mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 18:25:04 +07:00
c8725f3dc0
A common issue we have is that retiring requests causes recursion through GTT manipulation or page table manipulation which we can only handle at very specific points. However, to maintain internal consistency (enforced through our sanity checks on write_domain at various points in the GEM object lifecycle) we do need to retire the object prior to marking it with a new write_domain, and also clear the write_domain for the implicit flush following a batch. Note that this then allows the unbound objects to still be on the active lists, and so care must be taken when removing objects from unbound lists (similar to the caveats we face processing the bound lists). v2: Fix i915_gem_shrink_all() to handle updated object lifetime rules, by refactoring it to call into __i915_gem_shrink(). v3: Missed an object-retire prior to changing cache domains in i915_gem_object_set_cache_leve() v4: Rebase Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Tested-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Brad Volkin <bradley.d.volkin@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
5093 lines
128 KiB
C
5093 lines
128 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
|
|
bool force);
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
|
|
bool readonly);
|
|
static void
|
|
i915_gem_object_retire(struct drm_i915_gem_object *obj);
|
|
|
|
static int i915_gem_phys_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file);
|
|
|
|
static void i915_gem_write_fence(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_fence_reg *fence,
|
|
bool enable);
|
|
|
|
static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
|
|
struct shrink_control *sc);
|
|
static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
|
|
struct shrink_control *sc);
|
|
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
|
|
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
|
|
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
|
|
static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
|
|
|
|
static bool cpu_cache_is_coherent(struct drm_device *dev,
|
|
enum i915_cache_level level)
|
|
{
|
|
return HAS_LLC(dev) || level != I915_CACHE_NONE;
|
|
}
|
|
|
|
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
return true;
|
|
|
|
return obj->pin_display;
|
|
}
|
|
|
|
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->tiling_mode)
|
|
i915_gem_release_mmap(obj);
|
|
|
|
/* As we do not have an associated fence register, we will force
|
|
* a tiling change if we ever need to acquire one.
|
|
*/
|
|
obj->fence_dirty = false;
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
}
|
|
|
|
/* some bookkeeping */
|
|
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count++;
|
|
dev_priv->mm.object_memory += size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count--;
|
|
dev_priv->mm.object_memory -= size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static int
|
|
i915_gem_wait_for_error(struct i915_gpu_error *error)
|
|
{
|
|
int ret;
|
|
|
|
#define EXIT_COND (!i915_reset_in_progress(error) || \
|
|
i915_terminally_wedged(error))
|
|
if (EXIT_COND)
|
|
return 0;
|
|
|
|
/*
|
|
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
|
|
* userspace. If it takes that long something really bad is going on and
|
|
* we should simply try to bail out and fail as gracefully as possible.
|
|
*/
|
|
ret = wait_event_interruptible_timeout(error->reset_queue,
|
|
EXIT_COND,
|
|
10*HZ);
|
|
if (ret == 0) {
|
|
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
|
|
return -EIO;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
}
|
|
#undef EXIT_COND
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_mutex_lock_interruptible(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mutex_lock_interruptible(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
|
|
{
|
|
return i915_gem_obj_bound_any(obj) && !obj->active;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_init *args = data;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return -ENODEV;
|
|
|
|
if (args->gtt_start >= args->gtt_end ||
|
|
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
/* GEM with user mode setting was never supported on ilk and later. */
|
|
if (INTEL_INFO(dev)->gen >= 5)
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
|
|
args->gtt_end);
|
|
dev_priv->gtt.mappable_end = args->gtt_end;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
size_t pinned;
|
|
|
|
pinned = 0;
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
|
|
if (i915_gem_obj_is_pinned(obj))
|
|
pinned += i915_gem_obj_ggtt_size(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
args->aper_size = dev_priv->gtt.base.total;
|
|
args->aper_available_size = args->aper_size - pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *i915_gem_object_alloc(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
|
|
}
|
|
|
|
void i915_gem_object_free(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
kmem_cache_free(dev_priv->slab, obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint64_t size,
|
|
uint32_t *handle_p)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
size = roundup(size, PAGE_SIZE);
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_alloc_object(dev, size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*handle_p = handle;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_dumb_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
/* have to work out size/pitch and return them */
|
|
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
|
|
args->size = args->pitch * args->height;
|
|
return i915_gem_create(file, dev,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_create *args = data;
|
|
|
|
return i915_gem_create(file, dev,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
static inline int
|
|
__copy_to_user_swizzled(char __user *cpu_vaddr,
|
|
const char *gpu_vaddr, int gpu_offset,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_to_user(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
|
|
const char __user *cpu_vaddr,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pins the specified object's pages and synchronizes the object with
|
|
* GPU accesses. Sets needs_clflush to non-zero if the caller should
|
|
* flush the object from the CPU cache.
|
|
*/
|
|
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
|
|
int *needs_clflush)
|
|
{
|
|
int ret;
|
|
|
|
*needs_clflush = 0;
|
|
|
|
if (!obj->base.filp)
|
|
return -EINVAL;
|
|
|
|
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
|
|
/* If we're not in the cpu read domain, set ourself into the gtt
|
|
* read domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will dirty the data
|
|
* anyway again before the next pread happens. */
|
|
*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
|
|
obj->cache_level);
|
|
ret = i915_gem_object_wait_rendering(obj, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pread fastpath.
|
|
* Flushes invalid cachelines before reading the target if
|
|
* needs_clflush is set. */
|
|
static int
|
|
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
if (unlikely(page_do_bit17_swizzling))
|
|
return -EINVAL;
|
|
|
|
vaddr = kmap_atomic(page);
|
|
if (needs_clflush)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
ret = __copy_to_user_inatomic(user_data,
|
|
vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static void
|
|
shmem_clflush_swizzled_range(char *addr, unsigned long length,
|
|
bool swizzled)
|
|
{
|
|
if (unlikely(swizzled)) {
|
|
unsigned long start = (unsigned long) addr;
|
|
unsigned long end = (unsigned long) addr + length;
|
|
|
|
/* For swizzling simply ensure that we always flush both
|
|
* channels. Lame, but simple and it works. Swizzled
|
|
* pwrite/pread is far from a hotpath - current userspace
|
|
* doesn't use it at all. */
|
|
start = round_down(start, 128);
|
|
end = round_up(end, 128);
|
|
|
|
drm_clflush_virt_range((void *)start, end - start);
|
|
} else {
|
|
drm_clflush_virt_range(addr, length);
|
|
}
|
|
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (needs_clflush)
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_to_user_swizzled(user_data,
|
|
vaddr, shmem_page_offset,
|
|
page_length);
|
|
else
|
|
ret = __copy_to_user(user_data,
|
|
vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap(page);
|
|
|
|
return ret ? - EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pread(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file)
|
|
{
|
|
char __user *user_data;
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
int shmem_page_offset, page_length, ret = 0;
|
|
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
|
|
int prefaulted = 0;
|
|
int needs_clflush = 0;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offset = args->offset;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
|
|
offset >> PAGE_SHIFT) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (remain <= 0)
|
|
break;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset_in_page(offset);
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
|
|
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
|
|
(page_to_phys(page) & (1 << 17)) != 0;
|
|
|
|
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
needs_clflush);
|
|
if (ret == 0)
|
|
goto next_page;
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (likely(!i915.prefault_disable) && !prefaulted) {
|
|
ret = fault_in_multipages_writeable(user_data, remain);
|
|
/* Userspace is tricking us, but we've already clobbered
|
|
* its pages with the prefault and promised to write the
|
|
* data up to the first fault. Hence ignore any errors
|
|
* and just continue. */
|
|
(void)ret;
|
|
prefaulted = 1;
|
|
}
|
|
|
|
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
needs_clflush);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_page:
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_WRITE,
|
|
to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check source. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* prime objects have no backing filp to GEM pread/pwrite
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pread(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_shmem_pread(dev, obj, args, file);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline int
|
|
fast_user_write(struct io_mapping *mapping,
|
|
loff_t page_base, int page_offset,
|
|
char __user *user_data,
|
|
int length)
|
|
{
|
|
void __iomem *vaddr_atomic;
|
|
void *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = (void __force*)vaddr_atomic + page_offset;
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr_atomic);
|
|
return unwritten;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length, ret;
|
|
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = offset & PAGE_MASK;
|
|
page_offset = offset_in_page(offset);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (fast_user_write(dev_priv->gtt.mappable, page_base,
|
|
page_offset, user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
goto out_unpin;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out_unpin:
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pwrite fastpath.
