mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
e1253f3910
New headers contain prototypes of functions that will be common between ef10 and upcoming driver. Removed static modifier from the affected functions. Some function prototypes were removed from existing headers. Signed-off-by: Alexandru-Mihai Maftei <amaftei@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1235 lines
35 KiB
C
1235 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2013 Solarflare Communications Inc.
|
|
*/
|
|
|
|
#include <linux/socket.h>
|
|
#include <linux/in.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/iommu.h>
|
|
#include <net/ip.h>
|
|
#include <net/checksum.h>
|
|
#include <net/xdp.h>
|
|
#include <linux/bpf_trace.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "rx_common.h"
|
|
#include "filter.h"
|
|
#include "nic.h"
|
|
#include "selftest.h"
|
|
#include "workarounds.h"
|
|
|
|
/* Preferred number of descriptors to fill at once */
|
|
#define EFX_RX_PREFERRED_BATCH 8U
|
|
|
|
/* Maximum rx prefix used by any architecture. */
|
|
#define EFX_MAX_RX_PREFIX_SIZE 16
|
|
|
|
/* Number of RX buffers to recycle pages for. When creating the RX page recycle
|
|
* ring, this number is divided by the number of buffers per page to calculate
|
|
* the number of pages to store in the RX page recycle ring.
|
|
*/
|
|
#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
|
|
#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
|
|
|
|
/* Size of buffer allocated for skb header area. */
|
|
#define EFX_SKB_HEADERS 128u
|
|
|
|
/* This is the percentage fill level below which new RX descriptors
|
|
* will be added to the RX descriptor ring.
|
|
*/
|
|
static unsigned int rx_refill_threshold;
|
|
|
|
/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
|
|
#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
|
|
EFX_RX_USR_BUF_SIZE)
|
|
|
|
/*
|
|
* RX maximum head room required.
|
|
*
|
|
* This must be at least 1 to prevent overflow, plus one packet-worth
|
|
* to allow pipelined receives.
|
|
*/
|
|
#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
|
|
|
|
static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
|
|
{
|
|
return page_address(buf->page) + buf->page_offset;
|
|
}
|
|
|
|
static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
|
|
{
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
|
return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
|
|
#else
|
|
const u8 *data = eh + efx->rx_packet_hash_offset;
|
|
return (u32)data[0] |
|
|
(u32)data[1] << 8 |
|
|
(u32)data[2] << 16 |
|
|
(u32)data[3] << 24;
|
|
#endif
|
|
}
|
|
|
|
static inline void efx_sync_rx_buffer(struct efx_nic *efx,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int len)
|
|
{
|
|
dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
void efx_rx_config_page_split(struct efx_nic *efx)
|
|
{
|
|
efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
|
|
XDP_PACKET_HEADROOM,
|
|
EFX_RX_BUF_ALIGNMENT);
|
|
efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
|
|
((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
|
|
efx->rx_page_buf_step);
|
|
efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
|
|
efx->rx_bufs_per_page;
|
|
efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
|
|
efx->rx_bufs_per_page);
|
|
}
|
|
|
|
/* Check the RX page recycle ring for a page that can be reused. */
|
|
static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct page *page;
|
|
struct efx_rx_page_state *state;
|
|
unsigned index;
|
|
|
|
index = rx_queue->page_remove & rx_queue->page_ptr_mask;
|
|
page = rx_queue->page_ring[index];
|
|
if (page == NULL)
|
|
return NULL;
|
|
|
|
rx_queue->page_ring[index] = NULL;
|
|
/* page_remove cannot exceed page_add. */
|
|
if (rx_queue->page_remove != rx_queue->page_add)
|
|
++rx_queue->page_remove;
|
|
|
|
/* If page_count is 1 then we hold the only reference to this page. */
|
|
if (page_count(page) == 1) {
|
|
++rx_queue->page_recycle_count;
|
|
return page;
|
|
} else {
|
|
state = page_address(page);
|
|
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
put_page(page);
|
|
++rx_queue->page_recycle_failed;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
|
|
*
|
|
* @rx_queue: Efx RX queue
|
|
*
|
|
* This allocates a batch of pages, maps them for DMA, and populates
|
|
* struct efx_rx_buffers for each one. Return a negative error code or
|
|
* 0 on success. If a single page can be used for multiple buffers,
|
|
* then the page will either be inserted fully, or not at all.
