linux_dsm_epyc7002/arch/x86/include/asm/kvm_host.h
Avi Kivity 3dbe141595 KVM: MMU: Segregate shadow pages with different cr0.wp
When cr0.wp=0, we may shadow a gpte having u/s=1 and r/w=0 with an spte
having u/s=0 and r/w=1.  This allows excessive access if the guest sets
cr0.wp=1 and accesses through this spte.

Fix by making cr0.wp part of the base role; we'll have different sptes for
the two cases and the problem disappears.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-05-19 11:41:09 +03:00

800 lines
22 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This header defines architecture specific interfaces, x86 version
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#ifndef _ASM_X86_KVM_HOST_H
#define _ASM_X86_KVM_HOST_H
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/tracepoint.h>
#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include <linux/kvm_types.h>
#include <asm/pvclock-abi.h>
#include <asm/desc.h>
#include <asm/mtrr.h>
#include <asm/msr-index.h>
#define KVM_MAX_VCPUS 64
#define KVM_MEMORY_SLOTS 32
/* memory slots that does not exposed to userspace */
#define KVM_PRIVATE_MEM_SLOTS 4
#define KVM_PIO_PAGE_OFFSET 1
#define KVM_COALESCED_MMIO_PAGE_OFFSET 2
#define CR3_PAE_RESERVED_BITS ((X86_CR3_PWT | X86_CR3_PCD) - 1)
#define CR3_NONPAE_RESERVED_BITS ((PAGE_SIZE-1) & ~(X86_CR3_PWT | X86_CR3_PCD))
#define CR3_L_MODE_RESERVED_BITS (CR3_NONPAE_RESERVED_BITS | \
0xFFFFFF0000000000ULL)
#define INVALID_PAGE (~(hpa_t)0)
#define UNMAPPED_GVA (~(gpa_t)0)
/* KVM Hugepage definitions for x86 */
#define KVM_NR_PAGE_SIZES 3
#define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
#define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
#define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
#define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
#define DE_VECTOR 0
#define DB_VECTOR 1
#define BP_VECTOR 3
#define OF_VECTOR 4
#define BR_VECTOR 5
#define UD_VECTOR 6
#define NM_VECTOR 7
#define DF_VECTOR 8
#define TS_VECTOR 10
#define NP_VECTOR 11
#define SS_VECTOR 12
#define GP_VECTOR 13
#define PF_VECTOR 14
#define MF_VECTOR 16
#define MC_VECTOR 18
#define SELECTOR_TI_MASK (1 << 2)
#define SELECTOR_RPL_MASK 0x03
#define IOPL_SHIFT 12
#define KVM_ALIAS_SLOTS 4
#define KVM_PERMILLE_MMU_PAGES 20
#define KVM_MIN_ALLOC_MMU_PAGES 64
#define KVM_MMU_HASH_SHIFT 10
#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
#define KVM_MIN_FREE_MMU_PAGES 5
#define KVM_REFILL_PAGES 25
#define KVM_MAX_CPUID_ENTRIES 40
#define KVM_NR_FIXED_MTRR_REGION 88
#define KVM_NR_VAR_MTRR 8
extern spinlock_t kvm_lock;
extern struct list_head vm_list;
struct kvm_vcpu;
struct kvm;
enum kvm_reg {
VCPU_REGS_RAX = 0,
VCPU_REGS_RCX = 1,
VCPU_REGS_RDX = 2,
VCPU_REGS_RBX = 3,
VCPU_REGS_RSP = 4,
VCPU_REGS_RBP = 5,
VCPU_REGS_RSI = 6,
VCPU_REGS_RDI = 7,
#ifdef CONFIG_X86_64
VCPU_REGS_R8 = 8,
VCPU_REGS_R9 = 9,
VCPU_REGS_R10 = 10,
VCPU_REGS_R11 = 11,
VCPU_REGS_R12 = 12,
VCPU_REGS_R13 = 13,
VCPU_REGS_R14 = 14,
VCPU_REGS_R15 = 15,
#endif
VCPU_REGS_RIP,
NR_VCPU_REGS
};
enum kvm_reg_ex {
VCPU_EXREG_PDPTR = NR_VCPU_REGS,
};
enum {
VCPU_SREG_ES,
VCPU_SREG_CS,
VCPU_SREG_SS,
VCPU_SREG_DS,
VCPU_SREG_FS,
VCPU_SREG_GS,
VCPU_SREG_TR,
VCPU_SREG_LDTR,
};
#include <asm/kvm_emulate.h>
#define KVM_NR_MEM_OBJS 40
#define KVM_NR_DB_REGS 4
#define DR6_BD (1 << 13)
#define DR6_BS (1 << 14)
#define DR6_FIXED_1 0xffff0ff0
#define DR6_VOLATILE 0x0000e00f
#define DR7_BP_EN_MASK 0x000000ff
#define DR7_GE (1 << 9)
#define DR7_GD (1 << 13)
#define DR7_FIXED_1 0x00000400
#define DR7_VOLATILE 0xffff23ff
/*
* We don't want allocation failures within the mmu code, so we preallocate
* enough memory for a single page fault in a cache.