|
|
* Flushes invalid cachelines before writing to the target if
|
|
* needs_clflush_before is set and flushes out any written cachelines after
|
|
* writing if needs_clflush is set. */
|
|
static int
|
|
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
if (unlikely(page_do_bit17_swizzling))
|
|
return -EINVAL;
|
|
|
|
vaddr = kmap_atomic(page);
|
|
if (needs_clflush_before)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
|
|
user_data, page_length);
|
|
if (needs_clflush_after)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
|
|
user_data,
|
|
page_length);
|
|
else
|
|
ret = __copy_from_user(vaddr + shmem_page_offset,
|
|
user_data,
|
|
page_length);
|
|
if (needs_clflush_after)
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
char __user *user_data;
|
|
int shmem_page_offset, page_length, ret = 0;
|
|
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
|
|
int hit_slowpath = 0;
|
|
int needs_clflush_after = 0;
|
|
int needs_clflush_before = 0;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
/* If we're not in the cpu write domain, set ourself into the gtt
|
|
* write domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will use the data
|
|
* right away and we therefore have to clflush anyway. */
|
|
needs_clflush_after = cpu_write_needs_clflush(obj);
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
}
|
|
/* Same trick applies to invalidate partially written cachelines read
|
|
* before writing. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
|
|
needs_clflush_before =
|
|
!cpu_cache_is_coherent(dev, obj->cache_level);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
offset = args->offset;
|
|
obj->dirty = 1;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
|
|
offset >> PAGE_SHIFT) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
int partial_cacheline_write;
|
|
|
|
if (remain <= 0)
|
|
break;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset_in_page(offset);
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
|
|
/* If we don't overwrite a cacheline completely we need to be
|
|
* careful to have up-to-date data by first clflushing. Don't
|
|
* overcomplicate things and flush the entire patch. */
|
|
partial_cacheline_write = needs_clflush_before &&
|
|
((shmem_page_offset | page_length)
|
|
& (boot_cpu_data.x86_clflush_size - 1));
|
|
|
|
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
|
|
(page_to_phys(page) & (1 << 17)) != 0;
|
|
|
|
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
partial_cacheline_write,
|
|
needs_clflush_after);
|
|
if (ret == 0)
|
|
goto next_page;
|
|
|
|
hit_slowpath = 1;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
partial_cacheline_write,
|
|
needs_clflush_after);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_page:
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (hit_slowpath) {
|
|
/*
|
|
* Fixup: Flush cpu caches in case we didn't flush the dirty
|
|
* cachelines in-line while writing and the object moved
|
|
* out of the cpu write domain while we've dropped the lock.
|
|
*/
|
|
if (!needs_clflush_after &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
if (i915_gem_clflush_object(obj, obj->pin_display))
|
|
i915_gem_chipset_flush(dev);
|
|
}
|
|
}
|
|
|
|
if (needs_clflush_after)
|
|
i915_gem_chipset_flush(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_READ,
|
|
to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
if (likely(!i915.prefault_disable)) {
|
|
ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
|
|
args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check destination. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* prime objects have no backing filp to GEM pread/pwrite
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
|
|
|
|
ret = -EFAULT;
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (obj->phys_obj) {
|
|
ret = i915_gem_phys_pwrite(dev, obj, args, file);
|
|
goto out;
|
|
}
|
|
|
|
if (obj->tiling_mode == I915_TILING_NONE &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
|
|
cpu_write_needs_clflush(obj)) {
|
|
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
|
|
/* Note that the gtt paths might fail with non-page-backed user
|
|
* pointers (e.g. gtt mappings when moving data between
|
|
* textures). Fallback to the shmem path in that case. */
|
|
}
|
|
|
|
if (ret == -EFAULT || ret == -ENOSPC)
|
|
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_check_wedge(struct i915_gpu_error *error,
|
|
bool interruptible)
|
|
{
|
|
if (i915_reset_in_progress(error)) {
|
|
/* Non-interruptible callers can't handle -EAGAIN, hence return
|
|
* -EIO unconditionally for these. */
|
|
if (!interruptible)
|
|
return -EIO;
|
|
|
|
/* Recovery complete, but the reset failed ... */
|
|
if (i915_terminally_wedged(error))
|
|
return -EIO;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compare seqno against outstanding lazy request. Emit a request if they are
|
|
* equal.
|
|
*/
|
|
static int
|
|
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
|
|
|
ret = 0;
|
|
if (seqno == ring->outstanding_lazy_seqno)
|
|
ret = i915_add_request(ring, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void fake_irq(unsigned long data)
|
|
{
|
|
wake_up_process((struct task_struct *)data);
|
|
}
|
|
|
|
static bool missed_irq(struct drm_i915_private *dev_priv,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
|
|
}
|
|
|
|
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
|
|
{
|
|
if (file_priv == NULL)
|
|
return true;
|
|
|
|
return !atomic_xchg(&file_priv->rps_wait_boost, true);
|
|
}
|
|
|
|
/**
|
|
* __wait_seqno - wait until execution of seqno has finished
|
|
* @ring: the ring expected to report seqno
|
|
* @seqno: duh!
|
|
* @reset_counter: reset sequence associated with the given seqno
|
|
* @interruptible: do an interruptible wait (normally yes)
|
|
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
|
|
*
|
|
* Note: It is of utmost importance that the passed in seqno and reset_counter
|
|
* values have been read by the caller in an smp safe manner. Where read-side
|
|
* locks are involved, it is sufficient to read the reset_counter before
|
|
* unlocking the lock that protects the seqno. For lockless tricks, the
|
|
* reset_counter _must_ be read before, and an appropriate smp_rmb must be
|
|
* inserted.
|
|
*
|
|
* Returns 0 if the seqno was found within the alloted time. Else returns the
|
|
* errno with remaining time filled in timeout argument.
|
|
*/
|
|
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
|
|
unsigned reset_counter,
|
|
bool interruptible,
|
|
struct timespec *timeout,
|
|
struct drm_i915_file_private *file_priv)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const bool irq_test_in_progress =
|
|
ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
|
|
struct timespec before, now;
|
|
DEFINE_WAIT(wait);
|
|
unsigned long timeout_expire;
|
|
int ret;
|
|
|
|
WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
|
|
|
|
if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
|
|
return 0;
|
|
|
|
timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
|
|
gen6_rps_boost(dev_priv);
|
|
if (file_priv)
|
|
mod_delayed_work(dev_priv->wq,
|
|
&file_priv->mm.idle_work,
|
|
msecs_to_jiffies(100));
|
|
}
|
|
|
|
if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
|
|
return -ENODEV;
|
|
|
|
/* Record current time in case interrupted by signal, or wedged */
|
|
trace_i915_gem_request_wait_begin(ring, seqno);
|
|
getrawmonotonic(&before);
|
|
for (;;) {
|
|
struct timer_list timer;
|
|
|
|
prepare_to_wait(&ring->irq_queue, &wait,
|
|
interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
|
|
|
|
/* We need to check whether any gpu reset happened in between
|
|
* the caller grabbing the seqno and now ... */
|
|
if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
|
|
/* ... but upgrade the -EAGAIN to an -EIO if the gpu
|
|
* is truely gone. */
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
|
|
if (ret == 0)
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (interruptible && signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
if (timeout && time_after_eq(jiffies, timeout_expire)) {
|
|
ret = -ETIME;
|
|
break;
|
|
}
|
|
|
|
timer.function = NULL;
|
|
if (timeout || missed_irq(dev_priv, ring)) {
|
|
unsigned long expire;
|
|
|
|
setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
|
|
expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
|
|
mod_timer(&timer, expire);
|
|
}
|
|
|
|
io_schedule();
|
|
|
|
if (timer.function) {
|
|
del_singleshot_timer_sync(&timer);
|
|
destroy_timer_on_stack(&timer);
|
|
}
|
|
}
|
|
getrawmonotonic(&now);
|
|
trace_i915_gem_request_wait_end(ring, seqno);
|
|
|
|
if (!irq_test_in_progress)
|
|
ring->irq_put(ring);
|
|
|
|
finish_wait(&ring->irq_queue, &wait);
|
|
|
|
if (timeout) {
|
|
struct timespec sleep_time = timespec_sub(now, before);
|
|
*timeout = timespec_sub(*timeout, sleep_time);
|
|
if (!timespec_valid(timeout)) /* i.e. negative time remains */
|
|
set_normalized_timespec(timeout, 0, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Waits for a sequence number to be signaled, and cleans up the
|
|
* request and object lists appropriately for that event.
