mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 08:01:31 +07:00
83a7faace1
This pure device tree driver is simple to convert to use just GPIO descriptors instead of GPIO numbers. So let's just do it. Cc: Mark Langsdorf <mlangsdo@redhat.com> Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
647 lines
18 KiB
C
647 lines
18 KiB
C
/*
|
|
* Calxeda Highbank AHCI SATA platform driver
|
|
* Copyright 2012 Calxeda, Inc.
|
|
*
|
|
* based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/device.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gpio/consumer.h>
|
|
|
|
#include "ahci.h"
|
|
|
|
#define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f))
|
|
#define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2)
|
|
#define SERDES_CR_CTL 0x80a0
|
|
#define SERDES_CR_ADDR 0x80a1
|
|
#define SERDES_CR_DATA 0x80a2
|
|
#define CR_BUSY 0x0001
|
|
#define CR_START 0x0001
|
|
#define CR_WR_RDN 0x0002
|
|
#define CPHY_TX_INPUT_STS 0x2001
|
|
#define CPHY_RX_INPUT_STS 0x2002
|
|
#define CPHY_SATA_TX_OVERRIDE 0x8000
|
|
#define CPHY_SATA_RX_OVERRIDE 0x4000
|
|
#define CPHY_TX_OVERRIDE 0x2004
|
|
#define CPHY_RX_OVERRIDE 0x2005
|
|
#define SPHY_LANE 0x100
|
|
#define SPHY_HALF_RATE 0x0001
|
|
#define CPHY_SATA_DPLL_MODE 0x0700
|
|
#define CPHY_SATA_DPLL_SHIFT 8
|
|
#define CPHY_SATA_DPLL_RESET (1 << 11)
|
|
#define CPHY_SATA_TX_ATTEN 0x1c00
|
|
#define CPHY_SATA_TX_ATTEN_SHIFT 10
|
|
#define CPHY_PHY_COUNT 6
|
|
#define CPHY_LANE_COUNT 4
|
|
#define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT)
|
|
|
|
static DEFINE_SPINLOCK(cphy_lock);
|
|
/* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based
|
|
* sata ports to their phys and then to their lanes within the phys
|
|
*/
|
|
struct phy_lane_info {
|
|
void __iomem *phy_base;
|
|
u8 lane_mapping;
|
|
u8 phy_devs;
|
|
u8 tx_atten;
|
|
};
|
|
static struct phy_lane_info port_data[CPHY_PORT_COUNT];
|
|
|
|
static DEFINE_SPINLOCK(sgpio_lock);
|
|
#define SCLOCK 0
|
|
#define SLOAD 1
|
|
#define SDATA 2
|
|
#define SGPIO_PINS 3
|
|
#define SGPIO_PORTS 8
|
|
|
|
struct ecx_plat_data {
|
|
u32 n_ports;
|
|
/* number of extra clocks that the SGPIO PIC controller expects */
|
|
u32 pre_clocks;
|
|
u32 post_clocks;
|
|
struct gpio_desc *sgpio_gpiod[SGPIO_PINS];
|
|
u32 sgpio_pattern;
|
|
u32 port_to_sgpio[SGPIO_PORTS];
|
|
};
|
|
|
|
#define SGPIO_SIGNALS 3
|
|
#define ECX_ACTIVITY_BITS 0x300000
|
|
#define ECX_ACTIVITY_SHIFT 0
|
|
#define ECX_LOCATE_BITS 0x80000
|
|
#define ECX_LOCATE_SHIFT 1
|
|
#define ECX_FAULT_BITS 0x400000
|
|
#define ECX_FAULT_SHIFT 2
|
|
static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port,
|
|
u32 shift)
|
|
{
|
|
return 1 << (3 * pdata->port_to_sgpio[port] + shift);
|
|
}
|
|
|
|
static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state)
|
|
{
|
|
if (state & ECX_ACTIVITY_BITS)
|
|
pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
|
|
ECX_ACTIVITY_SHIFT);
|
|
else
|
|
pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
|
|
ECX_ACTIVITY_SHIFT);
|
|
if (state & ECX_LOCATE_BITS)
|
|
pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
|
|
ECX_LOCATE_SHIFT);
|
|
else
|
|
pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
|
|
ECX_LOCATE_SHIFT);
|
|
if (state & ECX_FAULT_BITS)
|
|
pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
|
|
ECX_FAULT_SHIFT);
|
|
else
|
|
pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
|
|
ECX_FAULT_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Tell the LED controller that the signal has changed by raising the clock
|
|
* line for 50 uS and then lowering it for 50 uS.