*/
struct kvm_mmu_memory_cache {
int nobjs;
void *objects[KVM_NR_MEM_OBJS];
};
#define NR_PTE_CHAIN_ENTRIES 5
struct kvm_pte_chain {
u64 *parent_ptes[NR_PTE_CHAIN_ENTRIES];
struct hlist_node link;
};
/*
* kvm_mmu_page_role, below, is defined as:
*
* bits 0:3 - total guest paging levels (2-4, or zero for real mode)
* bits 4:7 - page table level for this shadow (1-4)
* bits 8:9 - page table quadrant for 2-level guests
* bit 16 - direct mapping of virtual to physical mapping at gfn
* used for real mode and two-dimensional paging
* bits 17:19 - common access permissions for all ptes in this shadow page
*/
union kvm_mmu_page_role {
unsigned word;
struct {
unsigned level:4;
unsigned cr4_pae:1;
unsigned quadrant:2;
unsigned pad_for_nice_hex_output:6;
unsigned direct:1;
unsigned access:3;
unsigned invalid:1;
unsigned nxe:1;
unsigned cr0_wp:1;
};
};
struct kvm_mmu_page {
struct list_head link;
struct hlist_node hash_link;
/*
* The following two entries are used to key the shadow page in the
* hash table.
*/
gfn_t gfn;
union kvm_mmu_page_role role;
u64 *spt;
/* hold the gfn of each spte inside spt */
gfn_t *gfns;
/*
* One bit set per slot which has memory
* in this shadow page.
*/
DECLARE_BITMAP(slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
bool multimapped; /* More than one parent_pte? */
bool unsync;
int root_count; /* Currently serving as active root */
unsigned int unsync_children;
union {
u64 *parent_pte; /* !multimapped */
struct hlist_head parent_ptes; /* multimapped, kvm_pte_chain */
};
DECLARE_BITMAP(unsync_child_bitmap, 512);
};
struct kvm_pv_mmu_op_buffer {
void *ptr;
unsigned len;
unsigned processed;
char buf[512] __aligned(sizeof(long));
};
struct kvm_pio_request {
unsigned long count;
int in;
int port;
int size;
};
/*
* x86 supports 3 paging modes (4-level 64-bit, 3-level 64-bit, and 2-level
* 32-bit). The kvm_mmu structure abstracts the details of the current mmu
* mode.
*/
struct kvm_mmu {
void (*new_cr3)(struct kvm_vcpu *vcpu);
int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err);
void (*free)(struct kvm_vcpu *vcpu);
gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
u32 *error);
void (*prefetch_page)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *page);
int (*sync_page)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp);
void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva);
hpa_t root_hpa;
int root_level;
int shadow_root_level;
union kvm_mmu_page_role base_role;
u64 *pae_root;
u64 rsvd_bits_mask[2][4];
};
struct kvm_vcpu_arch {
u64 host_tsc;
/*
* rip and regs accesses must go through
* kvm_{register,rip}_{read,write} functions.