|
|
*/
|
|
int
|
|
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool interruptible = dev_priv->mm.interruptible;
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
BUG_ON(seqno == 0);
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_olr(ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return __wait_seqno(ring, seqno,
|
|
atomic_read(&dev_priv->gpu_error.reset_counter),
|
|
interruptible, NULL, NULL);
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
/* Manually manage the write flush as we may have not yet
|
|
* retired the buffer.
|
|
*
|
|
* Note that the last_write_seqno is always the earlier of
|
|
* the two (read/write) seqno, so if we haved successfully waited,
|
|
* we know we have passed the last write.
|
|
*/
|
|
obj->last_write_seqno = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Ensures that all rendering to the object has completed and the object is
|
|
* safe to unbind from the GTT or access from the CPU.
|
|
*/
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
|
|
bool readonly)
|
|
{
|
|
struct intel_ring_buffer *ring = obj->ring;
|
|
u32 seqno;
|
|
int ret;
|
|
|
|
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = i915_wait_seqno(ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return i915_gem_object_wait_rendering__tail(obj, ring);
|
|
}
|
|
|
|
/* A nonblocking variant of the above wait. This is a highly dangerous routine
|
|
* as the object state may change during this call.
|
|
*/
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_file_private *file_priv,
|
|
bool readonly)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring = obj->ring;
|
|
unsigned reset_counter;
|
|
u32 seqno;
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
BUG_ON(!dev_priv->mm.interruptible);
|
|
|
|
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_olr(ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return i915_gem_object_wait_rendering__tail(obj, ring);
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int ret;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if (write_domain & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
if (read_domains & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Try to flush the object off the GPU without holding the lock.
|
|
* We will repeat the flush holding the lock in the normal manner
|
|
* to catch cases where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering__nonblocking(obj,
|
|
file->driver_priv,
|
|
!write_domain);
|
|
if (ret)
|
|
goto unref;
|
|
|
|
if (read_domains & I915_GEM_DOMAIN_GTT) {
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
|
|
/* Silently promote "you're not bound, there was nothing to do"
|
|
* to success, since the client was just asking us to
|
|
* make sure everything was done.
|
|
*/
|
|
if (ret == -EINVAL)
|
|
ret = 0;
|
|
} else {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
}
|
|
|
|
unref:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (obj->pin_display)
|
|
i915_gem_object_flush_cpu_write_domain(obj, true);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Maps the contents of an object, returning the address it is mapped
|
|
* into.
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_gem_object *obj;
|
|
unsigned long addr;
|
|
|
|
obj = drm_gem_object_lookup(dev, file, args->handle);
|
|
if (obj == NULL)
|
|
return -ENOENT;
|
|
|
|
/* prime objects have no backing filp to GEM mmap
|
|
* pages from.
|
|
*/
|
|
if (!obj->filp) {
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
addr = vm_mmap(obj->filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* vma: VMA in question
|
|
* vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
pgoff_t page_offset;
|
|
unsigned long pfn;
|
|
int ret = 0;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
trace_i915_gem_object_fault(obj, page_offset, true, write);
|
|
|
|
/* Try to flush the object off the GPU first without holding the lock.
|
|
* Upon reacquiring the lock, we will perform our sanity checks and then
|
|
* repeat the flush holding the lock in the normal manner to catch cases
|
|
* where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
/* Access to snoopable pages through the GTT is incoherent. */
|
|
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Now bind it into the GTT if needed */
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret)
|
|
goto unpin;
|
|
|
|
ret = i915_gem_object_get_fence(obj);
|
|
if (ret)
|
|
goto unpin;
|
|
|
|
obj->fault_mappable = true;
|
|
|
|
pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
|
|
pfn >>= PAGE_SHIFT;
|
|
pfn += page_offset;
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
|
|
unpin:
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
out:
|
|
switch (ret) {
|
|
case -EIO:
|
|
/* If this -EIO is due to a gpu hang, give the reset code a
|
|
* chance to clean up the mess. Otherwise return the proper
|
|
* SIGBUS. */
|
|
if (i915_terminally_wedged(&dev_priv->gpu_error)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
case -EAGAIN:
|
|
/*
|
|
* EAGAIN means the gpu is hung and we'll wait for the error
|
|
* handler to reset everything when re-faulting in
|
|
* i915_mutex_lock_interruptible.
|
|
*/
|
|
case 0:
|
|
case -ERESTARTSYS:
|
|
case -EINTR:
|
|
case -EBUSY:
|
|
/*
|
|
* EBUSY is ok: this just means that another thread
|
|
* already did the job.
|
|
*/
|
|
ret = VM_FAULT_NOPAGE;
|
|
break;
|
|
case -ENOMEM:
|
|
ret = VM_FAULT_OOM;
|
|
break;
|
|
case -ENOSPC:
|
|
case -EFAULT:
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
default:
|
|
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
/*
|
|
* Only the global gtt is relevant for gtt memory mappings, so restrict
|
|
* list traversal to objects bound into the global address space. Note
|
|
* that the active list should be empty, but better safe than sorry.
|
|
*/
|
|
WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
|
|
list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
|
|
i915_gem_release_mmap(vma->obj);
|
|
list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
|
|
i915_gem_release_mmap(vma->obj);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmapping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!obj->fault_mappable)
|
|
return;
|
|
|
|
drm_vma_node_unmap(&obj->base.vma_node,
|
|
obj->base.dev->anon_inode->i_mapping);
|
|
obj->fault_mappable = false;
|
|
}
|
|
|
|
uint32_t
|
|
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
|
|
{
|
|
uint32_t gtt_size;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 ||
|
|
tiling_mode == I915_TILING_NONE)
|
|
return size;
|
|
|
|
/* Previous chips need a power-of-two fence region when tiling */
|
|
if (INTEL_INFO(dev)->gen == 3)
|
|
gtt_size = 1024*1024;
|
|
else
|
|
gtt_size = 512*1024;
|
|
|
|
while (gtt_size < size)
|
|
gtt_size <<= 1;
|
|
|
|
return gtt_size;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, taking into account
|
|
* potential fence register mapping.
|
|
*/
|
|
uint32_t
|
|
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
|
|
int tiling_mode, bool fenced)
|
|
{
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size), but might be greater
|
|
* if a fence register is needed for the object.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
|
|
tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Previous chips need to be aligned to the size of the smallest
|
|
* fence register that can contain the object.
|
|
*/
|
|
return i915_gem_get_gtt_size(dev, size, tiling_mode);
|
|
}
|
|
|
|
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_vma_node_has_offset(&obj->base.vma_node))
|
|
return 0;
|
|
|
|
dev_priv->mm.shrinker_no_lock_stealing = true;
|
|
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
if (ret != -ENOSPC)
|
|
goto out;
|
|
|
|
/* Badly fragmented mmap space? The only way we can recover
|
|
* space is by destroying unwanted objects. We can't randomly release
|
|
* mmap_offsets as userspace expects them to be persistent for the
|
|
* lifetime of the objects. The closest we can is to release the
|
|
* offsets on purgeable objects by truncating it and marking it purged,
|
|
* which prevents userspace from ever using that object again.