|
|
*/
|
|
static void ecx_led_cycle_clock(struct ecx_plat_data *pdata)
|
|
{
|
|
gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1);
|
|
udelay(50);
|
|
gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0);
|
|
udelay(50);
|
|
}
|
|
|
|
static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state,
|
|
ssize_t size)
|
|
{
|
|
struct ahci_host_priv *hpriv = ap->host->private_data;
|
|
struct ecx_plat_data *pdata = hpriv->plat_data;
|
|
struct ahci_port_priv *pp = ap->private_data;
|
|
unsigned long flags;
|
|
int pmp, i;
|
|
struct ahci_em_priv *emp;
|
|
u32 sgpio_out;
|
|
|
|
/* get the slot number from the message */
|
|
pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8;
|
|
if (pmp < EM_MAX_SLOTS)
|
|
emp = &pp->em_priv[pmp];
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED))
|
|
return size;
|
|
|
|
spin_lock_irqsave(&sgpio_lock, flags);
|
|
ecx_parse_sgpio(pdata, ap->port_no, state);
|
|
sgpio_out = pdata->sgpio_pattern;
|
|
for (i = 0; i < pdata->pre_clocks; i++)
|
|
ecx_led_cycle_clock(pdata);
|
|
|
|
gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1);
|
|
ecx_led_cycle_clock(pdata);
|
|
gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0);
|
|
/*
|
|
* bit-bang out the SGPIO pattern, by consuming a bit and then
|
|
* clocking it out.
|
|
*/
|
|
for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) {
|
|
gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1);
|
|
sgpio_out >>= 1;
|
|
ecx_led_cycle_clock(pdata);
|
|
}
|
|
for (i = 0; i < pdata->post_clocks; i++)
|
|
ecx_led_cycle_clock(pdata);
|
|
|
|
/* save off new led state for port/slot */
|
|
emp->led_state = state;
|
|
|
|
spin_unlock_irqrestore(&sgpio_lock, flags);
|
|
return size;
|
|
}
|
|
|
|
static void highbank_set_em_messages(struct device *dev,
|
|
struct ahci_host_priv *hpriv,
|
|
struct ata_port_info *pi)
|
|
{
|
|
struct device_node *np = dev->of_node;
|
|
struct ecx_plat_data *pdata = hpriv->plat_data;
|
|
int i;
|
|
|
|
for (i = 0; i < SGPIO_PINS; i++) {
|
|
struct gpio_desc *gpiod;
|
|
|
|
gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i,
|
|
GPIOD_OUT_HIGH);
|
|
if (IS_ERR(gpiod)) {
|
|
dev_err(dev, "failed to get GPIO %d\n", i);
|
|
continue;
|
|
}
|
|
gpiod_set_consumer_name(gpiod, "CX SGPIO");
|
|
|
|
pdata->sgpio_gpiod[i] = gpiod;
|
|
}
|
|
of_property_read_u32_array(np, "calxeda,led-order",
|
|
pdata->port_to_sgpio,
|
|
pdata->n_ports);
|
|
if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks))
|
|
pdata->pre_clocks = 0;
|
|
if (of_property_read_u32(np, "calxeda,post-clocks",
|
|
&pdata->post_clocks))
|
|
pdata->post_clocks = 0;
|
|
|
|
/* store em_loc */
|
|
hpriv->em_loc = 0;
|
|
hpriv->em_buf_sz = 4;
|
|
hpriv->em_msg_type = EM_MSG_TYPE_LED;
|
|
pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY;
|
|
}
|
|
|
|
static u32 __combo_phy_reg_read(u8 sata_port, u32 addr)
|
|
{
|
|
u32 data;
|
|
u8 dev = port_data[sata_port].phy_devs;
|
|
spin_lock(&cphy_lock);
|
|
writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
|
|
data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr));
|
|
spin_unlock(&cphy_lock);
|
|
return data;
|
|
}
|
|
|
|
static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data)
|
|
{
|
|
u8 dev = port_data[sata_port].phy_devs;
|
|
spin_lock(&cphy_lock);
|
|
writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
|
|
writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr));
|
|
spin_unlock(&cphy_lock);
|
|
}
|
|
|
|
static void combo_phy_wait_for_ready(u8 sata_port)
|
|
{
|
|
while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY)
|
|
udelay(5);
|
|
}
|
|
|
|
static u32 combo_phy_read(u8 sata_port, u32 addr)
|
|
{
|
|
combo_phy_wait_for_ready(sata_port);
|
|
__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
|
|
__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START);
|
|
combo_phy_wait_for_ready(sata_port);
|
|
return __combo_phy_reg_read(sata_port, SERDES_CR_DATA);
|
|
}
|
|
|
|
static void combo_phy_write(u8 sata_port, u32 addr, u32 data)