|
|
*/
|
|
int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
struct page *page;
|
|
unsigned int page_offset;
|
|
struct efx_rx_page_state *state;
|
|
dma_addr_t dma_addr;
|
|
unsigned index, count;
|
|
|
|
count = 0;
|
|
do {
|
|
page = efx_reuse_page(rx_queue);
|
|
if (page == NULL) {
|
|
page = alloc_pages(__GFP_COMP |
|
|
(atomic ? GFP_ATOMIC : GFP_KERNEL),
|
|
efx->rx_buffer_order);
|
|
if (unlikely(page == NULL))
|
|
return -ENOMEM;
|
|
dma_addr =
|
|
dma_map_page(&efx->pci_dev->dev, page, 0,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
|
|
dma_addr))) {
|
|
__free_pages(page, efx->rx_buffer_order);
|
|
return -EIO;
|
|
}
|
|
state = page_address(page);
|
|
state->dma_addr = dma_addr;
|
|
} else {
|
|
state = page_address(page);
|
|
dma_addr = state->dma_addr;
|
|
}
|
|
|
|
dma_addr += sizeof(struct efx_rx_page_state);
|
|
page_offset = sizeof(struct efx_rx_page_state);
|
|
|
|
do {
|
|
index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
|
|
XDP_PACKET_HEADROOM;
|
|
rx_buf->page = page;
|
|
rx_buf->page_offset = page_offset + efx->rx_ip_align +
|
|
XDP_PACKET_HEADROOM;
|
|
rx_buf->len = efx->rx_dma_len;
|
|
rx_buf->flags = 0;
|
|
++rx_queue->added_count;
|
|
get_page(page);
|
|
dma_addr += efx->rx_page_buf_step;
|
|
page_offset += efx->rx_page_buf_step;
|
|
} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
|
|
|
|
rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
|
|
} while (++count < efx->rx_pages_per_batch);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap a DMA-mapped page. This function is only called for the final RX
|
|
* buffer in a page.
|
|
*/
|
|
void efx_unmap_rx_buffer(struct efx_nic *efx,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct page *page = rx_buf->page;
|
|
|
|
if (page) {
|
|
struct efx_rx_page_state *state = page_address(page);
|
|
dma_unmap_page(&efx->pci_dev->dev,
|
|
state->dma_addr,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
|
|
void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int num_bufs)
|
|
{
|
|
do {
|
|
if (rx_buf->page) {
|
|
put_page(rx_buf->page);
|
|
rx_buf->page = NULL;
|
|
}
|
|
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
} while (--num_bufs);
|
|
}
|
|
|
|
/* Attempt to recycle the page if there is an RX recycle ring; the page can
|
|
* only be added if this is the final RX buffer, to prevent pages being used in
|
|
* the descriptor ring and appearing in the recycle ring simultaneously.
|
|
*/
|
|
static void efx_recycle_rx_page(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
struct page *page = rx_buf->page;
|
|
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned index;
|
|
|
|
/* Only recycle the page after processing the final buffer. */
|
|
if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
|
|
return;
|
|
|
|
index = rx_queue->page_add & rx_queue->page_ptr_mask;
|
|
if (rx_queue->page_ring[index] == NULL) {
|
|
unsigned read_index = rx_queue->page_remove &
|
|
rx_queue->page_ptr_mask;
|
|
|
|
/* The next slot in the recycle ring is available, but
|
|
* increment page_remove if the read pointer currently
|
|
* points here.
|
|
*/
|
|
if (read_index == index)
|
|
++rx_queue->page_remove;
|
|
rx_queue->page_ring[index] = page;
|
|
++rx_queue->page_add;
|
|
return;
|
|
}
|
|
++rx_queue->page_recycle_full;
|
|
efx_unmap_rx_buffer(efx, rx_buf);
|
|
put_page(rx_buf->page);
|
|
}
|
|
|
|
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf)
|
|
{
|
|
/* Release the page reference we hold for the buffer. */
|
|
if (rx_buf->page)
|
|
put_page(rx_buf->page);
|
|
|
|
/* If this is the last buffer in a page, unmap and free it. */
|
|
if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
|
|
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
|
|
efx_free_rx_buffers(rx_queue, rx_buf, 1);
|
|
}
|
|
rx_buf->page = NULL;
|
|
}
|
|
|
|
/* Recycle the pages that are used by buffers that have just been received. */
|
|
static void efx_recycle_rx_pages(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags)
|
|
{
|
|
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
do {
|
|
efx_recycle_rx_page(channel, rx_buf);
|
|
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
} while (--n_frags);
|
|
}
|
|
|
|
static void efx_discard_rx_packet(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags)
|
|
{
|
|
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
efx_recycle_rx_pages(channel, rx_buf, n_frags);
|
|
|
|
efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
|
|
}
|
|
|
|
/**
|
|
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
|
|
* @rx_queue: RX descriptor queue
|
|
*
|
|
* This will aim to fill the RX descriptor queue up to
|
|
* @rx_queue->@max_fill. If there is insufficient atomic
|
|
* memory to do so, a slow fill will be scheduled.
|
|
*
|
|
* The caller must provide serialisation (none is used here). In practise,
|
|
* this means this function must run from the NAPI handler, or be called
|
|
* when NAPI is disabled.