*/
unsigned long regs[NR_VCPU_REGS];
u32 regs_avail;
u32 regs_dirty;
unsigned long cr0;
unsigned long cr0_guest_owned_bits;
unsigned long cr2;
unsigned long cr3;
unsigned long cr4;
unsigned long cr4_guest_owned_bits;
unsigned long cr8;
u32 hflags;
u64 pdptrs[4]; /* pae */
u64 efer;
u64 apic_base;
struct kvm_lapic *apic; /* kernel irqchip context */
int32_t apic_arb_prio;
int mp_state;
int sipi_vector;
u64 ia32_misc_enable_msr;
bool tpr_access_reporting;
struct kvm_mmu mmu;
/* only needed in kvm_pv_mmu_op() path, but it's hot so
* put it here to avoid allocation */
struct kvm_pv_mmu_op_buffer mmu_op_buffer;
struct kvm_mmu_memory_cache mmu_pte_chain_cache;
struct kvm_mmu_memory_cache mmu_rmap_desc_cache;
struct kvm_mmu_memory_cache mmu_page_cache;
struct kvm_mmu_memory_cache mmu_page_header_cache;
gfn_t last_pt_write_gfn;
int last_pt_write_count;
u64 *last_pte_updated;
gfn_t last_pte_gfn;
struct {
gfn_t gfn; /* presumed gfn during guest pte update */
pfn_t pfn; /* pfn corresponding to that gfn */
unsigned long mmu_seq;
} update_pte;
struct i387_fxsave_struct host_fx_image;
struct i387_fxsave_struct guest_fx_image;
gva_t mmio_fault_cr2;
struct kvm_pio_request pio;
void *pio_data;
u8 event_exit_inst_len;
struct kvm_queued_exception {
bool pending;
bool has_error_code;
bool reinject;
u8 nr;
u32 error_code;
} exception;
struct kvm_queued_interrupt {
bool pending;
bool soft;
u8 nr;
} interrupt;
int halt_request; /* real mode on Intel only */
int cpuid_nent;
struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
/* emulate context */
struct x86_emulate_ctxt emulate_ctxt;
gpa_t time;
struct pvclock_vcpu_time_info hv_clock;
unsigned int hv_clock_tsc_khz;
unsigned int time_offset;
struct page *time_page;
bool nmi_pending;
bool nmi_injected;
struct mtrr_state_type mtrr_state;
u32 pat;
int switch_db_regs;
unsigned long db[KVM_NR_DB_REGS];
unsigned long dr6;
unsigned long dr7;
unsigned long eff_db[KVM_NR_DB_REGS];
u64 mcg_cap;
u64 mcg_status;
u64 mcg_ctl;
u64 *mce_banks;
/* used for guest single stepping over the given code position */
unsigned long singlestep_rip;
/* fields used by HYPER-V emulation */
u64 hv_vapic;
};
struct kvm_mem_alias {
gfn_t base_gfn;
unsigned long npages;
gfn_t target_gfn;
#define KVM_ALIAS_INVALID 1UL
unsigned long flags;
};
#define KVM_ARCH_HAS_UNALIAS_INSTANTIATION
struct kvm_mem_aliases {
struct kvm_mem_alias aliases[KVM_ALIAS_SLOTS];
int naliases;
};
struct kvm_arch {
struct kvm_mem_aliases *aliases;
unsigned int n_free_mmu_pages;
unsigned int n_requested_mmu_pages;
unsigned int n_alloc_mmu_pages;
atomic_t invlpg_counter;
struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
/*
* Hash table of struct kvm_mmu_page.
