mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
164 lines
4.2 KiB
C
164 lines
4.2 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_STRING_64_H
|
|
#define _ASM_X86_STRING_64_H
|
|
|
|
#ifdef __KERNEL__
|
|
#include <linux/jump_label.h>
|
|
|
|
/* Written 2002 by Andi Kleen */
|
|
|
|
/* Only used for special circumstances. Stolen from i386/string.h */
|
|
static __always_inline void *__inline_memcpy(void *to, const void *from, size_t n)
|
|
{
|
|
unsigned long d0, d1, d2;
|
|
asm volatile("rep ; movsl\n\t"
|
|
"testb $2,%b4\n\t"
|
|
"je 1f\n\t"
|
|
"movsw\n"
|
|
"1:\ttestb $1,%b4\n\t"
|
|
"je 2f\n\t"
|
|
"movsb\n"
|
|
"2:"
|
|
: "=&c" (d0), "=&D" (d1), "=&S" (d2)
|
|
: "0" (n / 4), "q" (n), "1" ((long)to), "2" ((long)from)
|
|
: "memory");
|
|
return to;
|
|
}
|
|
|
|
/* Even with __builtin_ the compiler may decide to use the out of line
|
|
function. */
|
|
|
|
#define __HAVE_ARCH_MEMCPY 1
|
|
extern void *memcpy(void *to, const void *from, size_t len);
|
|
extern void *__memcpy(void *to, const void *from, size_t len);
|
|
|
|
#ifndef CONFIG_FORTIFY_SOURCE
|
|
#ifndef CONFIG_KMEMCHECK
|
|
#if (__GNUC__ == 4 && __GNUC_MINOR__ < 3) || __GNUC__ < 4
|
|
#define memcpy(dst, src, len) \
|
|
({ \
|
|
size_t __len = (len); \
|
|
void *__ret; \
|
|
if (__builtin_constant_p(len) && __len >= 64) \
|
|
__ret = __memcpy((dst), (src), __len); \
|
|
else \
|
|
__ret = __builtin_memcpy((dst), (src), __len); \
|
|
__ret; \
|
|
})
|
|
#endif
|
|
#else
|
|
/*
|
|
* kmemcheck becomes very happy if we use the REP instructions unconditionally,
|
|
* because it means that we know both memory operands in advance.
|
|
*/
|
|
#define memcpy(dst, src, len) __inline_memcpy((dst), (src), (len))
|
|
#endif
|
|
#endif /* !CONFIG_FORTIFY_SOURCE */
|
|
|
|
#define __HAVE_ARCH_MEMSET
|
|
void *memset(void *s, int c, size_t n);
|
|
void *__memset(void *s, int c, size_t n);
|
|
|
|
#define __HAVE_ARCH_MEMSET16
|
|
static inline void *memset16(uint16_t *s, uint16_t v, size_t n)
|
|
{
|
|
long d0, d1;
|
|
asm volatile("rep\n\t"
|
|
"stosw"
|
|
: "=&c" (d0), "=&D" (d1)
|
|
: "a" (v), "1" (s), "0" (n)
|
|
: "memory");
|
|
return s;
|
|
}
|
|
|
|
#define __HAVE_ARCH_MEMSET32
|
|
static inline void *memset32(uint32_t *s, uint32_t v, size_t n)
|
|
{
|
|
long d0, d1;
|
|
asm volatile("rep\n\t"
|
|
"stosl"
|
|
: "=&c" (d0), "=&D" (d1)
|
|
: "a" (v), "1" (s), "0" (n)
|
|
: "memory");
|
|
return s;
|
|
}
|
|
|
|
#define __HAVE_ARCH_MEMSET64
|
|
static inline void *memset64(uint64_t *s, uint64_t v, size_t n)
|
|
{
|
|
long d0, d1;
|
|
asm volatile("rep\n\t"
|
|
"stosq"
|
|
: "=&c" (d0), "=&D" (d1)
|
|
: "a" (v), "1" (s), "0" (n)
|
|
: "memory");
|
|
return s;
|
|
}
|
|
|
|
#define __HAVE_ARCH_MEMMOVE
|
|
void *memmove(void *dest, const void *src, size_t count);
|
|
void *__memmove(void *dest, const void *src, size_t count);
|
|
|
|
int memcmp(const void *cs, const void *ct, size_t count);
|
|
size_t strlen(const char *s);
|
|
char *strcpy(char *dest, const char *src);
|
|
char *strcat(char *dest, const char *src);
|
|
int strcmp(const char *cs, const char *ct);
|
|
|
|
#if defined(CONFIG_KASAN) && !defined(__SANITIZE_ADDRESS__)
|
|
|
|
/*
|
|
* For files that not instrumented (e.g. mm/slub.c) we
|
|
* should use not instrumented version of mem* functions.
|
|
*/
|
|
|
|
#undef memcpy
|
|
#define memcpy(dst, src, len) __memcpy(dst, src, len)
|
|
#define memmove(dst, src, len) __memmove(dst, src, len)
|
|
#define memset(s, c, n) __memset(s, c, n)
|
|
|
|
#ifndef __NO_FORTIFY
|
|
#define __NO_FORTIFY /* FORTIFY_SOURCE uses __builtin_memcpy, etc. */
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#define __HAVE_ARCH_MEMCPY_MCSAFE 1
|
|
__must_check int memcpy_mcsafe_unrolled(void *dst, const void *src, size_t cnt);
|
|
DECLARE_STATIC_KEY_FALSE(mcsafe_key);
|
|
|
|
/**
|
|
* memcpy_mcsafe - copy memory with indication if a machine check happened
|
|
*
|
|
* @dst: destination address
|
|
* @src: source address
|
|
* @cnt: number of bytes to copy
|
|
*
|
|
* Low level memory copy function that catches machine checks
|
|
* We only call into the "safe" function on systems that can
|
|
* actually do machine check recovery. Everyone else can just
|
|
* use memcpy().
|
|
*
|
|
* Return 0 for success, -EFAULT for fail
|
|
*/
|
|
static __always_inline __must_check int
|
|
memcpy_mcsafe(void *dst, const void *src, size_t cnt)
|
|
{
|
|
#ifdef CONFIG_X86_MCE
|
|
if (static_branch_unlikely(&mcsafe_key))
|
|
return memcpy_mcsafe_unrolled(dst, src, cnt);
|
|
else
|
|
#endif
|
|
memcpy(dst, src, cnt);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
|
|
#define __HAVE_ARCH_MEMCPY_FLUSHCACHE 1
|
|
void memcpy_flushcache(void *dst, const void *src, size_t cnt);
|
|
#endif
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _ASM_X86_STRING_64_H */
|