|
|
*/
|
|
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int fill_level, batch_size;
|
|
int space, rc = 0;
|
|
|
|
if (!rx_queue->refill_enabled)
|
|
return;
|
|
|
|
/* Calculate current fill level, and exit if we don't need to fill */
|
|
fill_level = (rx_queue->added_count - rx_queue->removed_count);
|
|
EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
|
|
if (fill_level >= rx_queue->fast_fill_trigger)
|
|
goto out;
|
|
|
|
/* Record minimum fill level */
|
|
if (unlikely(fill_level < rx_queue->min_fill)) {
|
|
if (fill_level)
|
|
rx_queue->min_fill = fill_level;
|
|
}
|
|
|
|
batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
|
|
space = rx_queue->max_fill - fill_level;
|
|
EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
|
|
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
"RX queue %d fast-filling descriptor ring from"
|
|
" level %d to level %d\n",
|
|
efx_rx_queue_index(rx_queue), fill_level,
|
|
rx_queue->max_fill);
|
|
|
|
|
|
do {
|
|
rc = efx_init_rx_buffers(rx_queue, atomic);
|
|
if (unlikely(rc)) {
|
|
/* Ensure that we don't leave the rx queue empty */
|
|
efx_schedule_slow_fill(rx_queue);
|
|
goto out;
|
|
}
|
|
} while ((space -= batch_size) >= batch_size);
|
|
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
"RX queue %d fast-filled descriptor ring "
|
|
"to level %d\n", efx_rx_queue_index(rx_queue),
|
|
rx_queue->added_count - rx_queue->removed_count);
|
|
|
|
out:
|
|
if (rx_queue->notified_count != rx_queue->added_count)
|
|
efx_nic_notify_rx_desc(rx_queue);
|
|
}
|
|
|
|
void efx_rx_slow_fill(struct timer_list *t)
|
|
{
|
|
struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
|
|
|
|
/* Post an event to cause NAPI to run and refill the queue */
|
|
efx_nic_generate_fill_event(rx_queue);
|
|
++rx_queue->slow_fill_count;
|
|
}
|
|
|
|
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf,
|
|
int len)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
|
|
|
|
if (likely(len <= max_len))
|
|
return;
|
|
|
|
/* The packet must be discarded, but this is only a fatal error
|
|
* if the caller indicated it was
|
|
*/
|
|
rx_buf->flags |= EFX_RX_PKT_DISCARD;
|
|
|
|
if (net_ratelimit())
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
"RX queue %d overlength RX event (%#x > %#x)\n",
|
|
efx_rx_queue_index(rx_queue), len, max_len);
|
|
|
|
efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
|
|
}
|
|
|
|
/* Pass a received packet up through GRO. GRO can handle pages
|
|
* regardless of checksum state and skbs with a good checksum.
|
|
*/
|
|
static void
|
|
efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags, u8 *eh)
|
|
{
|
|
struct napi_struct *napi = &channel->napi_str;
|
|
struct efx_nic *efx = channel->efx;
|
|
struct sk_buff *skb;
|
|
|
|
skb = napi_get_frags(napi);
|
|
if (unlikely(!skb)) {
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
|
efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
|
|
return;
|
|
}
|
|
|
|
if (efx->net_dev->features & NETIF_F_RXHASH)
|
|
skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
|
|
PKT_HASH_TYPE_L3);
|
|
skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
|
|
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
|
|
skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
|
|
|
|
for (;;) {
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
rx_buf->page, rx_buf->page_offset,
|
|
rx_buf->len);
|
|
rx_buf->page = NULL;
|
|
skb->len += rx_buf->len;
|
|
if (skb_shinfo(skb)->nr_frags == n_frags)
|
|
break;
|
|
|
|
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
}
|
|
|
|
skb->data_len = skb->len;
|
|
skb->truesize += n_frags * efx->rx_buffer_truesize;
|
|
|
|
skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
napi_gro_frags(napi);
|
|
}
|
|
|
|
/* Allocate and construct an SKB around page fragments */
|
|
static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags,
|
|
u8 *eh, int hdr_len)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct sk_buff *skb;
|
|
|
|
/* Allocate an SKB to store the headers */
|
|
skb = netdev_alloc_skb(efx->net_dev,
|
|
efx->rx_ip_align + efx->rx_prefix_size +
|
|
hdr_len);
|
|
if (unlikely(skb == NULL)) {
|
|
atomic_inc(&efx->n_rx_noskb_drops);
|
|
return NULL;
|
|
}
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len);
|
|
|
|
memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
|
|
efx->rx_prefix_size + hdr_len);
|
|
skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
|
|
__skb_put(skb, hdr_len);
|
|
|
|
/* Append the remaining page(s) onto the frag list */
|
|
if (rx_buf->len > hdr_len) {
|
|
rx_buf->page_offset += hdr_len;
|
|
rx_buf->len -= hdr_len;
|
|
|
|
for (;;) {
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
rx_buf->page, rx_buf->page_offset,
|
|
rx_buf->len);
|
|
rx_buf->page = NULL;
|
|
skb->len += rx_buf->len;
|
|
skb->data_len += rx_buf->len;
|
|
if (skb_shinfo(skb)->nr_frags == n_frags)
|
|
break;
|
|
|
|
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
}
|
|
} else {
|
|
__free_pages(rx_buf->page, efx->rx_buffer_order);
|
|
rx_buf->page = NULL;
|
|
n_frags = 0;
|
|
}
|
|
|
|
skb->truesize += n_frags * efx->rx_buffer_truesize;
|
|
|
|
/* Move past the ethernet header */
|
|
skb->protocol = eth_type_trans(skb, efx->net_dev);
|
|
|
|
skb_mark_napi_id(skb, &channel->napi_str);
|
|
|
|
return skb;
|
|
}
|
|
|
|
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
|
|
unsigned int n_frags, unsigned int len, u16 flags)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
rx_queue->rx_packets++;
|
|
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rx_buf->flags |= flags;
|
|
|
|
/* Validate the number of fragments and completed length */
|
|
if (n_frags == 1) {
|
|
if (!(flags & EFX_RX_PKT_PREFIX_LEN))
|
|
efx_rx_packet__check_len(rx_queue, rx_buf, len);
|
|
} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
|
|
unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
|
|
unlikely(len > n_frags * efx->rx_dma_len) ||
|
|
unlikely(!efx->rx_scatter)) {
|
|
/* If this isn't an explicit discard request, either
|
|
* the hardware or the driver is broken.