|
|
*/
|
|
i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
if (ret != -ENOSPC)
|
|
goto out;
|
|
|
|
i915_gem_shrink_all(dev_priv);
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
out:
|
|
dev_priv->mm.shrinker_no_lock_stealing = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_gem_free_mmap_offset(&obj->base);
|
|
}
|
|
|
|
int
|
|
i915_gem_mmap_gtt(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint32_t handle,
|
|
uint64_t *offset)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->base.size > dev_priv->gtt.mappable_end) {
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_create_mmap_offset(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
|
|
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
static void
|
|
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct inode *inode;
|
|
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
/* Our goal here is to return as much of the memory as
|
|
* is possible back to the system as we are called from OOM.
|
|
* To do this we must instruct the shmfs to drop all of its
|
|
* backing pages, *now*.
|
|
*/
|
|
inode = file_inode(obj->base.filp);
|
|
shmem_truncate_range(inode, 0, (loff_t)-1);
|
|
|
|
obj->madv = __I915_MADV_PURGED;
|
|
}
|
|
|
|
static inline int
|
|
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
|
|
{
|
|
return obj->madv == I915_MADV_DONTNEED;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_page_iter sg_iter;
|
|
int ret;
|
|
|
|
BUG_ON(obj->madv == __I915_MADV_PURGED);
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret) {
|
|
/* In the event of a disaster, abandon all caches and
|
|
* hope for the best.
|
|
*/
|
|
WARN_ON(ret != -EIO);
|
|
i915_gem_clflush_object(obj, true);
|
|
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_save_bit_17_swizzle(obj);
|
|
|
|
if (obj->madv == I915_MADV_DONTNEED)
|
|
obj->dirty = 0;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (obj->dirty)
|
|
set_page_dirty(page);
|
|
|
|
if (obj->madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(page);
|
|
|
|
page_cache_release(page);
|
|
}
|
|
obj->dirty = 0;
|
|
|
|
sg_free_table(obj->pages);
|
|
kfree(obj->pages);
|
|
}
|
|
|
|
int
|
|
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
const struct drm_i915_gem_object_ops *ops = obj->ops;
|
|
|
|
if (obj->pages == NULL)
|
|
return 0;
|
|
|
|
if (obj->pages_pin_count)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(i915_gem_obj_bound_any(obj));
|
|
|
|
/* ->put_pages might need to allocate memory for the bit17 swizzle
|
|
* array, hence protect them from being reaped by removing them from gtt
|
|
* lists early. */
|
|
list_del(&obj->global_list);
|
|
|
|
ops->put_pages(obj);
|
|
obj->pages = NULL;
|
|
|
|
if (i915_gem_object_is_purgeable(obj))
|
|
i915_gem_object_truncate(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long
|
|
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
|
|
bool purgeable_only)
|
|
{
|
|
struct list_head still_in_list;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long count = 0;
|
|
|
|
/*
|
|
* As we may completely rewrite the (un)bound list whilst unbinding
|
|
* (due to retiring requests) we have to strictly process only
|
|
* one element of the list at the time, and recheck the list
|
|
* on every iteration.
|
|
*
|
|
* In particular, we must hold a reference whilst removing the
|
|
* object as we may end up waiting for and/or retiring the objects.
|
|
* This might release the final reference (held by the active list)
|
|
* and result in the object being freed from under us. This is
|
|
* similar to the precautions the eviction code must take whilst
|
|
* removing objects.
|
|
*
|
|
* Also note that although these lists do not hold a reference to
|
|
* the object we can safely grab one here: The final object
|
|
* unreferencing and the bound_list are both protected by the
|
|
* dev->struct_mutex and so we won't ever be able to observe an
|
|
* object on the bound_list with a reference count equals 0.
|
|
*/
|
|
INIT_LIST_HEAD(&still_in_list);
|
|
while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
|
|
obj = list_first_entry(&dev_priv->mm.unbound_list,
|
|
typeof(*obj), global_list);
|
|
list_move_tail(&obj->global_list, &still_in_list);
|
|
|
|
if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
|
|
continue;
|
|
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
if (i915_gem_object_put_pages(obj) == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
}
|
|
list_splice(&still_in_list, &dev_priv->mm.unbound_list);
|
|
|
|
INIT_LIST_HEAD(&still_in_list);
|
|
while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
|
|
struct i915_vma *vma, *v;
|
|
|
|
obj = list_first_entry(&dev_priv->mm.bound_list,
|
|
typeof(*obj), global_list);
|
|
list_move_tail(&obj->global_list, &still_in_list);
|
|
|
|
if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
|
|
continue;
|
|
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
|
|
if (i915_vma_unbind(vma))
|
|
break;
|
|
|
|
if (i915_gem_object_put_pages(obj) == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
}
|
|
list_splice(&still_in_list, &dev_priv->mm.bound_list);
|
|
|
|
return count;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
|
|
{
|
|
return __i915_gem_shrink(dev_priv, target, true);
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_evict_everything(dev_priv->dev);
|
|
return __i915_gem_shrink(dev_priv, LONG_MAX, false);
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int page_count, i;
|
|
struct address_space *mapping;
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
struct sg_page_iter sg_iter;
|
|
struct page *page;
|
|
unsigned long last_pfn = 0; /* suppress gcc warning */
|
|
gfp_t gfp;
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return -ENOMEM;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
|
|
kfree(st);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*
|
|
* Fail silently without starting the shrinker
|
|
*/
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
gfp = mapping_gfp_mask(mapping);
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
|
|
gfp &= ~(__GFP_IO | __GFP_WAIT);
|
|
sg = st->sgl;
|
|
st->nents = 0;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
if (IS_ERR(page)) {
|
|
i915_gem_purge(dev_priv, page_count);
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
}
|
|
if (IS_ERR(page)) {
|
|
/* We've tried hard to allocate the memory by reaping
|
|
* our own buffer, now let the real VM do its job and
|
|
* go down in flames if truly OOM.
|
|
*/
|
|
gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
|
|
gfp |= __GFP_IO | __GFP_WAIT;
|
|
|
|
i915_gem_shrink_all(dev_priv);
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
if (IS_ERR(page))
|
|
goto err_pages;
|
|
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
|
|
gfp &= ~(__GFP_IO | __GFP_WAIT);
|
|
}
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (swiotlb_nr_tbl()) {
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
sg = sg_next(sg);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (!i || page_to_pfn(page) != last_pfn + 1) {
|
|
if (i)
|
|
sg = sg_next(sg);
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
} else {
|
|
sg->length += PAGE_SIZE;
|
|
}
|
|
last_pfn = page_to_pfn(page);
|
|
|
|
/* Check that the i965g/gm workaround works. */
|
|
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
|
|
}
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (!swiotlb_nr_tbl())
|
|
#endif
|
|
sg_mark_end(sg);
|
|
obj->pages = st;
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_do_bit_17_swizzle(obj);
|
|
|
|
return 0;
|
|
|
|
err_pages:
|
|
sg_mark_end(sg);
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
|
|
page_cache_release(sg_page_iter_page(&sg_iter));
|
|
sg_free_table(st);
|
|
kfree(st);
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
/* Ensure that the associated pages are gathered from the backing storage
|
|
* and pinned into our object. i915_gem_object_get_pages() may be called
|
|
* multiple times before they are released by a single call to
|
|
* i915_gem_object_put_pages() - once the pages are no longer referenced
|
|
* either as a result of memory pressure (reaping pages under the shrinker)
|
|
* or as the object is itself released.
