linux_dsm_epyc7002/fs/eventpoll.c
Arjan van de Ven 144efe3e3e [PATCH] sem2mutex: eventpoll
Semaphore to mutex conversion.

The conversion was generated via scripts, and the result was validated
automatically via a script as well.

Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 07:38:12 -08:00

1670 lines
44 KiB
C

/*
* fs/eventpoll.c ( Efficent event polling implementation )
* Copyright (C) 2001,...,2003 Davide Libenzi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Davide Libenzi <davidel@xmailserver.org>
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/hash.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/rwsem.h>
#include <linux/rbtree.h>
#include <linux/wait.h>
#include <linux/eventpoll.h>
#include <linux/mount.h>
#include <linux/bitops.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/mman.h>
#include <asm/atomic.h>
#include <asm/semaphore.h>
/*
* LOCKING:
* There are three level of locking required by epoll :
*
* 1) epmutex (mutex)
* 2) ep->sem (rw_semaphore)
* 3) ep->lock (rw_lock)
*
* The acquire order is the one listed above, from 1 to 3.
* We need a spinlock (ep->lock) because we manipulate objects
* from inside the poll callback, that might be triggered from
* a wake_up() that in turn might be called from IRQ context.
* So we can't sleep inside the poll callback and hence we need
* a spinlock. During the event transfer loop (from kernel to
* user space) we could end up sleeping due a copy_to_user(), so
* we need a lock that will allow us to sleep. This lock is a
* read-write semaphore (ep->sem). It is acquired on read during
* the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL)
* and during eventpoll_release_file(). Then we also need a global
* semaphore to serialize eventpoll_release_file() and ep_free().
* This semaphore is acquired by ep_free() during the epoll file
* cleanup path and it is also acquired by eventpoll_release_file()
* if a file has been pushed inside an epoll set and it is then
* close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
* It is possible to drop the "ep->sem" and to use the global
* semaphore "epmutex" (together with "ep->lock") to have it working,
* but having "ep->sem" will make the interface more scalable.
* Events that require holding "epmutex" are very rare, while for
* normal operations the epoll private "ep->sem" will guarantee
* a greater scalability.
*/
#define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */
#define DEBUG_EPOLL 0
#if DEBUG_EPOLL > 0
#define DPRINTK(x) printk x
#define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
#else /* #if DEBUG_EPOLL > 0 */
#define DPRINTK(x) (void) 0
#define DNPRINTK(n, x) (void) 0
#endif /* #if DEBUG_EPOLL > 0 */
#define DEBUG_EPI 0
#if DEBUG_EPI != 0
#define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
#else /* #if DEBUG_EPI != 0 */
#define EPI_SLAB_DEBUG 0
#endif /* #if DEBUG_EPI != 0 */
/* Epoll private bits inside the event mask */
#define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
/* Maximum number of poll wake up nests we are allowing */
#define EP_MAX_POLLWAKE_NESTS 4
/* Maximum msec timeout value storeable in a long int */
#define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
struct epoll_filefd {
struct file *file;
int fd;
};
/*
* Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
* It is used to keep track on all tasks that are currently inside the wake_up() code
* to 1) short-circuit the one coming from the same task and same wait queue head
* ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting
* 3) let go the ones coming from other tasks.
*/
struct wake_task_node {
struct list_head llink;
task_t *task;
wait_queue_head_t *wq;
};
/*
* This is used to implement the safe poll wake up avoiding to reenter
* the poll callback from inside wake_up().
*/
struct poll_safewake {
struct list_head wake_task_list;
spinlock_t lock;
};
/*
* This structure is stored inside the "private_data" member of the file
* structure and rapresent the main data sructure for the eventpoll
* interface.
*/
struct eventpoll {
/* Protect the this structure access */
rwlock_t lock;
/*
* This semaphore is used to ensure that files are not removed
* while epoll is using them. This is read-held during the event
* collection loop and it is write-held during the file cleanup
* path, the epoll file exit code and the ctl operations.
*/
struct rw_semaphore sem;
/* Wait queue used by sys_epoll_wait() */
wait_queue_head_t wq;
/* Wait queue used by file->poll() */
wait_queue_head_t poll_wait;
/* List of ready file descriptors */
struct list_head rdllist;
/* RB-Tree root used to store monitored fd structs */
struct rb_root rbr;
};
/* Wait structure used by the poll hooks */
struct eppoll_entry {
/* List header used to link this structure to the "struct epitem" */
struct list_head llink;
/* The "base" pointer is set to the container "struct epitem" */
void *base;
/*
* Wait queue item that will be linked to the target file wait
* queue head.