|
|
*/
|
|
WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
|
|
rx_buf->flags |= EFX_RX_PKT_DISCARD;
|
|
}
|
|
|
|
netif_vdbg(efx, rx_status, efx->net_dev,
|
|
"RX queue %d received ids %x-%x len %d %s%s\n",
|
|
efx_rx_queue_index(rx_queue), index,
|
|
(index + n_frags - 1) & rx_queue->ptr_mask, len,
|
|
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
|
|
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
|
|
|
|
/* Discard packet, if instructed to do so. Process the
|
|
* previous receive first.
|
|
*/
|
|
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
|
|
efx_rx_flush_packet(channel);
|
|
efx_discard_rx_packet(channel, rx_buf, n_frags);
|
|
return;
|
|
}
|
|
|
|
if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
|
|
rx_buf->len = len;
|
|
|
|
/* Release and/or sync the DMA mapping - assumes all RX buffers
|
|
* consumed in-order per RX queue.
|
|
*/
|
|
efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
|
|
|
|
/* Prefetch nice and early so data will (hopefully) be in cache by
|
|
* the time we look at it.
|
|
*/
|
|
prefetch(efx_rx_buf_va(rx_buf));
|
|
|
|
rx_buf->page_offset += efx->rx_prefix_size;
|
|
rx_buf->len -= efx->rx_prefix_size;
|
|
|
|
if (n_frags > 1) {
|
|
/* Release/sync DMA mapping for additional fragments.
|
|
* Fix length for last fragment.
|
|
*/
|
|
unsigned int tail_frags = n_frags - 1;
|
|
|
|
for (;;) {
|
|
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
if (--tail_frags == 0)
|
|
break;
|
|
efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
|
|
}
|
|
rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
|
|
efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
|
|
}
|
|
|
|
/* All fragments have been DMA-synced, so recycle pages. */
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
efx_recycle_rx_pages(channel, rx_buf, n_frags);
|
|
|
|
/* Pipeline receives so that we give time for packet headers to be
|
|
* prefetched into cache.
|
|
*/
|
|
efx_rx_flush_packet(channel);
|
|
channel->rx_pkt_n_frags = n_frags;
|
|
channel->rx_pkt_index = index;
|
|
}
|
|
|
|
static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
|
|
struct efx_rx_buffer *rx_buf,
|
|
unsigned int n_frags)
|
|
{
|
|
struct sk_buff *skb;
|
|
u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
|
|
|
|
skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
|
|
if (unlikely(skb == NULL)) {
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
|
efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
|
|
return;
|
|
}
|
|
skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
/* Set the SKB flags */
|
|
skb_checksum_none_assert(skb);
|
|
if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
|
|
}
|
|
|
|
efx_rx_skb_attach_timestamp(channel, skb);
|
|
|
|
if (channel->type->receive_skb)
|
|
if (channel->type->receive_skb(channel, skb))
|
|
return;
|
|
|
|
/* Pass the packet up */
|
|
if (channel->rx_list != NULL)
|
|
/* Add to list, will pass up later */
|
|
list_add_tail(&skb->list, channel->rx_list);
|
|
else
|
|
/* No list, so pass it up now */
|
|
netif_receive_skb(skb);
|
|
}
|
|
|
|
/** efx_do_xdp: perform XDP processing on a received packet
|
|
*
|
|
* Returns true if packet should still be delivered.