|
|
{
|
|
combo_phy_wait_for_ready(sata_port);
|
|
__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
|
|
__combo_phy_reg_write(sata_port, SERDES_CR_DATA, data);
|
|
__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START);
|
|
}
|
|
|
|
static void highbank_cphy_disable_overrides(u8 sata_port)
|
|
{
|
|
u8 lane = port_data[sata_port].lane_mapping;
|
|
u32 tmp;
|
|
if (unlikely(port_data[sata_port].phy_base == NULL))
|
|
return;
|
|
tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
|
|
tmp &= ~CPHY_SATA_RX_OVERRIDE;
|
|
combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
}
|
|
|
|
static void cphy_override_tx_attenuation(u8 sata_port, u32 val)
|
|
{
|
|
u8 lane = port_data[sata_port].lane_mapping;
|
|
u32 tmp;
|
|
|
|
if (val & 0x8)
|
|
return;
|
|
|
|
tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE);
|
|
tmp &= ~CPHY_SATA_TX_OVERRIDE;
|
|
combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
tmp |= CPHY_SATA_TX_OVERRIDE;
|
|
combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN;
|
|
combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
}
|
|
|
|
static void cphy_override_rx_mode(u8 sata_port, u32 val)
|
|
{
|
|
u8 lane = port_data[sata_port].lane_mapping;
|
|
u32 tmp;
|
|
tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
|
|
tmp &= ~CPHY_SATA_RX_OVERRIDE;
|
|
combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
tmp |= CPHY_SATA_RX_OVERRIDE;
|
|
combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
tmp &= ~CPHY_SATA_DPLL_MODE;
|
|
tmp |= val << CPHY_SATA_DPLL_SHIFT;
|
|
combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
tmp |= CPHY_SATA_DPLL_RESET;
|
|
combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
tmp &= ~CPHY_SATA_DPLL_RESET;
|
|
combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
|
|
|
|
msleep(15);
|
|
}
|
|
|
|
static void highbank_cphy_override_lane(u8 sata_port)
|
|
{
|
|
u8 lane = port_data[sata_port].lane_mapping;
|
|
u32 tmp, k = 0;
|
|
|
|
if (unlikely(port_data[sata_port].phy_base == NULL))
|
|
return;
|
|
do {
|
|
tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS +
|
|
lane * SPHY_LANE);
|
|
} while ((tmp & SPHY_HALF_RATE) && (k++ < 1000));
|
|
cphy_override_rx_mode(sata_port, 3);
|
|
cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten);
|
|
}
|
|
|
|
static int highbank_initialize_phys(struct device *dev, void __iomem *addr)
|
|
{
|
|
struct device_node *sata_node = dev->of_node;
|
|
int phy_count = 0, phy, port = 0, i;
|
|
void __iomem *cphy_base[CPHY_PHY_COUNT] = {};
|
|
struct device_node *phy_nodes[CPHY_PHY_COUNT] = {};
|
|
u32 tx_atten[CPHY_PORT_COUNT] = {};
|
|
|
|
memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT);
|
|
|
|
do {
|
|
u32 tmp;
|
|
struct of_phandle_args phy_data;
|
|
if (of_parse_phandle_with_args(sata_node,
|
|
"calxeda,port-phys", "#phy-cells",
|
|
port, &phy_data))
|
|
break;
|
|
for (phy = 0; phy < phy_count; phy++) {
|
|
if (phy_nodes[phy] == phy_data.np)
|
|
break;
|
|
}
|
|
if (phy_nodes[phy] == NULL) {
|
|
phy_nodes[phy] = phy_data.np;
|
|
cphy_base[phy] = of_iomap(phy_nodes[phy], 0);
|
|
if (cphy_base[phy] == NULL) {
|
|
return 0;
|
|
}
|
|
phy_count += 1;
|
|
}
|
|
port_data[port].lane_mapping = phy_data.args[0];
|
|
of_property_read_u32(phy_nodes[phy], "phydev", &tmp);
|
|
port_data[port].phy_devs = tmp;
|
|
port_data[port].phy_base = cphy_base[phy];
|
|
of_node_put(phy_data.np);
|
|
port += 1;
|
|
} while (port < CPHY_PORT_COUNT);
|
|
of_property_read_u32_array(sata_node, "calxeda,tx-atten",
|
|
tx_atten, port);
|
|
for (i = 0; i < port; i++)
|
|
port_data[i].tx_atten = (u8) tx_atten[i];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The Calxeda SATA phy intermittently fails to bring up a link with Gen3
|
|
* Retrying the phy hard reset can work around the issue, but the drive
|
|
* may fail again. In less than 150 out of 15000 test runs, it took more
|
|
* than 10 tries for the link to be established (but never more than 35).