|
|
*/
|
|
int
|
|
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
const struct drm_i915_gem_object_ops *ops = obj->ops;
|
|
int ret;
|
|
|
|
if (obj->pages)
|
|
return 0;
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to obtain a purgeable object\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
BUG_ON(obj->pages_pin_count);
|
|
|
|
ret = ops->get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 seqno = intel_ring_get_seqno(ring);
|
|
|
|
BUG_ON(ring == NULL);
|
|
if (obj->ring != ring && obj->last_write_seqno) {
|
|
/* Keep the seqno relative to the current ring */
|
|
obj->last_write_seqno = seqno;
|
|
}
|
|
obj->ring = ring;
|
|
|
|
/* Add a reference if we're newly entering the active list. */
|
|
if (!obj->active) {
|
|
drm_gem_object_reference(&obj->base);
|
|
obj->active = 1;
|
|
}
|
|
|
|
list_move_tail(&obj->ring_list, &ring->active_list);
|
|
|
|
obj->last_read_seqno = seqno;
|
|
|
|
if (obj->fenced_gpu_access) {
|
|
obj->last_fenced_seqno = seqno;
|
|
|
|
/* Bump MRU to take account of the delayed flush */
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
struct drm_i915_fence_reg *reg;
|
|
|
|
reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
list_move_tail(®->lru_list,
|
|
&dev_priv->mm.fence_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
void i915_vma_move_to_active(struct i915_vma *vma,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
list_move_tail(&vma->mm_list, &vma->vm->active_list);
|
|
return i915_gem_object_move_to_active(vma->obj, ring);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct i915_address_space *vm;
|
|
struct i915_vma *vma;
|
|
|
|
BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(!obj->active);
|
|
|
|
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (vma && !list_empty(&vma->mm_list))
|
|
list_move_tail(&vma->mm_list, &vm->inactive_list);
|
|
}
|
|
|
|
list_del_init(&obj->ring_list);
|
|
obj->ring = NULL;
|
|
|
|
obj->last_read_seqno = 0;
|
|
obj->last_write_seqno = 0;
|
|
obj->base.write_domain = 0;
|
|
|
|
obj->last_fenced_seqno = 0;
|
|
obj->fenced_gpu_access = false;
|
|
|
|
obj->active = 0;
|
|
drm_gem_object_unreference(&obj->base);
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_retire(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct intel_ring_buffer *ring = obj->ring;
|
|
|
|
if (ring == NULL)
|
|
return;
|
|
|
|
if (i915_seqno_passed(ring->get_seqno(ring, true),
|
|
obj->last_read_seqno))
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int ret, i, j;
|
|
|
|
/* Carefully retire all requests without writing to the rings */
|
|
for_each_ring(ring, dev_priv, i) {
|
|
ret = intel_ring_idle(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* Finally reset hw state */
|
|
for_each_ring(ring, dev_priv, i) {
|
|
intel_ring_init_seqno(ring, seqno);
|
|
|
|
for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
|
|
ring->sync_seqno[j] = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (seqno == 0)
|
|
return -EINVAL;
|
|
|
|
/* HWS page needs to be set less than what we
|
|
* will inject to ring
|
|
*/
|
|
ret = i915_gem_init_seqno(dev, seqno - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Carefully set the last_seqno value so that wrap
|
|
* detection still works
|
|
*/
|
|
dev_priv->next_seqno = seqno;
|
|
dev_priv->last_seqno = seqno - 1;
|
|
if (dev_priv->last_seqno == 0)
|
|
dev_priv->last_seqno--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* reserve 0 for non-seqno */
|
|
if (dev_priv->next_seqno == 0) {
|
|
int ret = i915_gem_init_seqno(dev, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_priv->next_seqno = 1;
|
|
}
|
|
|
|
*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
|
|
return 0;
|
|
}
|
|
|
|
int __i915_add_request(struct intel_ring_buffer *ring,
|
|
struct drm_file *file,
|
|
struct drm_i915_gem_object *obj,
|
|
u32 *out_seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
struct drm_i915_gem_request *request;
|
|
u32 request_ring_position, request_start;
|
|
int ret;
|
|
|
|
request_start = intel_ring_get_tail(ring);
|
|
/*
|
|
* Emit any outstanding flushes - execbuf can fail to emit the flush
|
|
* after having emitted the batchbuffer command. Hence we need to fix
|
|
* things up similar to emitting the lazy request. The difference here
|
|
* is that the flush _must_ happen before the next request, no matter
|
|
* what.
|
|
*/
|
|
ret = intel_ring_flush_all_caches(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
request = ring->preallocated_lazy_request;
|
|
if (WARN_ON(request == NULL))
|
|
return -ENOMEM;
|
|
|
|
/* Record the position of the start of the request so that
|
|
* should we detect the updated seqno part-way through the
|
|
* GPU processing the request, we never over-estimate the
|
|
* position of the head.
|
|
*/
|
|
request_ring_position = intel_ring_get_tail(ring);
|
|
|
|
ret = ring->add_request(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
request->seqno = intel_ring_get_seqno(ring);
|
|
request->ring = ring;
|
|
request->head = request_start;
|
|
request->tail = request_ring_position;
|
|
|
|
/* Whilst this request exists, batch_obj will be on the
|
|
* active_list, and so will hold the active reference. Only when this
|
|
* request is retired will the the batch_obj be moved onto the
|
|
* inactive_list and lose its active reference. Hence we do not need
|
|
* to explicitly hold another reference here.
|
|
*/
|
|
request->batch_obj = obj;
|
|
|
|
/* Hold a reference to the current context so that we can inspect
|
|
* it later in case a hangcheck error event fires.
|
|
*/
|
|
request->ctx = ring->last_context;
|
|
if (request->ctx)
|
|
i915_gem_context_reference(request->ctx);
|
|
|
|
request->emitted_jiffies = jiffies;
|
|
list_add_tail(&request->list, &ring->request_list);
|
|
request->file_priv = NULL;
|
|
|
|
if (file) {
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
request->file_priv = file_priv;
|
|
list_add_tail(&request->client_list,
|
|
&file_priv->mm.request_list);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
trace_i915_gem_request_add(ring, request->seqno);
|
|
ring->outstanding_lazy_seqno = 0;
|
|
ring->preallocated_lazy_request = NULL;
|
|
|
|
if (!dev_priv->ums.mm_suspended) {
|
|
i915_queue_hangcheck(ring->dev);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->mm.idle_work);
|
|
queue_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
intel_mark_busy(dev_priv->dev);
|
|
}
|
|
|
|
if (out_seqno)
|
|
*out_seqno = request->seqno;
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_file_private *file_priv = request->file_priv;
|
|
|
|
if (!file_priv)
|
|
return;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
|
|
const struct i915_hw_context *ctx)
|
|
{
|
|
unsigned long elapsed;
|
|
|
|
elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
|
|
|
|
if (ctx->hang_stats.banned)
|
|
return true;
|
|
|
|
if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
|
|
if (!i915_gem_context_is_default(ctx)) {
|
|
DRM_DEBUG("context hanging too fast, banning!\n");
|
|
return true;
|
|
} else if (i915_stop_ring_allow_ban(dev_priv)) {
|
|
if (i915_stop_ring_allow_warn(dev_priv))
|
|
DRM_ERROR("gpu hanging too fast, banning!\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
|
|
struct i915_hw_context *ctx,
|
|
const bool guilty)
|
|
{
|
|
struct i915_ctx_hang_stats *hs;
|
|
|
|
if (WARN_ON(!ctx))
|
|
return;
|
|
|
|
hs = &ctx->hang_stats;
|
|
|
|
if (guilty) {
|
|
hs->banned = i915_context_is_banned(dev_priv, ctx);
|
|
hs->batch_active++;
|
|
hs->guilty_ts = get_seconds();
|
|
} else {
|
|
hs->batch_pending++;
|
|
}
|
|
}
|
|
|
|
static void i915_gem_free_request(struct drm_i915_gem_request *request)
|
|
{
|
|
list_del(&request->list);
|
|
i915_gem_request_remove_from_client(request);
|
|
|
|
if (request->ctx)
|
|
i915_gem_context_unreference(request->ctx);
|
|
|
|
kfree(request);
|
|
}
|
|
|
|
struct drm_i915_gem_request *
|
|
i915_gem_find_active_request(struct intel_ring_buffer *ring)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
u32 completed_seqno;
|
|
|
|
completed_seqno = ring->get_seqno(ring, false);
|
|
|
|
list_for_each_entry(request, &ring->request_list, list) {
|
|
if (i915_seqno_passed(completed_seqno, request->seqno))
|
|
continue;
|
|
|
|
return request;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
bool ring_hung;
|
|
|
|
request = i915_gem_find_active_request(ring);
|
|
|
|
if (request == NULL)
|
|
return;
|
|
|
|
ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
|
|
|
|
i915_set_reset_status(dev_priv, request->ctx, ring_hung);
|
|
|
|
list_for_each_entry_continue(request, &ring->request_list, list)
|
|
i915_set_reset_status(dev_priv, request->ctx, false);
|
|
}
|
|
|
|
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
|
|
struct intel_ring_buffer *ring)
|
|
{
|
|
while (!list_empty(&ring->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&ring->active_list,
|
|
struct drm_i915_gem_object,
|
|
ring_list);
|
|
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
/*
|
|
* We must free the requests after all the corresponding objects have
|
|
* been moved off active lists. Which is the same order as the normal
|
|
* retire_requests function does. This is important if object hold
|
|
* implicit references on things like e.g. ppgtt address spaces through
|
|
* the request.