*/
wait_queue_t wait;
/* The wait queue head that linked the "wait" wait queue item */
wait_queue_head_t *whead;
};
/*
* Each file descriptor added to the eventpoll interface will
* have an entry of this type linked to the hash.
*/
struct epitem {
/* RB-Tree node used to link this structure to the eventpoll rb-tree */
struct rb_node rbn;
/* List header used to link this structure to the eventpoll ready list */
struct list_head rdllink;
/* The file descriptor information this item refers to */
struct epoll_filefd ffd;
/* Number of active wait queue attached to poll operations */
int nwait;
/* List containing poll wait queues */
struct list_head pwqlist;
/* The "container" of this item */
struct eventpoll *ep;
/* The structure that describe the interested events and the source fd */
struct epoll_event event;
/*
* Used to keep track of the usage count of the structure. This avoids
* that the structure will desappear from underneath our processing.
*/
atomic_t usecnt;
/* List header used to link this item to the "struct file" items list */
struct list_head fllink;
/* List header used to link the item to the transfer list */
struct list_head txlink;
/*
* This is used during the collection/transfer of events to userspace
* to pin items empty events set.
*/
unsigned int revents;
};
/* Wrapper struct used by poll queueing */
struct ep_pqueue {
poll_table pt;
struct epitem *epi;
};
static void ep_poll_safewake_init(struct poll_safewake *psw);
static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq);
static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
struct eventpoll *ep);
static int ep_alloc(struct eventpoll **pep);
static void ep_free(struct eventpoll *ep);
static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd);
static void ep_use_epitem(struct epitem *epi);
static void ep_release_epitem(struct epitem *epi);
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt);
static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi);
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd);
static int ep_modify(struct eventpoll *ep, struct epitem *epi,
struct epoll_event *event);
static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi);
static int ep_unlink(struct eventpoll *ep, struct epitem *epi);
static int ep_remove(struct eventpoll *ep, struct epitem *epi);
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key);
static int ep_eventpoll_close(struct inode *inode, struct file *file);
static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait);
static int ep_collect_ready_items(struct eventpoll *ep,
struct list_head *txlist, int maxevents);
static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
struct epoll_event __user *events);
static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist);
static int ep_events_transfer(struct eventpoll *ep,
struct epoll_event __user *events,
int maxevents);
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout);
static int eventpollfs_delete_dentry(struct dentry *dentry);
static struct inode *ep_eventpoll_inode(void);
static struct super_block *eventpollfs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name,
void *data);
/*
* This semaphore is used to serialize ep_free() and eventpoll_release_file().
*/
static struct mutex epmutex;
/* Safe wake up implementation */
static struct poll_safewake psw;
/* Slab cache used to allocate "struct epitem" */
static kmem_cache_t *epi_cache;
/* Slab cache used to allocate "struct eppoll_entry" */
static kmem_cache_t *pwq_cache;
/* Virtual fs used to allocate inodes for eventpoll files */
static struct vfsmount *eventpoll_mnt;
/* File callbacks that implement the eventpoll file behaviour */
static struct file_operations eventpoll_fops = {
.release = ep_eventpoll_close,
.poll = ep_eventpoll_poll
};
/*
* This is used to register the virtual file system from where
* eventpoll inodes are allocated.
*/
static struct file_system_type eventpoll_fs_type = {
.name = "eventpollfs",
.get_sb = eventpollfs_get_sb,
.kill_sb = kill_anon_super,
};
/* Very basic directory entry operations for the eventpoll virtual file system */
static struct dentry_operations eventpollfs_dentry_operations = {
.d_delete = eventpollfs_delete_dentry,
};
/* Fast test to see if the file is an evenpoll file */
static inline int is_file_epoll(struct file *f)
{
return f->f_op == &eventpoll_fops;
}
/* Setup the structure that is used as key for the rb-tree */
static inline void ep_set_ffd(struct epoll_filefd *ffd,
struct file *file, int fd)
{
ffd->file = file;
ffd->fd = fd;
}
/* Compare rb-tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
struct epoll_filefd *p2)
{
return (p1->file > p2->file ? +1:
(p1->file < p2->file ? -1 : p1->fd - p2->fd));
}
/* Special initialization for the rb-tree node to detect linkage */
static inline void ep_rb_initnode(struct rb_node *n)
{
n->rb_parent = n;
}
/* Removes a node from the rb-tree and marks it for a fast is-linked check */
static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r)
{
rb_erase(n, r);
n->rb_parent = n;
}
/* Fast check to verify that the item is linked to the main rb-tree */
static inline int ep_rb_linked(struct rb_node *n)
{
return n->rb_parent != n;
}
/*
* Remove the item from the list and perform its initialization.
