mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-11 17:56:49 +07:00
6286ae97d1
The inline path seems to have changed the SLAB behavior for very large
kmalloc allocations with commit e3366016
("slab: Use common
kmalloc_index/kmalloc_size functions"). This patch restores the old
behavior but also adds diagnostics so that we can figure where in the
code these large allocations occur.
Reported-and-tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/201305040348.CIF81716.OStQOHFJMFLOVF@I-love.SAKURA.ne.jp
[ penberg@kernel.org: use WARN_ON_ONCE ]
Signed-off-by: Pekka Enberg <penberg@kernel.org>
198 lines
4.6 KiB
C
198 lines
4.6 KiB
C
#ifndef _LINUX_SLAB_DEF_H
|
|
#define _LINUX_SLAB_DEF_H
|
|
|
|
/*
|
|
* Definitions unique to the original Linux SLAB allocator.
|
|
*
|
|
* What we provide here is a way to optimize the frequent kmalloc
|
|
* calls in the kernel by selecting the appropriate general cache
|
|
* if kmalloc was called with a size that can be established at
|
|
* compile time.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
|
|
/*
|
|
* struct kmem_cache
|
|
*
|
|
* manages a cache.
|
|
*/
|
|
|
|
struct kmem_cache {
|
|
/* 1) Cache tunables. Protected by cache_chain_mutex */
|
|
unsigned int batchcount;
|
|
unsigned int limit;
|
|
unsigned int shared;
|
|
|
|
unsigned int size;
|
|
u32 reciprocal_buffer_size;
|
|
/* 2) touched by every alloc & free from the backend */
|
|
|
|
unsigned int flags; /* constant flags */
|
|
unsigned int num; /* # of objs per slab */
|
|
|
|
/* 3) cache_grow/shrink */
|
|
/* order of pgs per slab (2^n) */
|
|
unsigned int gfporder;
|
|
|
|
/* force GFP flags, e.g. GFP_DMA */
|
|
gfp_t allocflags;
|
|
|
|
size_t colour; /* cache colouring range */
|
|
unsigned int colour_off; /* colour offset */
|
|
struct kmem_cache *slabp_cache;
|
|
unsigned int slab_size;
|
|
|
|
/* constructor func */
|
|
void (*ctor)(void *obj);
|
|
|
|
/* 4) cache creation/removal */
|
|
const char *name;
|
|
struct list_head list;
|
|
int refcount;
|
|
int object_size;
|
|
int align;
|
|
|
|
/* 5) statistics */
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
unsigned long num_active;
|
|
unsigned long num_allocations;
|
|
unsigned long high_mark;
|
|
unsigned long grown;
|
|
unsigned long reaped;
|
|
unsigned long errors;
|
|
unsigned long max_freeable;
|
|
unsigned long node_allocs;
|
|
unsigned long node_frees;
|
|
unsigned long node_overflow;
|
|
atomic_t allochit;
|
|
atomic_t allocmiss;
|
|
atomic_t freehit;
|
|
atomic_t freemiss;
|
|
|
|
/*
|
|
* If debugging is enabled, then the allocator can add additional
|
|
* fields and/or padding to every object. size contains the total
|
|
* object size including these internal fields, the following two
|
|
* variables contain the offset to the user object and its size.
|
|
*/
|
|
int obj_offset;
|
|
#endif /* CONFIG_DEBUG_SLAB */
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
struct memcg_cache_params *memcg_params;
|
|
#endif
|
|
|
|
/* 6) per-cpu/per-node data, touched during every alloc/free */
|
|
/*
|
|
* We put array[] at the end of kmem_cache, because we want to size
|
|
* this array to nr_cpu_ids slots instead of NR_CPUS
|
|
* (see kmem_cache_init())
|
|
* We still use [NR_CPUS] and not [1] or [0] because cache_cache
|
|
* is statically defined, so we reserve the max number of cpus.
|
|
*
|
|
* We also need to guarantee that the list is able to accomodate a
|
|
* pointer for each node since "nodelists" uses the remainder of
|
|
* available pointers.
|
|
*/
|
|
struct kmem_cache_node **node;
|
|
struct array_cache *array[NR_CPUS + MAX_NUMNODES];
|
|
/*
|
|
* Do not add fields after array[]
|
|
*/
|
|
};
|
|
|
|
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
|
|
void *__kmalloc(size_t size, gfp_t flags);
|
|
|
|
#ifdef CONFIG_TRACING
|
|
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
|
|
#else
|
|
static __always_inline void *
|
|
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
|
|
{
|
|
return kmem_cache_alloc(cachep, flags);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void *kmalloc(size_t size, gfp_t flags)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
void *ret;
|
|
|
|
if (__builtin_constant_p(size)) {
|
|
int i;
|
|
|
|
if (!size)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
|
|
return NULL;
|
|
|
|
i = kmalloc_index(size);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (flags & GFP_DMA)
|
|
cachep = kmalloc_dma_caches[i];
|
|
else
|
|
#endif
|
|
cachep = kmalloc_caches[i];
|
|
|
|
ret = kmem_cache_alloc_trace(cachep, flags, size);
|
|
|
|
return ret;
|
|
}
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void *__kmalloc_node(size_t size, gfp_t flags, int node);
|
|
extern void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
|
|
|
|
#ifdef CONFIG_TRACING
|
|
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
|
|
gfp_t flags,
|
|
int nodeid,
|
|
size_t size);
|
|
#else
|
|
static __always_inline void *
|
|
kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
|
|
gfp_t flags,
|
|
int nodeid,
|
|
size_t size)
|
|
{
|
|
return kmem_cache_alloc_node(cachep, flags, nodeid);
|
|
}
|
|
#endif
|
|
|
|
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
|
|
if (__builtin_constant_p(size)) {
|
|
int i;
|
|
|
|
if (!size)
|
|
return ZERO_SIZE_PTR;
|
|
|
|
if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
|
|
return NULL;
|
|
|
|
i = kmalloc_index(size);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (flags & GFP_DMA)
|
|
cachep = kmalloc_dma_caches[i];
|
|
else
|
|
#endif
|
|
cachep = kmalloc_caches[i];
|
|
|
|
return kmem_cache_alloc_node_trace(cachep, flags, node, size);
|
|
}
|
|
return __kmalloc_node(size, flags, node);
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#endif /* _LINUX_SLAB_DEF_H */
|