|
|
*/
|
|
while (!list_empty(&ring->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&ring->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
i915_gem_free_request(request);
|
|
}
|
|
|
|
/* These may not have been flush before the reset, do so now */
|
|
kfree(ring->preallocated_lazy_request);
|
|
ring->preallocated_lazy_request = NULL;
|
|
ring->outstanding_lazy_seqno = 0;
|
|
}
|
|
|
|
void i915_gem_restore_fences(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
for (i = 0; i < dev_priv->num_fence_regs; i++) {
|
|
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
|
|
|
|
/*
|
|
* Commit delayed tiling changes if we have an object still
|
|
* attached to the fence, otherwise just clear the fence.
|
|
*/
|
|
if (reg->obj) {
|
|
i915_gem_object_update_fence(reg->obj, reg,
|
|
reg->obj->tiling_mode);
|
|
} else {
|
|
i915_gem_write_fence(dev, i, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void i915_gem_reset(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int i;
|
|
|
|
/*
|
|
* Before we free the objects from the requests, we need to inspect
|
|
* them for finding the guilty party. As the requests only borrow
|
|
* their reference to the objects, the inspection must be done first.
|
|
*/
|
|
for_each_ring(ring, dev_priv, i)
|
|
i915_gem_reset_ring_status(dev_priv, ring);
|
|
|
|
for_each_ring(ring, dev_priv, i)
|
|
i915_gem_reset_ring_cleanup(dev_priv, ring);
|
|
|
|
i915_gem_context_reset(dev);
|
|
|
|
i915_gem_restore_fences(dev);
|
|
}
|
|
|
|
/**
|
|
* This function clears the request list as sequence numbers are passed.
|
|
*/
|
|
static void
|
|
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
|
|
{
|
|
uint32_t seqno;
|
|
|
|
if (list_empty(&ring->request_list))
|
|
return;
|
|
|
|
WARN_ON(i915_verify_lists(ring->dev));
|
|
|
|
seqno = ring->get_seqno(ring, true);
|
|
|
|
/* Move any buffers on the active list that are no longer referenced
|
|
* by the ringbuffer to the flushing/inactive lists as appropriate,
|
|
* before we free the context associated with the requests.
|
|
*/
|
|
while (!list_empty(&ring->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&ring->active_list,
|
|
struct drm_i915_gem_object,
|
|
ring_list);
|
|
|
|
if (!i915_seqno_passed(seqno, obj->last_read_seqno))
|
|
break;
|
|
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
|
|
while (!list_empty(&ring->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&ring->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
if (!i915_seqno_passed(seqno, request->seqno))
|
|
break;
|
|
|
|
trace_i915_gem_request_retire(ring, request->seqno);
|
|
/* We know the GPU must have read the request to have
|
|
* sent us the seqno + interrupt, so use the position
|
|
* of tail of the request to update the last known position
|
|
* of the GPU head.
|
|
*/
|
|
ring->last_retired_head = request->tail;
|
|
|
|
i915_gem_free_request(request);
|
|
}
|
|
|
|
if (unlikely(ring->trace_irq_seqno &&
|
|
i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
|
|
ring->irq_put(ring);
|
|
ring->trace_irq_seqno = 0;
|
|
}
|
|
|
|
WARN_ON(i915_verify_lists(ring->dev));
|
|
}
|
|
|
|
bool
|
|
i915_gem_retire_requests(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
bool idle = true;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
i915_gem_retire_requests_ring(ring);
|
|
idle &= list_empty(&ring->request_list);
|
|
}
|
|
|
|
if (idle)
|
|
mod_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.idle_work,
|
|
msecs_to_jiffies(100));
|
|
|
|
return idle;
|
|
}
|
|
|
|
static void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), mm.retire_work.work);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
bool idle;
|
|
|
|
/* Come back later if the device is busy... */
|
|
idle = false;
|
|
if (mutex_trylock(&dev->struct_mutex)) {
|
|
idle = i915_gem_retire_requests(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
if (!idle)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
}
|
|
|
|
static void
|
|
i915_gem_idle_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), mm.idle_work.work);
|
|
|
|
intel_mark_idle(dev_priv->dev);
|
|
}
|
|
|
|
/**
|
|
* Ensures that an object will eventually get non-busy by flushing any required
|
|
* write domains, emitting any outstanding lazy request and retiring and
|
|
* completed requests.
|
|
*/
|
|
static int
|
|
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
if (obj->active) {
|
|
ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests_ring(obj->ring);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
|
|
* @DRM_IOCTL_ARGS: standard ioctl arguments
|
|
*
|
|
* Returns 0 if successful, else an error is returned with the remaining time in
|
|
* the timeout parameter.
|
|
* -ETIME: object is still busy after timeout
|
|
* -ERESTARTSYS: signal interrupted the wait
|
|
* -ENONENT: object doesn't exist
|
|
* Also possible, but rare:
|
|
* -EAGAIN: GPU wedged
|
|
* -ENOMEM: damn
|
|
* -ENODEV: Internal IRQ fail
|
|
* -E?: The add request failed
|
|
*
|
|
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
|
|
* non-zero timeout parameter the wait ioctl will wait for the given number of
|
|
* nanoseconds on an object becoming unbusy. Since the wait itself does so
|
|
* without holding struct_mutex the object may become re-busied before this
|
|
* function completes. A similar but shorter * race condition exists in the busy
|
|
* ioctl
|
|
*/
|
|
int
|
|
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_wait *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
struct intel_ring_buffer *ring = NULL;
|
|
struct timespec timeout_stack, *timeout = NULL;
|
|
unsigned reset_counter;
|
|
u32 seqno = 0;
|
|
int ret = 0;
|
|
|
|
if (args->timeout_ns >= 0) {
|
|
timeout_stack = ns_to_timespec(args->timeout_ns);
|
|
timeout = &timeout_stack;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
|
|
if (&obj->base == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Need to make sure the object gets inactive eventually. */
|
|
ret = i915_gem_object_flush_active(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (obj->active) {
|
|
seqno = obj->last_read_seqno;
|
|
ring = obj->ring;
|
|
}
|
|
|
|
if (seqno == 0)
|
|
goto out;
|
|
|
|
/* Do this after OLR check to make sure we make forward progress polling
|
|
* on this IOCTL with a 0 timeout (like busy ioctl)
|
|
*/
|
|
if (!args->timeout_ns) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
|
|
if (timeout)
|
|
args->timeout_ns = timespec_to_ns(timeout);
|
|
return ret;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_sync - sync an object to a ring.
|
|
*
|
|
* @obj: object which may be in use on another ring.
|
|
* @to: ring we wish to use the object on. May be NULL.
|
|
*
|
|
* This code is meant to abstract object synchronization with the GPU.
|
|
* Calling with NULL implies synchronizing the object with the CPU
|
|
* rather than a particular GPU ring.
|
|
*
|
|
* Returns 0 if successful, else propagates up the lower layer error.
|
|
*/
|
|
int
|
|
i915_gem_object_sync(struct drm_i915_gem_object *obj,
|
|
struct intel_ring_buffer *to)
|
|
{
|
|
struct intel_ring_buffer *from = obj->ring;
|
|
u32 seqno;
|
|
int ret, idx;
|
|
|
|
if (from == NULL || to == from)
|
|
return 0;
|
|
|
|
if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
|
|
return i915_gem_object_wait_rendering(obj, false);
|
|
|
|
idx = intel_ring_sync_index(from, to);
|
|
|
|
seqno = obj->last_read_seqno;
|
|
if (seqno <= from->sync_seqno[idx])
|
|
return 0;
|
|
|
|
ret = i915_gem_check_olr(obj->ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trace_i915_gem_ring_sync_to(from, to, seqno);
|
|
ret = to->sync_to(to, from, seqno);
|
|
if (!ret)
|
|
/* We use last_read_seqno because sync_to()
|
|
* might have just caused seqno wrap under
|
|
* the radar.
