ath_pci_suspend,
|
|
.resume = ath_pci_resume,
|
|
#endif /* CONFIG_PM */
|
|
};
|
|
|
|
static int __init init_ath_pci(void)
|
|
{
|
|
int error;
|
|
|
|
printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
|
|
|
|
/* Register rate control algorithm */
|
|
error = ath_rate_control_register();
|
|
if (error != 0) {
|
|
printk(KERN_ERR
|
|
"Unable to register rate control algorithm: %d\n",
|
|
error);
|
|
ath_rate_control_unregister();
|
|
return error;
|
|
}
|
|
|
|
if (pci_register_driver(&ath_pci_driver) < 0) {
|
|
printk(KERN_ERR
|
|
"ath_pci: No devices found, driver not installed.\n");
|
|
ath_rate_control_unregister();
|
|
pci_unregister_driver(&ath_pci_driver);
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
module_init(init_ath_pci);
|
|
|
|
static void __exit exit_ath_pci(void)
|
|
{
|
|
ath_rate_control_unregister();
|
|
pci_unregister_driver(&ath_pci_driver);
|
|
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
|
|
}
|
|
module_exit(exit_ath_pci);
|