mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
325f5585ec
Given that the contents of EFI runtime code and data regions are provided by the firmware, as well as the DSDT, it is not unimaginable that AML code exists today that accesses EFI runtime code regions using a SystemMemory OpRegion. There is nothing fundamentally wrong with that, but since we take great care to ensure that executable code is never mapped writeable and executable at the same time, we should not permit AML to create writable mapping. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Link: https://lore.kernel.org/r/20200626155832.2323789-3-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
391 lines
10 KiB
C
391 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* ARM64 Specific Low-Level ACPI Boot Support
|
|
*
|
|
* Copyright (C) 2013-2014, Linaro Ltd.
|
|
* Author: Al Stone <al.stone@linaro.org>
|
|
* Author: Graeme Gregory <graeme.gregory@linaro.org>
|
|
* Author: Hanjun Guo <hanjun.guo@linaro.org>
|
|
* Author: Tomasz Nowicki <tomasz.nowicki@linaro.org>
|
|
* Author: Naresh Bhat <naresh.bhat@linaro.org>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "ACPI: " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/efi-bgrt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <acpi/ghes.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/smp_plat.h>
|
|
|
|
int acpi_noirq = 1; /* skip ACPI IRQ initialization */
|
|
int acpi_disabled = 1;
|
|
EXPORT_SYMBOL(acpi_disabled);
|
|
|
|
int acpi_pci_disabled = 1; /* skip ACPI PCI scan and IRQ initialization */
|
|
EXPORT_SYMBOL(acpi_pci_disabled);
|
|
|
|
static bool param_acpi_off __initdata;
|
|
static bool param_acpi_on __initdata;
|
|
static bool param_acpi_force __initdata;
|
|
|
|
static int __init parse_acpi(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
/* "acpi=off" disables both ACPI table parsing and interpreter */
|
|
if (strcmp(arg, "off") == 0)
|
|
param_acpi_off = true;
|
|
else if (strcmp(arg, "on") == 0) /* prefer ACPI over DT */
|
|
param_acpi_on = true;
|
|
else if (strcmp(arg, "force") == 0) /* force ACPI to be enabled */
|
|
param_acpi_force = true;
|
|
else
|
|
return -EINVAL; /* Core will print when we return error */
|
|
|
|
return 0;
|
|
}
|
|
early_param("acpi", parse_acpi);
|
|
|
|
static int __init dt_scan_depth1_nodes(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
/*
|
|
* Ignore anything not directly under the root node; we'll
|
|
* catch its parent instead.
|
|
*/
|
|
if (depth != 1)
|
|
return 0;
|
|
|
|
if (strcmp(uname, "chosen") == 0)
|
|
return 0;
|
|
|
|
if (strcmp(uname, "hypervisor") == 0 &&
|
|
of_flat_dt_is_compatible(node, "xen,xen"))
|
|
return 0;
|
|
|
|
/*
|
|
* This node at depth 1 is neither a chosen node nor a xen node,
|
|
* which we do not expect.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* __acpi_map_table() will be called before page_init(), so early_ioremap()
|
|
* or early_memremap() should be called here to for ACPI table mapping.
|
|
*/
|
|
void __init __iomem *__acpi_map_table(unsigned long phys, unsigned long size)
|
|
{
|
|
if (!size)
|
|
return NULL;
|
|
|
|
return early_memremap(phys, size);
|
|
}
|
|
|
|
void __init __acpi_unmap_table(void __iomem *map, unsigned long size)
|
|
{
|
|
if (!map || !size)
|
|
return;
|
|
|
|
early_memunmap(map, size);
|
|
}
|
|
|
|
bool __init acpi_psci_present(void)
|
|
{
|
|
return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_COMPLIANT;
|
|
}
|
|
|
|
/* Whether HVC must be used instead of SMC as the PSCI conduit */
|
|
bool acpi_psci_use_hvc(void)
|
|
{
|
|
return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_USE_HVC;
|
|
}
|
|
|
|
/*
|
|
* acpi_fadt_sanity_check() - Check FADT presence and carry out sanity
|
|
* checks on it
|
|
*
|
|
* Return 0 on success, <0 on failure
|
|
*/
|
|
static int __init acpi_fadt_sanity_check(void)
|
|
{
|
|
struct acpi_table_header *table;
|
|
struct acpi_table_fadt *fadt;
|
|
acpi_status status;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* FADT is required on arm64; retrieve it to check its presence
|
|
* and carry out revision and ACPI HW reduced compliancy tests
|
|
*/
|
|
status = acpi_get_table(ACPI_SIG_FADT, 0, &table);
|
|
if (ACPI_FAILURE(status)) {
|
|
const char *msg = acpi_format_exception(status);
|
|
|
|
pr_err("Failed to get FADT table, %s\n", msg);
|
|
return -ENODEV;
|
|
}
|
|
|
|
fadt = (struct acpi_table_fadt *)table;
|
|
|
|
/*
|
|
* Revision in table header is the FADT Major revision, and there
|
|
* is a minor revision of FADT which was introduced by ACPI 5.1,
|
|
* we only deal with ACPI 5.1 or newer revision to get GIC and SMP
|
|
* boot protocol configuration data.