|
|
*/
|
|
static bool efx_do_xdp(struct efx_nic *efx, struct efx_channel *channel,
|
|
struct efx_rx_buffer *rx_buf, u8 **ehp)
|
|
{
|
|
u8 rx_prefix[EFX_MAX_RX_PREFIX_SIZE];
|
|
struct efx_rx_queue *rx_queue;
|
|
struct bpf_prog *xdp_prog;
|
|
struct xdp_frame *xdpf;
|
|
struct xdp_buff xdp;
|
|
u32 xdp_act;
|
|
s16 offset;
|
|
int err;
|
|
|
|
rcu_read_lock();
|
|
xdp_prog = rcu_dereference(efx->xdp_prog);
|
|
if (!xdp_prog) {
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
if (unlikely(channel->rx_pkt_n_frags > 1)) {
|
|
/* We can't do XDP on fragmented packets - drop. */
|
|
rcu_read_unlock();
|
|
efx_free_rx_buffers(rx_queue, rx_buf,
|
|
channel->rx_pkt_n_frags);
|
|
if (net_ratelimit())
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
"XDP is not possible with multiple receive fragments (%d)\n",
|
|
channel->rx_pkt_n_frags);
|
|
channel->n_rx_xdp_bad_drops++;
|
|
return false;
|
|
}
|
|
|
|
dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr,
|
|
rx_buf->len, DMA_FROM_DEVICE);
|
|
|
|
/* Save the rx prefix. */
|
|
EFX_WARN_ON_PARANOID(efx->rx_prefix_size > EFX_MAX_RX_PREFIX_SIZE);
|
|
memcpy(rx_prefix, *ehp - efx->rx_prefix_size,
|
|
efx->rx_prefix_size);
|
|
|
|
xdp.data = *ehp;
|
|
xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
|
|
|
|
/* No support yet for XDP metadata */
|
|
xdp_set_data_meta_invalid(&xdp);
|
|
xdp.data_end = xdp.data + rx_buf->len;
|
|
xdp.rxq = &rx_queue->xdp_rxq_info;
|
|
|
|
xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
|
|
rcu_read_unlock();
|
|
|
|
offset = (u8 *)xdp.data - *ehp;
|
|
|
|
switch (xdp_act) {
|
|
case XDP_PASS:
|
|
/* Fix up rx prefix. */
|
|
if (offset) {
|
|
*ehp += offset;
|
|
rx_buf->page_offset += offset;
|
|
rx_buf->len -= offset;
|
|
memcpy(*ehp - efx->rx_prefix_size, rx_prefix,
|
|
efx->rx_prefix_size);
|
|
}
|
|
break;
|
|
|
|
case XDP_TX:
|
|
/* Buffer ownership passes to tx on success. */
|
|
xdpf = convert_to_xdp_frame(&xdp);
|
|
err = efx_xdp_tx_buffers(efx, 1, &xdpf, true);
|
|
if (unlikely(err != 1)) {
|
|
efx_free_rx_buffers(rx_queue, rx_buf, 1);
|
|
if (net_ratelimit())
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
"XDP TX failed (%d)\n", err);
|
|
channel->n_rx_xdp_bad_drops++;
|
|
trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act);
|
|
} else {
|
|
channel->n_rx_xdp_tx++;
|
|
}
|
|
break;
|
|
|
|
case XDP_REDIRECT:
|
|
err = xdp_do_redirect(efx->net_dev, &xdp, xdp_prog);
|
|
if (unlikely(err)) {
|
|
efx_free_rx_buffers(rx_queue, rx_buf, 1);
|
|
if (net_ratelimit())
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
"XDP redirect failed (%d)\n", err);
|
|
channel->n_rx_xdp_bad_drops++;
|
|
trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act);
|
|
} else {
|
|
channel->n_rx_xdp_redirect++;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
bpf_warn_invalid_xdp_action(xdp_act);
|
|
efx_free_rx_buffers(rx_queue, rx_buf, 1);
|
|
channel->n_rx_xdp_bad_drops++;
|
|
trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act);
|
|
break;
|
|
|
|
case XDP_ABORTED:
|
|
trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act);
|
|
/* Fall through */
|
|
case XDP_DROP:
|
|
efx_free_rx_buffers(rx_queue, rx_buf, 1);
|
|
channel->n_rx_xdp_drops++;
|
|
break;
|
|
}
|
|
|
|
return xdp_act == XDP_PASS;
|
|
}
|
|
|
|
/* Handle a received packet. Second half: Touches packet payload. */
|
|
void __efx_rx_packet(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_rx_buffer *rx_buf =
|
|
efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
|
|
u8 *eh = efx_rx_buf_va(rx_buf);
|
|
|
|
/* Read length from the prefix if necessary. This already
|
|
* excludes the length of the prefix itself.