* This is useful for us because we can test if the item is linked
* using "ep_is_linked(p)".
*/
static inline void ep_list_del(struct list_head *p)
{
list_del(p);
INIT_LIST_HEAD(p);
}
/* Tells us if the item is currently linked */
static inline int ep_is_linked(struct list_head *p)
{
return !list_empty(p);
}
/* Get the "struct epitem" from a wait queue pointer */
static inline struct epitem * ep_item_from_wait(wait_queue_t *p)
{
return container_of(p, struct eppoll_entry, wait)->base;
}
/* Get the "struct epitem" from an epoll queue wrapper */
static inline struct epitem * ep_item_from_epqueue(poll_table *p)
{
return container_of(p, struct ep_pqueue, pt)->epi;
}
/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
static inline int ep_op_hash_event(int op)
{
return op != EPOLL_CTL_DEL;
}
/* Initialize the poll safe wake up structure */
static void ep_poll_safewake_init(struct poll_safewake *psw)
{
INIT_LIST_HEAD(&psw->wake_task_list);
spin_lock_init(&psw->lock);
}
/*
* Perform a safe wake up of the poll wait list. The problem is that
* with the new callback'd wake up system, it is possible that the
* poll callback is reentered from inside the call to wake_up() done
* on the poll wait queue head. The rule is that we cannot reenter the
* wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
* and we cannot reenter the same wait queue head at all. This will
* enable to have a hierarchy of epoll file descriptor of no more than
* EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
* because this one gets called by the poll callback, that in turn is called
* from inside a wake_up(), that might be called from irq context.
*/
static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
{
int wake_nests = 0;
unsigned long flags;
task_t *this_task = current;
struct list_head *lsthead = &psw->wake_task_list, *lnk;
struct wake_task_node *tncur;
struct wake_task_node tnode;
spin_lock_irqsave(&psw->lock, flags);
/* Try to see if the current task is already inside this wakeup call */
list_for_each(lnk, lsthead) {
tncur = list_entry(lnk, struct wake_task_node, llink);
if (tncur->wq == wq ||
(tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
/*
* Ops ... loop detected or maximum nest level reached.
* We abort this wake by breaking the cycle itself.
*/
spin_unlock_irqrestore(&psw->lock, flags);
return;
}
}
/* Add the current task to the list */
tnode.task = this_task;
tnode.wq = wq;
list_add(&tnode.llink, lsthead);
spin_unlock_irqrestore(&psw->lock, flags);
/* Do really wake up now */
wake_up(wq);
/* Remove the current task from the list */
spin_lock_irqsave(&psw->lock, flags);
list_del(&tnode.llink);
spin_unlock_irqrestore(&psw->lock, flags);
}
/* Used to initialize the epoll bits inside the "struct file" */
void eventpoll_init_file(struct file *file)
{
INIT_LIST_HEAD(&file->f_ep_links);
spin_lock_init(&file->f_ep_lock);
}
/*
* This is called from eventpoll_release() to unlink files from the eventpoll
* interface. We need to have this facility to cleanup correctly files that are
* closed without being removed from the eventpoll interface.
*/
void eventpoll_release_file(struct file *file)
{
struct list_head *lsthead = &file->f_ep_links;
struct eventpoll *ep;
struct epitem *epi;
/*
* We don't want to get "file->f_ep_lock" because it is not
* necessary. It is not necessary because we're in the "struct file"
* cleanup path, and this means that noone is using this file anymore.
* The only hit might come from ep_free() but by holding the semaphore
* will correctly serialize the operation. We do need to acquire
* "ep->sem" after "epmutex" because ep_remove() requires it when called
* from anywhere but ep_free().
*/
mutex_lock(&epmutex);
while (!list_empty(lsthead)) {
epi = list_entry(lsthead->next, struct epitem, fllink);
ep = epi->ep;
ep_list_del(&epi->fllink);
down_write(&ep->sem);
ep_remove(ep, epi);
up_write(&ep->sem);
}
mutex_unlock(&epmutex);
}
/*
* It opens an eventpoll file descriptor by suggesting a storage of "size"
* file descriptors. The size parameter is just an hint about how to size
* data structures. It won't prevent the user to store more than "size"
* file descriptors inside the epoll interface. It is the kernel part of
* the userspace epoll_create(2).
*/
asmlinkage long sys_epoll_create(int size)
{
int error, fd;
struct eventpoll *ep;
struct inode *inode;
struct file *file;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
current, size));
/*
* Sanity check on the size parameter, and create the internal data
* structure ( "struct eventpoll" ).
*/
error = -EINVAL;
if (size <= 0 || (error = ep_alloc(&ep)) != 0)
goto eexit_1;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure, and inode and a free file descriptor.