|
|
* Triple the maximum observed retry count to provide plenty of margin for
|
|
* rare events and to guarantee that the link is established.
|
|
*
|
|
* Also, the default 2 second time-out on a failed drive is too long in
|
|
* this situation. The uboot implementation of the same driver function
|
|
* uses a much shorter time-out period and never experiences a time out
|
|
* issue. Reducing the time-out to 500ms improves the responsiveness.
|
|
* The other timing constants were kept the same as the stock AHCI driver.
|
|
* This change was also tested 15000 times on 24 drives and none of them
|
|
* experienced a time out.
|
|
*/
|
|
static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
static const unsigned long timing[] = { 5, 100, 500};
|
|
struct ata_port *ap = link->ap;
|
|
struct ahci_port_priv *pp = ap->private_data;
|
|
struct ahci_host_priv *hpriv = ap->host->private_data;
|
|
u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG;
|
|
struct ata_taskfile tf;
|
|
bool online;
|
|
u32 sstatus;
|
|
int rc;
|
|
int retry = 100;
|
|
|
|
hpriv->stop_engine(ap);
|
|
|
|
/* clear D2H reception area to properly wait for D2H FIS */
|
|
ata_tf_init(link->device, &tf);
|
|
tf.command = ATA_BUSY;
|
|
ata_tf_to_fis(&tf, 0, 0, d2h_fis);
|
|
|
|
do {
|
|
highbank_cphy_disable_overrides(link->ap->port_no);
|
|
rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
|
|
highbank_cphy_override_lane(link->ap->port_no);
|
|
|
|
/* If the status is 1, we are connected, but the link did not
|
|
* come up. So retry resetting the link again.
|
|
*/
|
|
if (sata_scr_read(link, SCR_STATUS, &sstatus))
|
|
break;
|
|
if (!(sstatus & 0x3))
|
|
break;
|
|
} while (!online && retry--);
|
|
|
|
hpriv->start_engine(ap);
|
|
|
|
if (online)
|
|
*class = ahci_dev_classify(ap);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct ata_port_operations ahci_highbank_ops = {
|
|
.inherits = &ahci_ops,
|
|
.hardreset = ahci_highbank_hardreset,
|
|
.transmit_led_message = ecx_transmit_led_message,
|
|
};
|
|
|
|
static const struct ata_port_info ahci_highbank_port_info = {
|
|
.flags = AHCI_FLAG_COMMON,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &ahci_highbank_ops,
|
|
};
|
|
|
|
static struct scsi_host_template ahci_highbank_platform_sht = {
|
|
AHCI_SHT("sata_highbank"),
|
|
};
|
|
|
|
static const struct of_device_id ahci_of_match[] = {
|
|
{ .compatible = "calxeda,hb-ahci" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ahci_of_match);
|
|
|
|
static int ahci_highbank_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct ahci_host_priv *hpriv;
|
|
struct ecx_plat_data *pdata;
|
|
struct ata_host *host;
|
|
struct resource *mem;
|
|
int irq;
|
|
int i;
|
|
int rc;
|
|
u32 n_ports;
|
|
struct ata_port_info pi = ahci_highbank_port_info;
|
|
const struct ata_port_info *ppi[] = { &pi, NULL };
|
|
|
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!mem) {
|
|
dev_err(dev, "no mmio space\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq <= 0) {
|
|
dev_err(dev, "no irq\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
|
|
if (!hpriv) {
|
|
dev_err(dev, "can't alloc ahci_host_priv\n");
|
|
return -ENOMEM;
|
|
}
|
|
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
|
|
if (!pdata) {
|
|
dev_err(dev, "can't alloc ecx_plat_data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
hpriv->irq = irq;
|
|
hpriv->flags |= (unsigned long)pi.private_data;
|
|
|
|
hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem));
|
|
if (!hpriv->mmio) {
|
|
dev_err(dev, "can't map %pR\n", mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = highbank_initialize_phys(dev, hpriv->mmio);
|
|
if (rc)
|
|
return rc;
|
|
|
|
|
|
ahci_save_initial_config(dev, hpriv);
|
|
|
|
/* prepare host */
|
|
if (hpriv->cap & HOST_CAP_NCQ)
|
|
pi.flags |= ATA_FLAG_NCQ;
|
|
|
|
if (hpriv->cap & HOST_CAP_PMP)
|
|
pi.flags |= ATA_FLAG_PMP;
|
|
|
|
if (hpriv->cap & HOST_CAP_64)
|
|
dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
|
|
|
|
/* CAP.NP sometimes indicate the index of the last enabled
|
|
* port, at other times, that of the last possible port, so
|
|
* determining the maximum port number requires looking at
|
|
* both CAP.NP and port_map.