|
|
*/
|
|
if (table->revision < 5 ||
|
|
(table->revision == 5 && fadt->minor_revision < 1)) {
|
|
pr_err(FW_BUG "Unsupported FADT revision %d.%d, should be 5.1+\n",
|
|
table->revision, fadt->minor_revision);
|
|
|
|
if (!fadt->arm_boot_flags) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
pr_err("FADT has ARM boot flags set, assuming 5.1\n");
|
|
}
|
|
|
|
if (!(fadt->flags & ACPI_FADT_HW_REDUCED)) {
|
|
pr_err("FADT not ACPI hardware reduced compliant\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* acpi_get_table() creates FADT table mapping that
|
|
* should be released after parsing and before resuming boot
|
|
*/
|
|
acpi_put_table(table);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* acpi_boot_table_init() called from setup_arch(), always.
|
|
* 1. find RSDP and get its address, and then find XSDT
|
|
* 2. extract all tables and checksums them all
|
|
* 3. check ACPI FADT revision
|
|
* 4. check ACPI FADT HW reduced flag
|
|
*
|
|
* We can parse ACPI boot-time tables such as MADT after
|
|
* this function is called.
|
|
*
|
|
* On return ACPI is enabled if either:
|
|
*
|
|
* - ACPI tables are initialized and sanity checks passed
|
|
* - acpi=force was passed in the command line and ACPI was not disabled
|
|
* explicitly through acpi=off command line parameter
|
|
*
|
|
* ACPI is disabled on function return otherwise
|
|
*/
|
|
void __init acpi_boot_table_init(void)
|
|
{
|
|
/*
|
|
* Enable ACPI instead of device tree unless
|
|
* - ACPI has been disabled explicitly (acpi=off), or
|
|
* - the device tree is not empty (it has more than just a /chosen node,
|
|
* and a /hypervisor node when running on Xen)
|
|
* and ACPI has not been [force] enabled (acpi=on|force)
|
|
*/
|
|
if (param_acpi_off ||
|
|
(!param_acpi_on && !param_acpi_force &&
|
|
of_scan_flat_dt(dt_scan_depth1_nodes, NULL)))
|
|
goto done;
|
|
|
|
/*
|
|
* ACPI is disabled at this point. Enable it in order to parse
|
|
* the ACPI tables and carry out sanity checks
|
|
*/
|
|
enable_acpi();
|
|
|
|
/*
|
|
* If ACPI tables are initialized and FADT sanity checks passed,
|
|
* leave ACPI enabled and carry on booting; otherwise disable ACPI
|
|
* on initialization error.
|
|
* If acpi=force was passed on the command line it forces ACPI
|
|
* to be enabled even if its initialization failed.
|
|
*/
|
|
if (acpi_table_init() || acpi_fadt_sanity_check()) {
|
|
pr_err("Failed to init ACPI tables\n");
|
|
if (!param_acpi_force)
|
|
disable_acpi();
|
|
}
|
|
|
|
done:
|
|
if (acpi_disabled) {
|
|
if (earlycon_acpi_spcr_enable)
|
|
early_init_dt_scan_chosen_stdout();
|
|
} else {
|
|
acpi_parse_spcr(earlycon_acpi_spcr_enable, true);
|
|
if (IS_ENABLED(CONFIG_ACPI_BGRT))
|
|
acpi_table_parse(ACPI_SIG_BGRT, acpi_parse_bgrt);
|
|
}
|
|
}
|
|
|
|
pgprot_t __acpi_get_mem_attribute(phys_addr_t addr)
|
|
{
|
|
/*
|
|
* According to "Table 8 Map: EFI memory types to AArch64 memory
|
|
* types" of UEFI 2.5 section 2.3.6.1, each EFI memory type is
|
|
* mapped to a corresponding MAIR attribute encoding.
|
|
* The EFI memory attribute advises all possible capabilities
|
|
* of a memory region. We use the most efficient capability.