*/
error = ep_getfd(&fd, &inode, &file, ep);
if (error)
goto eexit_2;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
current, size, fd));
return fd;
eexit_2:
ep_free(ep);
kfree(ep);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
current, size, error));
return error;
}
/*
* The following function implements the controller interface for
* the eventpoll file that enables the insertion/removal/change of
* file descriptors inside the interest set. It represents
* the kernel part of the user space epoll_ctl(2).
*/
asmlinkage long
sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
{
int error;
struct file *file, *tfile;
struct eventpoll *ep;
struct epitem *epi;
struct epoll_event epds;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
current, epfd, op, fd, event));
error = -EFAULT;
if (ep_op_hash_event(op) &&
copy_from_user(&epds, event, sizeof(struct epoll_event)))
goto eexit_1;
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
file = fget(epfd);
if (!file)
goto eexit_1;
/* Get the "struct file *" for the target file */
tfile = fget(fd);
if (!tfile)
goto eexit_2;
/* The target file descriptor must support poll */
error = -EPERM;
if (!tfile->f_op || !tfile->f_op->poll)
goto eexit_3;
/*
* We have to check that the file structure underneath the file descriptor
* the user passed to us _is_ an eventpoll file. And also we do not permit
* adding an epoll file descriptor inside itself.
*/
error = -EINVAL;
if (file == tfile || !is_file_epoll(file))
goto eexit_3;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = file->private_data;
down_write(&ep->sem);
/* Try to lookup the file inside our hash table */
epi = ep_find(ep, tfile, fd);
error = -EINVAL;
switch (op) {
case EPOLL_CTL_ADD:
if (!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tfile, fd);
} else
error = -EEXIST;
break;
case EPOLL_CTL_DEL:
if (epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
case EPOLL_CTL_MOD:
if (epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
/*
* The function ep_find() increments the usage count of the structure
* so, if this is not NULL, we need to release it.
*/
if (epi)
ep_release_epitem(epi);
up_write(&ep->sem);
eexit_3:
fput(tfile);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
current, epfd, op, fd, event, error));
return error;
}
#define MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
/*
* Implement the event wait interface for the eventpoll file. It is the kernel
* part of the user space epoll_wait(2).
*/
asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
int maxevents, int timeout)
{
int error;
struct file *file;
struct eventpoll *ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
current, epfd, events, maxevents, timeout));
/* The maximum number of event must be greater than zero */
if (maxevents <= 0 || maxevents > MAX_EVENTS)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
error = -EFAULT;
goto eexit_1;
}
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
file = fget(epfd);
if (!file)
goto eexit_1;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if (!is_file_epoll(file))
goto eexit_2;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = file->private_data;
/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
current, epfd, events, maxevents, timeout, error));
return error;
}
/*
* Creates the file descriptor to be used by the epoll interface.
*/
static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
struct eventpoll *ep)
{
struct qstr this;
char name[32];
struct dentry *dentry;
struct inode *inode;
struct file *file;
int error, fd;
/* Get an ready to use file */
error = -ENFILE;
file = get_empty_filp();
if (!file)
goto eexit_1;
/* Allocates an inode from the eventpoll file system */
inode = ep_eventpoll_inode();
error = PTR_ERR(inode);
if (IS_ERR(inode))
goto eexit_2;
/* Allocates a free descriptor to plug the file onto */
error = get_unused_fd();
if (error < 0)
goto eexit_3;
fd = error;
/*
* Link the inode to a directory entry by creating a unique name
* using the inode number.
*/
error = -ENOMEM;
sprintf(name, "[%lu]", inode->i_ino);
this.name = name;
this.len = strlen(name);
this.hash = inode->i_ino;
dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
if (!dentry)
goto eexit_4;
dentry->d_op = &eventpollfs_dentry_operations;
d_add(dentry, inode);
file->f_vfsmnt = mntget(eventpoll_mnt);
file->f_dentry = dentry;
file->f_mapping = inode->i_mapping;
file->f_pos = 0;
file->f_flags = O_RDONLY;
file->f_op = &eventpoll_fops;
file->f_mode = FMODE_READ;
file->f_version = 0;
file->private_data = ep;
/* Install the new setup file into the allocated fd. */
fd_install(fd, file);
*efd = fd;
*einode = inode;
*efile = file;
return 0;
eexit_4:
put_unused_fd(fd);
eexit_3:
iput(inode);
eexit_2:
put_filp(file);
eexit_1:
return error;
}
static int ep_alloc(struct eventpoll **pep)
{
struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
rwlock_init(&ep->lock);
init_rwsem(&ep->sem);
init_waitqueue_head(&ep->wq);
init_waitqueue_head(&ep->poll_wait);
INIT_LIST_HEAD(&ep->rdllist);
ep->rbr = RB_ROOT;
*pep = ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
current, ep));
return 0;
}
static void ep_free(struct eventpoll *ep)
{
struct rb_node *rbp;
struct epitem *epi;
/* We need to release all tasks waiting for these file */
if (waitqueue_active(&ep->poll_wait))
ep_poll_safewake(&psw, &ep->poll_wait);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() while we're freeing the "struct eventpoll".