*/
struct list_head active_mmu_pages;
struct list_head assigned_dev_head;
struct iommu_domain *iommu_domain;
int iommu_flags;
struct kvm_pic *vpic;
struct kvm_ioapic *vioapic;
struct kvm_pit *vpit;
int vapics_in_nmi_mode;
unsigned int tss_addr;
struct page *apic_access_page;
gpa_t wall_clock;
struct page *ept_identity_pagetable;
bool ept_identity_pagetable_done;
gpa_t ept_identity_map_addr;
unsigned long irq_sources_bitmap;
u64 vm_init_tsc;
s64 kvmclock_offset;
struct kvm_xen_hvm_config xen_hvm_config;
/* fields used by HYPER-V emulation */
u64 hv_guest_os_id;
u64 hv_hypercall;
};
struct kvm_vm_stat {
u32 mmu_shadow_zapped;
u32 mmu_pte_write;
u32 mmu_pte_updated;
u32 mmu_pde_zapped;
u32 mmu_flooded;
u32 mmu_recycled;
u32 mmu_cache_miss;
u32 mmu_unsync;
u32 remote_tlb_flush;
u32 lpages;
};
struct kvm_vcpu_stat {
u32 pf_fixed;
u32 pf_guest;
u32 tlb_flush;
u32 invlpg;
u32 exits;
u32 io_exits;
u32 mmio_exits;
u32 signal_exits;
u32 irq_window_exits;
u32 nmi_window_exits;
u32 halt_exits;
u32 halt_wakeup;
u32 request_irq_exits;
u32 irq_exits;
u32 host_state_reload;
u32 efer_reload;
u32 fpu_reload;
u32 insn_emulation;
u32 insn_emulation_fail;
u32 hypercalls;
u32 irq_injections;
u32 nmi_injections;
};
struct kvm_x86_ops {
int (*cpu_has_kvm_support)(void); /* __init */
int (*disabled_by_bios)(void); /* __init */
int (*hardware_enable)(void *dummy);
void (*hardware_disable)(void *dummy);
void (*check_processor_compatibility)(void *rtn);
int (*hardware_setup)(void); /* __init */
void (*hardware_unsetup)(void); /* __exit */
bool (*cpu_has_accelerated_tpr)(void);
void (*cpuid_update)(struct kvm_vcpu *vcpu);
/* Create, but do not attach this VCPU */
struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
void (*vcpu_free)(struct kvm_vcpu *vcpu);
int (*vcpu_reset)(struct kvm_vcpu *vcpu);
void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
void (*vcpu_put)(struct kvm_vcpu *vcpu);
void (*set_guest_debug)(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg);
int (*get_msr)(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata);
int (*set_msr)(struct kvm_vcpu *vcpu, u32 msr_index, u64 data);
u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
void (*get_segment)(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
int (*get_cpl)(struct kvm_vcpu *vcpu);
void (*set_segment)(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
void (*fpu_activate)(struct kvm_vcpu *vcpu);
void (*fpu_deactivate)(struct kvm_vcpu *vcpu);
void (*tlb_flush)(struct kvm_vcpu *vcpu);
void (*run)(struct kvm_vcpu *vcpu);
int (*handle_exit)(struct kvm_vcpu *vcpu);
void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
void (*patch_hypercall)(struct kvm_vcpu *vcpu,
unsigned char *hypercall_addr);
void (*set_irq)(struct kvm_vcpu *vcpu);
void (*set_nmi)(struct kvm_vcpu *vcpu);
void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code,
bool reinject);
int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
int (*nmi_allowed)(struct kvm_vcpu *vcpu);
bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
void (*enable_irq_window)(struct kvm_vcpu *vcpu);
void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
int (*get_tdp_level)(void);
u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
int (*get_lpage_level)(void);
bool (*rdtscp_supported)(void);
void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
const struct trace_print_flags *exit_reasons_str;
};
extern struct kvm_x86_ops *kvm_x86_ops;
int kvm_mmu_module_init(void);
void kvm_mmu_module_exit(void);
void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
int kvm_mmu_setup(struct kvm_vcpu *vcpu);
void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte);
void kvm_mmu_set_base_ptes(u64 base_pte);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask);
int kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot);
void kvm_mmu_zap_all(struct kvm *kvm);
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes);
int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
gpa_t addr, unsigned long *ret);
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
extern bool tdp_enabled;
enum emulation_result {
EMULATE_DONE, /* no further processing */
EMULATE_DO_MMIO, /* kvm_run filled with mmio request */
EMULATE_FAIL, /* can't emulate this instruction */
};
#define EMULTYPE_NO_DECODE (1 << 0)
#define EMULTYPE_TRAP_UD (1 << 1)
#define EMULTYPE_SKIP (1 << 2)
int emulate_instruction(struct kvm_vcpu *vcpu,
unsigned long cr2, u16 error_code, int emulation_type);
void kvm_report_emulation_failure(struct kvm_vcpu *cvpu, const char *context);