|
|
*/
|
|
n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map));
|
|
|
|
pdata->n_ports = n_ports;
|
|
hpriv->plat_data = pdata;
|
|
highbank_set_em_messages(dev, hpriv, &pi);
|
|
|
|
host = ata_host_alloc_pinfo(dev, ppi, n_ports);
|
|
if (!host) {
|
|
rc = -ENOMEM;
|
|
goto err0;
|
|
}
|
|
|
|
host->private_data = hpriv;
|
|
|
|
if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss)
|
|
host->flags |= ATA_HOST_PARALLEL_SCAN;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
ata_port_desc(ap, "mmio %pR", mem);
|
|
ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80);
|
|
|
|
/* set enclosure management message type */
|
|
if (ap->flags & ATA_FLAG_EM)
|
|
ap->em_message_type = hpriv->em_msg_type;
|
|
|
|
/* disabled/not-implemented port */
|
|
if (!(hpriv->port_map & (1 << i)))
|
|
ap->ops = &ata_dummy_port_ops;
|
|
}
|
|
|
|
rc = ahci_reset_controller(host);
|
|
if (rc)
|
|
goto err0;
|
|
|
|
ahci_init_controller(host);
|
|
ahci_print_info(host, "platform");
|
|
|
|
rc = ahci_host_activate(host, &ahci_highbank_platform_sht);
|
|
if (rc)
|
|
goto err0;
|
|
|
|
return 0;
|
|
err0:
|
|
return rc;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int ahci_highbank_suspend(struct device *dev)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(dev);
|
|
struct ahci_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->mmio;
|
|
u32 ctl;
|
|
int rc;
|
|
|
|
if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) {
|
|
dev_err(dev, "firmware update required for suspend/resume\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* AHCI spec rev1.1 section 8.3.3:
|
|
* Software must disable interrupts prior to requesting a
|
|
* transition of the HBA to D3 state.
|
|
*/
|
|
ctl = readl(mmio + HOST_CTL);
|
|
ctl &= ~HOST_IRQ_EN;
|
|
writel(ctl, mmio + HOST_CTL);
|
|
readl(mmio + HOST_CTL); /* flush */
|
|
|
|
rc = ata_host_suspend(host, PMSG_SUSPEND);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ahci_highbank_resume(struct device *dev)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(dev);
|
|
int rc;
|
|
|
|
if (dev->power.power_state.event == PM_EVENT_SUSPEND) {
|
|
rc = ahci_reset_controller(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ahci_init_controller(host);
|
|
}
|
|
|
|
ata_host_resume(host);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops,
|
|
ahci_highbank_suspend, ahci_highbank_resume);
|
|
|
|
static struct platform_driver ahci_highbank_driver = {
|
|
.remove = ata_platform_remove_one,
|
|
.driver = {
|
|
.name = "highbank-ahci",
|
|
.of_match_table = ahci_of_match,
|
|
.pm = &ahci_highbank_pm_ops,
|
|
},
|
|
.probe = ahci_highbank_probe,
|
|
};
|
|
|
|
module_platform_driver(ahci_highbank_driver);
|
|
|
|
MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver");
|
|
MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("sata:highbank");
|