* We do not need to hold "ep->sem" here because the epoll file
* is on the way to be removed and no one has references to it
* anymore. The only hit might come from eventpoll_release_file() but
* holding "epmutex" is sufficent here.
*/
mutex_lock(&epmutex);
/*
* Walks through the whole tree by unregistering poll callbacks.
*/
for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
epi = rb_entry(rbp, struct epitem, rbn);
ep_unregister_pollwait(ep, epi);
}
/*
* Walks through the whole hash by freeing each "struct epitem". At this
* point we are sure no poll callbacks will be lingering around, and also by
* write-holding "sem" we can be sure that no file cleanup code will hit
* us during this operation. So we can avoid the lock on "ep->lock".
*/
while ((rbp = rb_first(&ep->rbr)) != 0) {
epi = rb_entry(rbp, struct epitem, rbn);
ep_remove(ep, epi);
}
mutex_unlock(&epmutex);
}
/*
* Search the file inside the eventpoll hash. It add usage count to
* the returned item, so the caller must call ep_release_epitem()
* after finished using the "struct epitem".
*/
static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
{
int kcmp;
unsigned long flags;
struct rb_node *rbp;
struct epitem *epi, *epir = NULL;
struct epoll_filefd ffd;
ep_set_ffd(&ffd, file, fd);
read_lock_irqsave(&ep->lock, flags);
for (rbp = ep->rbr.rb_node; rbp; ) {
epi = rb_entry(rbp, struct epitem, rbn);
kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
if (kcmp > 0)
rbp = rbp->rb_right;
else if (kcmp < 0)
rbp = rbp->rb_left;
else {
ep_use_epitem(epi);
epir = epi;
break;
}
}
read_unlock_irqrestore(&ep->lock, flags);
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
current, file, epir));
return epir;
}
/*
* Increment the usage count of the "struct epitem" making it sure
* that the user will have a valid pointer to reference.
*/
static void ep_use_epitem(struct epitem *epi)
{
atomic_inc(&epi->usecnt);
}
/*
* Decrement ( release ) the usage count by signaling that the user
* has finished using the structure. It might lead to freeing the
* structure itself if the count goes to zero.
*/
static void ep_release_epitem(struct epitem *epi)
{
if (atomic_dec_and_test(&epi->usecnt))
kmem_cache_free(epi_cache, epi);
}
/*
* This is the callback that is used to add our wait queue to the
* target file wakeup lists.
*/
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
poll_table *pt)
{
struct epitem *epi = ep_item_from_epqueue(pt);
struct eppoll_entry *pwq;
if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, SLAB_KERNEL))) {
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
{
int kcmp;
struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
struct epitem *epic;
while (*p) {
parent = *p;
epic = rb_entry(parent, struct epitem, rbn);
kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
if (kcmp > 0)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&epi->rbn, parent, p);
rb_insert_color(&epi->rbn, &ep->rbr);
}
static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
struct file *tfile, int fd)
{
int error, revents, pwake = 0;
unsigned long flags;
struct epitem *epi;
struct ep_pqueue epq;
error = -ENOMEM;
if (!(epi = kmem_cache_alloc(epi_cache, SLAB_KERNEL)))
goto eexit_1;
/* Item initialization follow here ... */
ep_rb_initnode(&epi->rbn);
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->txlink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
ep_set_ffd(&epi->ffd, tfile, fd);
epi->event = *event;
atomic_set(&epi->usecnt, 1);
epi->nwait = 0;
/* Initialize the poll table using the queue callback */
epq.epi = epi;
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
/*
* Attach the item to the poll hooks and get current event bits.
* We can safely use the file* here because its usage count has
* been increased by the caller of this function.
*/
revents = tfile->f_op->poll(tfile, &epq.pt);
/*
* We have to check if something went wrong during the poll wait queue
* install process. Namely an allocation for a wait queue failed due
* high memory pressure.