|
|
*/
|
|
from->sync_seqno[idx] = obj->last_read_seqno;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
u32 old_write_domain, old_read_domains;
|
|
|
|
/* Force a pagefault for domain tracking on next user access */
|
|
i915_gem_release_mmap(obj);
|
|
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
return;
|
|
|
|
/* Wait for any direct GTT access to complete */
|
|
mb();
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
old_write_domain = obj->base.write_domain;
|
|
|
|
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
int i915_vma_unbind(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int ret;
|
|
|
|
if (list_empty(&vma->vma_link))
|
|
return 0;
|
|
|
|
if (!drm_mm_node_allocated(&vma->node)) {
|
|
i915_gem_vma_destroy(vma);
|
|
return 0;
|
|
}
|
|
|
|
if (vma->pin_count)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(obj->pages == NULL);
|
|
|
|
ret = i915_gem_object_finish_gpu(obj);
|
|
if (ret)
|
|
return ret;
|
|
/* Continue on if we fail due to EIO, the GPU is hung so we
|
|
* should be safe and we need to cleanup or else we might
|
|
* cause memory corruption through use-after-free.
|
|
*/
|
|
|
|
i915_gem_object_finish_gtt(obj);
|
|
|
|
/* release the fence reg _after_ flushing */
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trace_i915_vma_unbind(vma);
|
|
|
|
vma->unbind_vma(vma);
|
|
|
|
i915_gem_gtt_finish_object(obj);
|
|
|
|
list_del_init(&vma->mm_list);
|
|
/* Avoid an unnecessary call to unbind on rebind. */
|
|
if (i915_is_ggtt(vma->vm))
|
|
obj->map_and_fenceable = true;
|
|
|
|
drm_mm_remove_node(&vma->node);
|
|
i915_gem_vma_destroy(vma);
|
|
|
|
/* Since the unbound list is global, only move to that list if
|
|
* no more VMAs exist. */
|
|
if (list_empty(&obj->vma_list))
|
|
list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
|
|
|
|
/* And finally now the object is completely decoupled from this vma,
|
|
* we can drop its hold on the backing storage and allow it to be
|
|
* reaped by the shrinker.
|
|
*/
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gpu_idle(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int ret, i;
|
|
|
|
/* Flush everything onto the inactive list. */
|
|
for_each_ring(ring, dev_priv, i) {
|
|
ret = i915_switch_context(ring, ring->default_context);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_idle(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i965_write_fence_reg(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int fence_reg;
|
|
int fence_pitch_shift;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6) {
|
|
fence_reg = FENCE_REG_SANDYBRIDGE_0;
|
|
fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
|
|
} else {
|
|
fence_reg = FENCE_REG_965_0;
|
|
fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
|
|
}
|
|
|
|
fence_reg += reg * 8;
|
|
|
|
/* To w/a incoherency with non-atomic 64-bit register updates,
|
|
* we split the 64-bit update into two 32-bit writes. In order
|
|
* for a partial fence not to be evaluated between writes, we
|
|
* precede the update with write to turn off the fence register,
|
|
* and only enable the fence as the last step.
|
|
*
|
|
* For extra levels of paranoia, we make sure each step lands
|
|
* before applying the next step.
|
|
*/
|
|
I915_WRITE(fence_reg, 0);
|
|
POSTING_READ(fence_reg);
|
|
|
|
if (obj) {
|
|
u32 size = i915_gem_obj_ggtt_size(obj);
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
|
|
0xfffff000) << 32;
|
|
val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
|
|
val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
|
|
val |= I965_FENCE_REG_VALID;
|
|
|
|
I915_WRITE(fence_reg + 4, val >> 32);
|
|
POSTING_READ(fence_reg + 4);
|
|
|
|
I915_WRITE(fence_reg + 0, val);
|
|
POSTING_READ(fence_reg);
|
|
} else {
|
|
I915_WRITE(fence_reg + 4, 0);
|
|
POSTING_READ(fence_reg + 4);
|
|
}
|
|
}
|
|
|
|
static void i915_write_fence_reg(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val;
|
|
|
|
if (obj) {
|
|
u32 size = i915_gem_obj_ggtt_size(obj);
|
|
int pitch_val;
|
|
int tile_width;
|
|
|
|
WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
|
|
(size & -size) != size ||
|
|
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
|
|
"object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
|
|
i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
|
|
|
|
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
|
|
tile_width = 128;
|
|
else
|
|
tile_width = 512;
|
|
|
|
/* Note: pitch better be a power of two tile widths */
|
|
pitch_val = obj->stride / tile_width;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = i915_gem_obj_ggtt_offset(obj);
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I915_FENCE_SIZE_BITS(size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
} else
|
|
val = 0;
|
|
|
|
if (reg < 8)
|
|
reg = FENCE_REG_830_0 + reg * 4;
|
|
else
|
|
reg = FENCE_REG_945_8 + (reg - 8) * 4;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static void i830_write_fence_reg(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t val;
|
|
|
|
if (obj) {
|
|
u32 size = i915_gem_obj_ggtt_size(obj);
|
|
uint32_t pitch_val;
|
|
|
|
WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
|
|
(size & -size) != size ||
|
|
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
|
|
"object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
|
|
i915_gem_obj_ggtt_offset(obj), size);
|
|
|
|
pitch_val = obj->stride / 128;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = i915_gem_obj_ggtt_offset(obj);
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I830_FENCE_SIZE_BITS(size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
} else
|
|
val = 0;
|
|
|
|
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
|
|
POSTING_READ(FENCE_REG_830_0 + reg * 4);
|
|
}
|
|
|
|
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
|
|
{
|
|
return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
|
|
}
|
|
|
|
static void i915_gem_write_fence(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* Ensure that all CPU reads are completed before installing a fence
|
|
* and all writes before removing the fence.
|
|
*/
|
|
if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
|
|
mb();
|
|
|
|
WARN(obj && (!obj->stride || !obj->tiling_mode),
|
|
"bogus fence setup with stride: 0x%x, tiling mode: %i\n",
|
|
obj->stride, obj->tiling_mode);
|
|
|
|
switch (INTEL_INFO(dev)->gen) {
|
|
case 8:
|
|
case 7:
|
|
case 6:
|
|
case 5:
|
|
case 4: i965_write_fence_reg(dev, reg, obj); break;
|
|
case 3: i915_write_fence_reg(dev, reg, obj); break;
|
|
case 2: i830_write_fence_reg(dev, reg, obj); break;
|
|
default: BUG();
|
|
}
|
|
|
|
/* And similarly be paranoid that no direct access to this region
|
|
* is reordered to before the fence is installed.
|
|
*/
|
|
if (i915_gem_object_needs_mb(obj))
|
|
mb();
|
|
}
|
|
|
|
static inline int fence_number(struct drm_i915_private *dev_priv,
|
|
struct drm_i915_fence_reg *fence)
|
|
{
|
|
return fence - dev_priv->fence_regs;
|
|
}
|
|
|
|
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_fence_reg *fence,
|
|
bool enable)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int reg = fence_number(dev_priv, fence);
|
|
|
|
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
|
|
|
|
if (enable) {
|
|
obj->fence_reg = reg;
|
|
fence->obj = obj;
|
|
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
|
|
} else {
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
fence->obj = NULL;
|
|
list_del_init(&fence->lru_list);
|
|
}
|
|
obj->fence_dirty = false;
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->last_fenced_seqno) {
|
|
int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj->last_fenced_seqno = 0;
|
|
}
|
|
|
|
obj->fenced_gpu_access = false;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct drm_i915_fence_reg *fence;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_wait_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (obj->fence_reg == I915_FENCE_REG_NONE)
|
|
return 0;
|
|
|
|
fence = &dev_priv->fence_regs[obj->fence_reg];
|
|
|
|
i915_gem_object_fence_lost(obj);
|
|
i915_gem_object_update_fence(obj, fence, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct drm_i915_fence_reg *
|
|
i915_find_fence_reg(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_fence_reg *reg, *avail;
|
|
int i;
|
|
|
|
/* First try to find a free reg */
|
|
avail = NULL;
|
|
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
|
|
reg = &dev_priv->fence_regs[i];
|
|
if (!reg->obj)
|
|
return reg;
|
|
|
|
if (!reg->pin_count)
|
|
avail = reg;
|
|
}
|
|
|
|
if (avail == NULL)
|
|
goto deadlock;
|
|
|
|
/* None available, try to steal one or wait for a user to finish */
|
|
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
|
|
if (reg->pin_count)
|
|
continue;
|
|
|
|
return reg;
|
|
}
|
|
|
|
deadlock:
|
|
/* Wait for completion of pending flips which consume fences */
|
|
if (intel_has_pending_fb_unpin(dev))
|
|
return ERR_PTR(-EAGAIN);
|
|
|
|
return ERR_PTR(-EDEADLK);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_get_fence - set up fencing for an object
|
|
* @obj: object to map through a fence reg
|
|
*
|
|
* When mapping objects through the GTT, userspace wants to be able to write
|
|
* to them without having to worry about swizzling if the object is tiled.