|
|
*/
|
|
if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
|
|
rx_buf->len = le16_to_cpup((__le16 *)
|
|
(eh + efx->rx_packet_len_offset));
|
|
|
|
/* If we're in loopback test, then pass the packet directly to the
|
|
* loopback layer, and free the rx_buf here
|
|
*/
|
|
if (unlikely(efx->loopback_selftest)) {
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
efx_loopback_rx_packet(efx, eh, rx_buf->len);
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
|
efx_free_rx_buffers(rx_queue, rx_buf,
|
|
channel->rx_pkt_n_frags);
|
|
goto out;
|
|
}
|
|
|
|
if (!efx_do_xdp(efx, channel, rx_buf, &eh))
|
|
goto out;
|
|
|
|
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
|
|
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
|
|
|
|
if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
|
|
efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
|
|
else
|
|
efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
|
|
out:
|
|
channel->rx_pkt_n_frags = 0;
|
|
}
|
|
|
|
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int entries;
|
|
int rc;
|
|
|
|
/* Create the smallest power-of-two aligned ring */
|
|
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
|
|
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
|
rx_queue->ptr_mask = entries - 1;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"creating RX queue %d size %#x mask %#x\n",
|
|
efx_rx_queue_index(rx_queue), efx->rxq_entries,
|
|
rx_queue->ptr_mask);
|
|
|
|
/* Allocate RX buffers */
|
|
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
|
|
GFP_KERNEL);
|
|
if (!rx_queue->buffer)
|
|
return -ENOMEM;
|
|
|
|
rc = efx_nic_probe_rx(rx_queue);
|
|
if (rc) {
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void efx_init_rx_recycle_ring(struct efx_nic *efx,
|
|
struct efx_rx_queue *rx_queue)
|
|
{
|
|
unsigned int bufs_in_recycle_ring, page_ring_size;
|
|
|
|
/* Set the RX recycle ring size */
|
|
#ifdef CONFIG_PPC64
|
|
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
|
|
#else
|
|
if (iommu_present(&pci_bus_type))
|
|
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
|
|
else
|
|
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
|
|
efx->rx_bufs_per_page);
|
|
rx_queue->page_ring = kcalloc(page_ring_size,
|
|
sizeof(*rx_queue->page_ring), GFP_KERNEL);
|
|
rx_queue->page_ptr_mask = page_ring_size - 1;
|
|
}
|
|
|
|
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned int max_fill, trigger, max_trigger;
|
|
int rc = 0;
|
|
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
|
|
|
|
/* Initialise ptr fields */
|
|
rx_queue->added_count = 0;
|
|
rx_queue->notified_count = 0;
|
|
rx_queue->removed_count = 0;
|
|
rx_queue->min_fill = -1U;
|
|
efx_init_rx_recycle_ring(efx, rx_queue);
|
|
|
|
rx_queue->page_remove = 0;
|
|
rx_queue->page_add = rx_queue->page_ptr_mask + 1;
|
|
rx_queue->page_recycle_count = 0;
|
|
rx_queue->page_recycle_failed = 0;
|
|
rx_queue->page_recycle_full = 0;
|
|
|
|
/* Initialise limit fields */
|
|
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
|
|
max_trigger =
|
|
max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
|
|
if (rx_refill_threshold != 0) {
|
|
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
|
|
if (trigger > max_trigger)
|
|
trigger = max_trigger;
|
|
} else {
|
|
trigger = max_trigger;
|
|
}
|
|
|
|
rx_queue->max_fill = max_fill;
|
|
rx_queue->fast_fill_trigger = trigger;
|
|
rx_queue->refill_enabled = true;
|
|
|
|
/* Initialise XDP queue information */
|
|
rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
|
|
rx_queue->core_index);
|
|
|
|
if (rc) {
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
"Failure to initialise XDP queue information rc=%d\n",
|
|
rc);
|
|
efx->xdp_rxq_info_failed = true;
|
|
} else {
|
|
rx_queue->xdp_rxq_info_valid = true;
|
|
}
|
|
|
|
/* Set up RX descriptor ring */
|
|
efx_nic_init_rx(rx_queue);
|
|
}
|
|
|
|
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
int i;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
|
|
|
|
del_timer_sync(&rx_queue->slow_fill);
|
|
|
|
/* Release RX buffers from the current read ptr to the write ptr */
|
|
if (rx_queue->buffer) {
|
|
for (i = rx_queue->removed_count; i < rx_queue->added_count;