*/
if (epi->nwait < 0)
goto eexit_2;
/* Add the current item to the list of active epoll hook for this file */
spin_lock(&tfile->f_ep_lock);
list_add_tail(&epi->fllink, &tfile->f_ep_links);
spin_unlock(&tfile->f_ep_lock);
/* We have to drop the new item inside our item list to keep track of it */
write_lock_irqsave(&ep->lock, flags);
/* Add the current item to the rb-tree */
ep_rbtree_insert(ep, epi);
/* If the file is already "ready" we drop it inside the ready list */
if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
/* Notify waiting tasks that events are available */
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
current, ep, tfile, fd));
return 0;
eexit_2:
ep_unregister_pollwait(ep, epi);
/*
* We need to do this because an event could have been arrived on some
* allocated wait queue.
*/
write_lock_irqsave(&ep->lock, flags);
if (ep_is_linked(&epi->rdllink))
ep_list_del(&epi->rdllink);
write_unlock_irqrestore(&ep->lock, flags);
kmem_cache_free(epi_cache, epi);
eexit_1:
return error;
}
/*
* Modify the interest event mask by dropping an event if the new mask
* has a match in the current file status.
*/
static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
{
int pwake = 0;
unsigned int revents;
unsigned long flags;
/*
* Set the new event interest mask before calling f_op->poll(), otherwise
* a potential race might occur. In fact if we do this operation inside
* the lock, an event might happen between the f_op->poll() call and the
* new event set registering.
*/
epi->event.events = event->events;
/*
* Get current event bits. We can safely use the file* here because
* its usage count has been increased by the caller of this function.
*/
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
write_lock_irqsave(&ep->lock, flags);
/* Copy the data member from inside the lock */
epi->event.data = event->data;
/*
* If the item is not linked to the hash it means that it's on its
* way toward the removal. Do nothing in this case.
*/
if (ep_rb_linked(&epi->rbn)) {
/*
* If the item is "hot" and it is not registered inside the ready
* list, push it inside. If the item is not "hot" and it is currently
* registered inside the ready list, unlink it.
*/
if (revents & event->events) {
if (!ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
/* Notify waiting tasks that events are available */
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
}
}
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
return 0;
}
/*
* This function unregister poll callbacks from the associated file descriptor.
* Since this must be called without holding "ep->lock" the atomic exchange trick
* will protect us from multiple unregister.
*/
static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
{
int nwait;
struct list_head *lsthead = &epi->pwqlist;
struct eppoll_entry *pwq;
/* This is called without locks, so we need the atomic exchange */
nwait = xchg(&epi->nwait, 0);
if (nwait) {
while (!list_empty(lsthead)) {
pwq = list_entry(lsthead->next, struct eppoll_entry, llink);
ep_list_del(&pwq->llink);
remove_wait_queue(pwq->whead, &pwq->wait);
kmem_cache_free(pwq_cache, pwq);
}
}
}
/*
* Unlink the "struct epitem" from all places it might have been hooked up.
* This function must be called with write IRQ lock on "ep->lock".
*/
static int ep_unlink(struct eventpoll *ep, struct epitem *epi)
{
int error;
/*
* It can happen that this one is called for an item already unlinked.
* The check protect us from doing a double unlink ( crash ).
*/
error = -ENOENT;
if (!ep_rb_linked(&epi->rbn))
goto eexit_1;
/*
* Clear the event mask for the unlinked item. This will avoid item
* notifications to be sent after the unlink operation from inside
* the kernel->userspace event transfer loop.
*/
epi->event.events = 0;
/*
* At this point is safe to do the job, unlink the item from our rb-tree.
* This operation togheter with the above check closes the door to
* double unlinks.
*/
ep_rb_erase(&epi->rbn, &ep->rbr);
/*
* If the item we are going to remove is inside the ready file descriptors
* we want to remove it from this list to avoid stale events.
*/
if (ep_is_linked(&epi->rdllink))
ep_list_del(&epi->rdllink);
error = 0;
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n",
current, ep, epi->file, error));
return error;
}
/*
* Removes a "struct epitem" from the eventpoll hash and deallocates
* all the associated resources.
*/
static int ep_remove(struct eventpoll *ep, struct epitem *epi)
{
int error;
unsigned long flags;
struct file *file = epi->ffd.file;
/*
* Removes poll wait queue hooks. We _have_ to do this without holding
* the "ep->lock" otherwise a deadlock might occur. This because of the
* sequence of the lock acquisition. Here we do "ep->lock" then the wait
* queue head lock when unregistering the wait queue. The wakeup callback
* will run by holding the wait queue head lock and will call our callback
* that will try to get "ep->lock".