|
|
*/
|
|
|
|
u64 attr;
|
|
|
|
attr = efi_mem_attributes(addr);
|
|
if (attr & EFI_MEMORY_WB)
|
|
return PAGE_KERNEL;
|
|
if (attr & EFI_MEMORY_WT)
|
|
return __pgprot(PROT_NORMAL_WT);
|
|
if (attr & EFI_MEMORY_WC)
|
|
return __pgprot(PROT_NORMAL_NC);
|
|
return __pgprot(PROT_DEVICE_nGnRnE);
|
|
}
|
|
|
|
void __iomem *acpi_os_ioremap(acpi_physical_address phys, acpi_size size)
|
|
{
|
|
efi_memory_desc_t *md, *region = NULL;
|
|
pgprot_t prot;
|
|
|
|
if (WARN_ON_ONCE(!efi_enabled(EFI_MEMMAP)))
|
|
return NULL;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
u64 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
|
|
|
|
if (phys < md->phys_addr || phys >= end)
|
|
continue;
|
|
|
|
if (phys + size > end) {
|
|
pr_warn(FW_BUG "requested region covers multiple EFI memory regions\n");
|
|
return NULL;
|
|
}
|
|
region = md;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* It is fine for AML to remap regions that are not represented in the
|
|
* EFI memory map at all, as it only describes normal memory, and MMIO
|
|
* regions that require a virtual mapping to make them accessible to
|
|
* the EFI runtime services.
|
|
*/
|
|
prot = __pgprot(PROT_DEVICE_nGnRnE);
|
|
if (region) {
|
|
switch (region->type) {
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
case EFI_PERSISTENT_MEMORY:
|
|
pr_warn(FW_BUG "requested region covers kernel memory @ %pa\n", &phys);
|
|
return NULL;
|
|
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
/*
|
|
* This would be unusual, but not problematic per se,
|
|
* as long as we take care not to create a writable
|
|
* mapping for executable code.
|
|
*/
|
|
prot = PAGE_KERNEL_RO;
|
|
break;
|
|
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
/*
|
|
* ACPI reclaim memory is used to pass firmware tables
|
|
* and other data that is intended for consumption by
|
|
* the OS only, which may decide it wants to reclaim
|
|
* that memory and use it for something else. We never
|
|
* do that, but we usually add it to the linear map
|
|
* anyway, in which case we should use the existing
|
|
* mapping.
|
|
*/
|
|
if (memblock_is_map_memory(phys))
|
|
return (void __iomem *)__phys_to_virt(phys);
|
|
/* fall through */
|
|
|
|
default:
|
|
if (region->attribute & EFI_MEMORY_WB)
|
|
prot = PAGE_KERNEL;
|
|
else if (region->attribute & EFI_MEMORY_WT)
|
|
prot = __pgprot(PROT_NORMAL_WT);
|
|
else if (region->attribute & EFI_MEMORY_WC)
|
|
prot = __pgprot(PROT_NORMAL_NC);
|
|
}
|
|
}
|
|
return __ioremap(phys, size, prot);
|
|
}
|
|
|
|
/*
|
|
* Claim Synchronous External Aborts as a firmware first notification.
|
|
*
|
|
* Used by KVM and the arch do_sea handler.
|
|
* @regs may be NULL when called from process context.
|
|
*/
|
|
int apei_claim_sea(struct pt_regs *regs)
|
|
{
|
|
int err = -ENOENT;
|
|
bool return_to_irqs_enabled;
|
|
unsigned long current_flags;
|
|
|
|
if (!IS_ENABLED(CONFIG_ACPI_APEI_GHES))
|
|
return err;
|
|
|
|
current_flags = local_daif_save_flags();
|
|
|
|
/* current_flags isn't useful here as daif doesn't tell us about pNMI */
|
|
return_to_irqs_enabled = !irqs_disabled_flags(arch_local_save_flags());
|
|
|
|
if (regs)
|
|
return_to_irqs_enabled = interrupts_enabled(regs);
|
|
|
|
/*
|
|
* SEA can interrupt SError, mask it and describe this as an NMI so
|
|
* that APEI defers the handling.
|
|
*/
|
|
local_daif_restore(DAIF_ERRCTX);
|
|
nmi_enter();
|
|
err = ghes_notify_sea();
|
|
nmi_exit();
|
|
|
|
/*
|
|
* APEI NMI-like notifications are deferred to irq_work. Unless
|
|
* we interrupted irqs-masked code, we can do that now.
|
|
*/
|
|
if (!err) {
|
|
if (return_to_irqs_enabled) {
|
|
local_daif_restore(DAIF_PROCCTX_NOIRQ);
|
|
__irq_enter();
|
|
irq_work_run();
|
|
__irq_exit();
|
|
} else {
|
|
pr_warn_ratelimited("APEI work queued but not completed");
|
|
err = -EINPROGRESS;
|
|
}
|
|
}
|
|
|
|
local_daif_restore(current_flags);
|
|
|
|
return err;
|
|
}
|