|
|
i++) {
|
|
unsigned index = i & rx_queue->ptr_mask;
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
|
}
|
|
}
|
|
|
|
/* Unmap and release the pages in the recycle ring. Remove the ring. */
|
|
for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
|
|
struct page *page = rx_queue->page_ring[i];
|
|
struct efx_rx_page_state *state;
|
|
|
|
if (page == NULL)
|
|
continue;
|
|
|
|
state = page_address(page);
|
|
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
|
|
PAGE_SIZE << efx->rx_buffer_order,
|
|
DMA_FROM_DEVICE);
|
|
put_page(page);
|
|
}
|
|
kfree(rx_queue->page_ring);
|
|
rx_queue->page_ring = NULL;
|
|
|
|
if (rx_queue->xdp_rxq_info_valid)
|
|
xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
|
|
|
|
rx_queue->xdp_rxq_info_valid = false;
|
|
}
|
|
|
|
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
|
|
|
|
efx_nic_remove_rx(rx_queue);
|
|
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
|
|
|
|
module_param(rx_refill_threshold, uint, 0444);
|
|
MODULE_PARM_DESC(rx_refill_threshold,
|
|
"RX descriptor ring refill threshold (%)");
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
|
|
static void efx_filter_rfs_work(struct work_struct *data)
|
|
{
|
|
struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
|
|
work);
|
|
struct efx_nic *efx = netdev_priv(req->net_dev);
|
|
struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
|
|
int slot_idx = req - efx->rps_slot;
|
|
struct efx_arfs_rule *rule;
|
|
u16 arfs_id = 0;
|
|
int rc;
|
|
|
|
rc = efx->type->filter_insert(efx, &req->spec, true);
|
|
if (rc >= 0)
|
|
/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
|
|
rc %= efx->type->max_rx_ip_filters;
|
|
if (efx->rps_hash_table) {
|
|
spin_lock_bh(&efx->rps_hash_lock);
|
|
rule = efx_rps_hash_find(efx, &req->spec);
|
|
/* The rule might have already gone, if someone else's request
|
|
* for the same spec was already worked and then expired before
|
|
* we got around to our work. In that case we have nothing
|
|
* tying us to an arfs_id, meaning that as soon as the filter
|
|
* is considered for expiry it will be removed.
|
|
*/
|
|
if (rule) {
|
|
if (rc < 0)
|
|
rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
|
|
else
|
|
rule->filter_id = rc;
|
|
arfs_id = rule->arfs_id;
|
|
}
|
|
spin_unlock_bh(&efx->rps_hash_lock);
|
|
}
|
|
if (rc >= 0) {
|
|
/* Remember this so we can check whether to expire the filter
|
|
* later.
|
|
*/
|
|
mutex_lock(&efx->rps_mutex);
|
|
if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
|
|
channel->rfs_filter_count++;
|
|
channel->rps_flow_id[rc] = req->flow_id;
|
|
mutex_unlock(&efx->rps_mutex);
|
|
|
|
if (req->spec.ether_type == htons(ETH_P_IP))
|
|
netif_info(efx, rx_status, efx->net_dev,
|
|
"steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
|
|
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
|
|
req->spec.rem_host, ntohs(req->spec.rem_port),
|
|
req->spec.loc_host, ntohs(req->spec.loc_port),
|
|
req->rxq_index, req->flow_id, rc, arfs_id);
|
|
else
|
|
netif_info(efx, rx_status, efx->net_dev,
|
|
"steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
|
|
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
|
|
req->spec.rem_host, ntohs(req->spec.rem_port),
|
|
req->spec.loc_host, ntohs(req->spec.loc_port),
|
|
req->rxq_index, req->flow_id, rc, arfs_id);
|
|
channel->n_rfs_succeeded++;
|
|
} else {
|
|
if (req->spec.ether_type == htons(ETH_P_IP))
|
|
netif_dbg(efx, rx_status, efx->net_dev,
|
|
"failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
|
|
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
|
|
req->spec.rem_host, ntohs(req->spec.rem_port),
|
|
req->spec.loc_host, ntohs(req->spec.loc_port),
|
|
req->rxq_index, req->flow_id, rc, arfs_id);
|
|
else
|
|
netif_dbg(efx, rx_status, efx->net_dev,
|
|
"failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
|
|
(req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
|
|
req->spec.rem_host, ntohs(req->spec.rem_port),
|
|
req->spec.loc_host, ntohs(req->spec.loc_port),
|
|
req->rxq_index, req->flow_id, rc, arfs_id);
|
|
channel->n_rfs_failed++;
|
|
/* We're overloading the NIC's filter tables, so let's do a
|
|
* chunk of extra expiry work.