*/
ep_unregister_pollwait(ep, epi);
/* Remove the current item from the list of epoll hooks */
spin_lock(&file->f_ep_lock);
if (ep_is_linked(&epi->fllink))
ep_list_del(&epi->fllink);
spin_unlock(&file->f_ep_lock);
/* We need to acquire the write IRQ lock before calling ep_unlink() */
write_lock_irqsave(&ep->lock, flags);
/* Really unlink the item from the hash */
error = ep_unlink(ep, epi);
write_unlock_irqrestore(&ep->lock, flags);
if (error)
goto eexit_1;
/* At this point it is safe to free the eventpoll item */
ep_release_epitem(epi);
error = 0;
eexit_1:
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n",
current, ep, file, error));
return error;
}
/*
* This is the callback that is passed to the wait queue wakeup
* machanism. It is called by the stored file descriptors when they
* have events to report.
*/
static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = ep_item_from_wait(wait);
struct eventpoll *ep = epi->ep;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
current, epi->file, epi, ep));
write_lock_irqsave(&ep->lock, flags);
/*
* If the event mask does not contain any poll(2) event, we consider the
* descriptor to be disabled. This condition is likely the effect of the
* EPOLLONESHOT bit that disables the descriptor when an event is received,
* until the next EPOLL_CTL_MOD will be issued.
*/
if (!(epi->event.events & ~EP_PRIVATE_BITS))
goto is_disabled;
/* If this file is already in the ready list we exit soon */
if (ep_is_linked(&epi->rdllink))
goto is_linked;
list_add_tail(&epi->rdllink, &ep->rdllist);
is_linked:
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
is_disabled:
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
return 1;
}
static int ep_eventpoll_close(struct inode *inode, struct file *file)
{
struct eventpoll *ep = file->private_data;
if (ep) {
ep_free(ep);
kfree(ep);
}
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
return 0;
}
static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
{
unsigned int pollflags = 0;
unsigned long flags;
struct eventpoll *ep = file->private_data;
/* Insert inside our poll wait queue */
poll_wait(file, &ep->poll_wait, wait);
/* Check our condition */
read_lock_irqsave(&ep->lock, flags);
if (!list_empty(&ep->rdllist))
pollflags = POLLIN | POLLRDNORM;
read_unlock_irqrestore(&ep->lock, flags);
return pollflags;
}
/*
* Since we have to release the lock during the __copy_to_user() operation and
* during the f_op->poll() call, we try to collect the maximum number of items
* by reducing the irqlock/irqunlock switching rate.
*/
static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents)
{
int nepi;
unsigned long flags;
struct list_head *lsthead = &ep->rdllist, *lnk;
struct epitem *epi;
write_lock_irqsave(&ep->lock, flags);
for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) {
epi = list_entry(lnk, struct epitem, rdllink);
lnk = lnk->next;
/* If this file is already in the ready list we exit soon */
if (!ep_is_linked(&epi->txlink)) {
/*
* This is initialized in this way so that the default
* behaviour of the reinjecting code will be to push back
* the item inside the ready list.
*/
epi->revents = epi->event.events;
/* Link the ready item into the transfer list */
list_add(&epi->txlink, txlist);
nepi++;
/*
* Unlink the item from the ready list.
*/
ep_list_del(&epi->rdllink);
}
}
write_unlock_irqrestore(&ep->lock, flags);
return nepi;
}
/*
* This function is called without holding the "ep->lock" since the call to
* __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ
* because of the way poll() is traditionally implemented in Linux.
*/
static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
struct epoll_event __user *events)
{
int eventcnt = 0;
unsigned int revents;
struct list_head *lnk;
struct epitem *epi;
/*
* We can loop without lock because this is a task private list.
* The test done during the collection loop will guarantee us that
* another task will not try to collect this file. Also, items
* cannot vanish during the loop because we are holding "sem".
*/
list_for_each(lnk, txlist) {
epi = list_entry(lnk, struct epitem, txlink);
/*
* Get the ready file event set. We can safely use the file
* because we are holding the "sem" in read and this will
* guarantee that both the file and the item will not vanish.
*/
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
/*
* Set the return event set for the current file descriptor.
* Note that only the task task was successfully able to link
* the item to its "txlist" will write this field.
*/
epi->revents = revents & epi->event.events;
if (epi->revents) {
if (__put_user(epi->revents,
&events[eventcnt].events) ||
__put_user(epi->event.data,
&events[eventcnt].data))
return -EFAULT;
if (epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
eventcnt++;
}
}
return eventcnt;
}
/*
* Walk through the transfer list we collected with ep_collect_ready_items()
* and, if 1) the item is still "alive" 2) its event set is not empty 3) it's
* not already linked, links it to the ready list. Same as above, we are holding
* "sem" so items cannot vanish underneath our nose.