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 size, unsigned long address);
void realmode_lidt(struct kvm_vcpu *vcpu, u16 size, unsigned long address);
void kvm_enable_efer_bits(u64);
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *data);
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data);
struct x86_emulate_ctxt;
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port);
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address);
int emulate_clts(struct kvm_vcpu *vcpu);
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
unsigned long *dest);
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
unsigned long value);
void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
bool has_error_code, u32 error_code);
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data);
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long cr2,
u32 error_code);
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
int kvm_pic_set_irq(void *opaque, int irq, int level);
void kvm_inject_nmi(struct kvm_vcpu *vcpu);
void fx_init(struct kvm_vcpu *vcpu);
int emulator_write_emulated(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu);
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu);
void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes,
bool guest_initiated);
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
int kvm_mmu_load(struct kvm_vcpu *vcpu);
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error);
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error);
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error);
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
int kvm_fix_hypercall(struct kvm_vcpu *vcpu);
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
void kvm_enable_tdp(void);
void kvm_disable_tdp(void);
int complete_pio(struct kvm_vcpu *vcpu);
bool kvm_check_iopl(struct kvm_vcpu *vcpu);
struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn);
static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
{
struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
return (struct kvm_mmu_page *)page_private(page);
}
static inline u16 kvm_read_fs(void)
{
u16 seg;
asm("mov %%fs, %0" : "=g"(seg));
return seg;
}
static inline u16 kvm_read_gs(void)
{
u16 seg;
asm("mov %%gs, %0" : "=g"(seg));
return seg;
}
static inline u16 kvm_read_ldt(void)
{
u16 ldt;
asm("sldt %0" : "=g"(ldt));
return ldt;
}
static inline void kvm_load_fs(u16 sel)
{
asm("mov %0, %%fs" : : "rm"(sel));
}
static inline void kvm_load_gs(u16 sel)
{
asm("mov %0, %%gs" : : "rm"(sel));
}
static inline void kvm_load_ldt(u16 sel)
{
asm("lldt %0" : : "rm"(sel));
}
#ifdef CONFIG_X86_64
static inline unsigned long read_msr(unsigned long msr)
{
u64 value;
rdmsrl(msr, value);
return value;
}
#endif
static inline void kvm_fx_save(struct i387_fxsave_struct *image)
{
asm("fxsave (%0)":: "r" (image));
}
static inline void kvm_fx_restore(struct i387_fxsave_struct *image)
{
asm("fxrstor (%0)":: "r" (image));
}
static inline void kvm_fx_finit(void)
{
asm("finit");
}
static inline u32 get_rdx_init_val(void)
{
return 0x600; /* P6 family */
}
static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
{
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
}
#define TSS_IOPB_BASE_OFFSET 0x66
#define TSS_BASE_SIZE 0x68
#define TSS_IOPB_SIZE (65536 / 8)
#define TSS_REDIRECTION_SIZE (256 / 8)
#define RMODE_TSS_SIZE \
(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
enum {
TASK_SWITCH_CALL = 0,
TASK_SWITCH_IRET = 1,
TASK_SWITCH_JMP = 2,
TASK_SWITCH_GATE = 3,
};
#define HF_GIF_MASK (1 << 0)
#define HF_HIF_MASK (1 << 1)
#define HF_VINTR_MASK (1 << 2)
#define HF_NMI_MASK (1 << 3)
#define HF_IRET_MASK (1 << 4)
/*
* Hardware virtualization extension instructions may fault if a
* reboot turns off virtualization while processes are running.
* Trap the fault and ignore the instruction if that happens.
*/
asmlinkage void kvm_handle_fault_on_reboot(void);
#define __kvm_handle_fault_on_reboot(insn) \
"666: " insn "\n\t" \
".pushsection .fixup, \"ax\" \n" \
"667: \n\t" \
__ASM_SIZE(push) " $666b \n\t" \
"jmp kvm_handle_fault_on_reboot \n\t" \
".popsection \n\t" \
".pushsection __ex_table, \"a\" \n\t" \
_ASM_PTR " 666b, 667b \n\t" \
".popsection"
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_age_hva(struct kvm *kvm, unsigned long hva);
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu);
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
void kvm_define_shared_msr(unsigned index, u32 msr);
void kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
#endif /* _ASM_X86_KVM_HOST_H */