|
|
*/
|
|
__efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
|
|
100u));
|
|
}
|
|
|
|
/* Release references */
|
|
clear_bit(slot_idx, &efx->rps_slot_map);
|
|
dev_put(req->net_dev);
|
|
}
|
|
|
|
int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
|
|
u16 rxq_index, u32 flow_id)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_async_filter_insertion *req;
|
|
struct efx_arfs_rule *rule;
|
|
struct flow_keys fk;
|
|
int slot_idx;
|
|
bool new;
|
|
int rc;
|
|
|
|
/* find a free slot */
|
|
for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
|
|
if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
|
|
break;
|
|
if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
|
|
return -EBUSY;
|
|
|
|
if (flow_id == RPS_FLOW_ID_INVALID) {
|
|
rc = -EINVAL;
|
|
goto out_clear;
|
|
}
|
|
|
|
if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto out_clear;
|
|
}
|
|
|
|
if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto out_clear;
|
|
}
|
|
if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto out_clear;
|
|
}
|
|
|
|
req = efx->rps_slot + slot_idx;
|
|
efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
|
|
efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
|
|
rxq_index);
|
|
req->spec.match_flags =
|
|
EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
|
|
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
|
|
EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
|
|
req->spec.ether_type = fk.basic.n_proto;
|
|
req->spec.ip_proto = fk.basic.ip_proto;
|
|
|
|
if (fk.basic.n_proto == htons(ETH_P_IP)) {
|
|
req->spec.rem_host[0] = fk.addrs.v4addrs.src;
|
|
req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
|
|
} else {
|
|
memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
|
|
sizeof(struct in6_addr));
|
|
memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
|
|
sizeof(struct in6_addr));
|
|
}
|
|
|
|
req->spec.rem_port = fk.ports.src;
|
|
req->spec.loc_port = fk.ports.dst;
|
|
|
|
if (efx->rps_hash_table) {
|
|
/* Add it to ARFS hash table */
|
|
spin_lock(&efx->rps_hash_lock);
|
|
rule = efx_rps_hash_add(efx, &req->spec, &new);
|
|
if (!rule) {
|
|
rc = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
if (new)
|
|
rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
|
|
rc = rule->arfs_id;
|
|
/* Skip if existing or pending filter already does the right thing */
|
|
if (!new && rule->rxq_index == rxq_index &&
|
|
rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
|
|
goto out_unlock;
|
|
rule->rxq_index = rxq_index;
|
|
rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
|
|
spin_unlock(&efx->rps_hash_lock);
|
|
} else {
|
|
/* Without an ARFS hash table, we just use arfs_id 0 for all
|
|
* filters. This means if multiple flows hash to the same
|
|
* flow_id, all but the most recently touched will be eligible
|
|
* for expiry.
|
|
*/
|
|
rc = 0;
|
|
}
|
|
|
|
/* Queue the request */
|
|
dev_hold(req->net_dev = net_dev);
|
|
INIT_WORK(&req->work, efx_filter_rfs_work);
|
|
req->rxq_index = rxq_index;
|
|
req->flow_id = flow_id;
|
|
schedule_work(&req->work);
|
|
return rc;
|
|
out_unlock:
|
|
spin_unlock(&efx->rps_hash_lock);
|
|
out_clear:
|
|
clear_bit(slot_idx, &efx->rps_slot_map);
|
|
return rc;
|
|
}
|
|
|
|
bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
|
|
{
|
|
bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned int index, size, start;
|
|
u32 flow_id;
|
|
|
|
if (!mutex_trylock(&efx->rps_mutex))
|
|
return false;
|
|
expire_one = efx->type->filter_rfs_expire_one;
|
|
index = channel->rfs_expire_index;
|
|
start = index;
|
|
size = efx->type->max_rx_ip_filters;
|
|
while (quota) {
|
|
flow_id = channel->rps_flow_id[index];
|
|
|
|
if (flow_id != RPS_FLOW_ID_INVALID) {
|
|
quota--;
|
|
if (expire_one(efx, flow_id, index)) {
|
|
netif_info(efx, rx_status, efx->net_dev,
|
|
"expired filter %d [channel %u flow %u]\n",
|
|
index, channel->channel, flow_id);
|
|
channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
|
|
channel->rfs_filter_count--;
|
|
}
|
|
}
|
|
if (++index == size)
|
|
index = 0;
|
|
/* If we were called with a quota that exceeds the total number
|
|
* of filters in the table (which shouldn't happen, but could
|
|
* if two callers race), ensure that we don't loop forever -
|
|
* stop when we've examined every row of the table.
|
|
*/
|
|
if (index == start)
|
|
break;
|
|
}
|
|
|
|
channel->rfs_expire_index = index;
|
|
mutex_unlock(&efx->rps_mutex);
|
|
return true;
|
|
}
|
|
|
|
#endif /* CONFIG_RFS_ACCEL */
|
|
|
|
/**
|
|
* efx_filter_is_mc_recipient - test whether spec is a multicast recipient
|
|
* @spec: Specification to test
|
|
*
|
|
* Return: %true if the specification is a non-drop RX filter that
|
|
* matches a local MAC address I/G bit value of 1 or matches a local
|
|
* IPv4 or IPv6 address value in the respective multicast address
|
|
* range. Otherwise %false.
|
|
*/
|
|
bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
|
|
{
|
|
if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
|
|
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
|
|
return false;
|
|
|
|
if (spec->match_flags &
|
|
(EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
|
|
is_multicast_ether_addr(spec->loc_mac))
|
|
return true;
|
|
|
|
if ((spec->match_flags &
|
|
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
|
|
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
|
|
if (spec->ether_type == htons(ETH_P_IP) &&
|
|
ipv4_is_multicast(spec->loc_host[0]))
|
|
return true;
|
|
if (spec->ether_type == htons(ETH_P_IPV6) &&
|
|
((const u8 *)spec->loc_host)[0] == 0xff)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|