*/
static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
{
int ricnt = 0, pwake = 0;
unsigned long flags;
struct epitem *epi;
write_lock_irqsave(&ep->lock, flags);
while (!list_empty(txlist)) {
epi = list_entry(txlist->next, struct epitem, txlink);
/* Unlink the current item from the transfer list */
ep_list_del(&epi->txlink);
/*
* If the item is no more linked to the interest set, we don't
* have to push it inside the ready list because the following
* ep_release_epitem() is going to drop it. Also, if the current
* item is set to have an Edge Triggered behaviour, we don't have
* to push it back either.
*/
if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) &&
(epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ricnt++;
}
}
if (ricnt) {
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if (waitqueue_active(&ep->poll_wait))
pwake++;
}
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if (pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
}
/*
* Perform the transfer of events to user space.
*/
static int ep_events_transfer(struct eventpoll *ep,
struct epoll_event __user *events, int maxevents)
{
int eventcnt = 0;
struct list_head txlist;
INIT_LIST_HEAD(&txlist);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
*/
down_read(&ep->sem);
/* Collect/extract ready items */
if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
/* Build result set in userspace */
eventcnt = ep_send_events(ep, &txlist, events);
/* Reinject ready items into the ready list */
ep_reinject_items(ep, &txlist);
}
up_read(&ep->sem);
return eventcnt;
}
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
int maxevents, long timeout)
{
int res, eavail;
unsigned long flags;
long jtimeout;
wait_queue_t wait;
/*
* Calculate the timeout by checking for the "infinite" value ( -1 )
* and the overflow condition. The passed timeout is in milliseconds,
* that why (t * HZ) / 1000.
*/
jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
retry:
write_lock_irqsave(&ep->lock, flags);
res = 0;
if (list_empty(&ep->rdllist)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
init_waitqueue_entry(&wait, current);
add_wait_queue(&ep->wq, &wait);
for (;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
if (!list_empty(&ep->rdllist) || !jtimeout)
break;
if (signal_pending(current)) {
res = -EINTR;
break;
}
write_unlock_irqrestore(&ep->lock, flags);
jtimeout = schedule_timeout(jtimeout);
write_lock_irqsave(&ep->lock, flags);
}
remove_wait_queue(&ep->wq, &wait);
set_current_state(TASK_RUNNING);
}
/* Is it worth to try to dig for events ? */
eavail = !list_empty(&ep->rdllist);
write_unlock_irqrestore(&ep->lock, flags);
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if (!res && eavail &&
!(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
goto retry;
return res;
}
static int eventpollfs_delete_dentry(struct dentry *dentry)
{
return 1;
}
static struct inode *ep_eventpoll_inode(void)
{
int error = -ENOMEM;
struct inode *inode = new_inode(eventpoll_mnt->mnt_sb);
if (!inode)
goto eexit_1;
inode->i_fop = &eventpoll_fops;
/*
* Mark the inode dirty from the very beginning,
* that way it will never be moved to the dirty
* list because mark_inode_dirty() will think
* that it already _is_ on the dirty list.
*/
inode->i_state = I_DIRTY;
inode->i_mode = S_IRUSR | S_IWUSR;
inode->i_uid = current->fsuid;
inode->i_gid = current->fsgid;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_blksize = PAGE_SIZE;
return inode;
eexit_1:
return ERR_PTR(error);
}
static struct super_block *
eventpollfs_get_sb(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data)
{
return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC);
}
static int __init eventpoll_init(void)
{
int error;
mutex_init(&epmutex);
/* Initialize the structure used to perform safe poll wait head wake ups */
ep_poll_safewake_init(&psw);
/* Allocates slab cache used to allocate "struct epitem" items */
epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
NULL, NULL);
/* Allocates slab cache used to allocate "struct eppoll_entry" */
pwq_cache = kmem_cache_create("eventpoll_pwq",
sizeof(struct eppoll_entry), 0,
EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
/*
* Register the virtual file system that will be the source of inodes
* for the eventpoll files
*/
error = register_filesystem(&eventpoll_fs_type);
if (error)
goto epanic;
/* Mount the above commented virtual file system */
eventpoll_mnt = kern_mount(&eventpoll_fs_type);
error = PTR_ERR(eventpoll_mnt);
if (IS_ERR(eventpoll_mnt))
goto epanic;
DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
current));
return 0;
epanic:
panic("eventpoll_init() failed\n");
}
static void __exit eventpoll_exit(void)
{
/* Undo all operations done inside eventpoll_init() */
unregister_filesystem(&eventpoll_fs_type);
mntput(eventpoll_mnt);
kmem_cache_destroy(pwq_cache);
kmem_cache_destroy(epi_cache);
}
module_init(eventpoll_init);
module_exit(eventpoll_exit);
MODULE_LICENSE("GPL");