|
|
* This function walks the fence regs looking for a free one for @obj,
|
|
* stealing one if it can't find any.
|
|
*
|
|
* It then sets up the reg based on the object's properties: address, pitch
|
|
* and tiling format.
|
|
*
|
|
* For an untiled surface, this removes any existing fence.
|
|
*/
|
|
int
|
|
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool enable = obj->tiling_mode != I915_TILING_NONE;
|
|
struct drm_i915_fence_reg *reg;
|
|
int ret;
|
|
|
|
/* Have we updated the tiling parameters upon the object and so
|
|
* will need to serialise the write to the associated fence register?
|
|
*/
|
|
if (obj->fence_dirty) {
|
|
ret = i915_gem_object_wait_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Just update our place in the LRU if our fence is getting reused. */
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
if (!obj->fence_dirty) {
|
|
list_move_tail(®->lru_list,
|
|
&dev_priv->mm.fence_list);
|
|
return 0;
|
|
}
|
|
} else if (enable) {
|
|
reg = i915_find_fence_reg(dev);
|
|
if (IS_ERR(reg))
|
|
return PTR_ERR(reg);
|
|
|
|
if (reg->obj) {
|
|
struct drm_i915_gem_object *old = reg->obj;
|
|
|
|
ret = i915_gem_object_wait_fence(old);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_fence_lost(old);
|
|
}
|
|
} else
|
|
return 0;
|
|
|
|
i915_gem_object_update_fence(obj, reg, enable);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
|
|
struct drm_mm_node *gtt_space,
|
|
unsigned long cache_level)
|
|
{
|
|
struct drm_mm_node *other;
|
|
|
|
/* On non-LLC machines we have to be careful when putting differing
|
|
* types of snoopable memory together to avoid the prefetcher
|
|
* crossing memory domains and dying.
|
|
*/
|
|
if (HAS_LLC(dev))
|
|
return true;
|
|
|
|
if (!drm_mm_node_allocated(gtt_space))
|
|
return true;
|
|
|
|
if (list_empty(>t_space->node_list))
|
|
return true;
|
|
|
|
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
|
|
if (other->allocated && !other->hole_follows && other->color != cache_level)
|
|
return false;
|
|
|
|
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
|
|
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void i915_gem_verify_gtt(struct drm_device *dev)
|
|
{
|
|
#if WATCH_GTT
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
int err = 0;
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
|
|
if (obj->gtt_space == NULL) {
|
|
printk(KERN_ERR "object found on GTT list with no space reserved\n");
|
|
err++;
|
|
continue;
|
|
}
|
|
|
|
if (obj->cache_level != obj->gtt_space->color) {
|
|
printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
|
|
i915_gem_obj_ggtt_offset(obj),
|
|
i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
|
|
obj->cache_level,
|
|
obj->gtt_space->color);
|
|
err++;
|
|
continue;
|
|
}
|
|
|
|
if (!i915_gem_valid_gtt_space(dev,
|
|
obj->gtt_space,
|
|
obj->cache_level)) {
|
|
printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
|
|
i915_gem_obj_ggtt_offset(obj),
|
|
i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
|
|
obj->cache_level);
|
|
err++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
WARN_ON(err);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Finds free space in the GTT aperture and binds the object there.
|
|
*/
|
|
static struct i915_vma *
|
|
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
unsigned alignment,
|
|
unsigned flags)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 size, fence_size, fence_alignment, unfenced_alignment;
|
|
size_t gtt_max =
|
|
flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
fence_size = i915_gem_get_gtt_size(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode);
|
|
fence_alignment = i915_gem_get_gtt_alignment(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode, true);
|
|
unfenced_alignment =
|
|
i915_gem_get_gtt_alignment(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode, false);
|
|
|
|
if (alignment == 0)
|
|
alignment = flags & PIN_MAPPABLE ? fence_alignment :
|
|
unfenced_alignment;
|
|
if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
|
|
DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
|
|
|
|
/* If the object is bigger than the entire aperture, reject it early
|
|
* before evicting everything in a vain attempt to find space.
|
|
*/
|
|
if (obj->base.size > gtt_max) {
|
|
DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
|
|
obj->base.size,
|
|
flags & PIN_MAPPABLE ? "mappable" : "total",
|
|
gtt_max);
|
|
return ERR_PTR(-E2BIG);
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
|
|
if (IS_ERR(vma))
|
|
goto err_unpin;
|
|
|
|
search_free:
|
|
ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
|
|
size, alignment,
|
|
obj->cache_level, 0, gtt_max,
|
|
DRM_MM_SEARCH_DEFAULT,
|
|
DRM_MM_CREATE_DEFAULT);
|
|
if (ret) {
|
|
ret = i915_gem_evict_something(dev, vm, size, alignment,
|
|
obj->cache_level, flags);
|
|
if (ret == 0)
|
|
goto search_free;
|
|
|
|
goto err_free_vma;
|
|
}
|
|
if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
|
|
obj->cache_level))) {
|
|
ret = -EINVAL;
|
|
goto err_remove_node;
|
|
}
|
|
|
|
ret = i915_gem_gtt_prepare_object(obj);
|
|
if (ret)
|
|
goto err_remove_node;
|
|
|
|
list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
|
|
list_add_tail(&vma->mm_list, &vm->inactive_list);
|
|
|
|
if (i915_is_ggtt(vm)) {
|
|
bool mappable, fenceable;
|
|
|
|
fenceable = (vma->node.size == fence_size &&
|
|
(vma->node.start & (fence_alignment - 1)) == 0);
|
|
|
|
mappable = (vma->node.start + obj->base.size <=
|
|
dev_priv->gtt.mappable_end);
|
|
|
|
obj->map_and_fenceable = mappable && fenceable;
|
|
}
|
|
|
|
WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
|
|
|
|
trace_i915_vma_bind(vma, flags);
|
|
vma->bind_vma(vma, obj->cache_level,
|
|
flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
|
|
|
|
i915_gem_verify_gtt(dev);
|
|
return vma;
|
|
|
|
err_remove_node:
|
|
drm_mm_remove_node(&vma->node);
|
|
err_free_vma:
|
|
i915_gem_vma_destroy(vma);
|
|
vma = ERR_PTR(ret);
|
|
err_unpin:
|
|
i915_gem_object_unpin_pages(obj);
|
|
return vma;
|
|
}
|
|
|
|
bool
|
|
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
|
|
bool force)
|
|
{
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (obj->pages == NULL)
|
|
return false;
|
|
|
|
/*
|
|
* Stolen memory is always coherent with the GPU as it is explicitly
|
|
* marked as wc by the system, or the system is cache-coherent.
|
|
*/
|
|
if (obj->stolen)
|
|
return false;
|
|
|
|
/* If the GPU is snooping the contents of the CPU cache,
|
|
* we do not need to manually clear the CPU cache lines. However,
|
|
* the caches are only snooped when the render cache is
|
|
* flushed/invalidated. As we always have to emit invalidations
|
|
* and flushes when moving into and out of the RENDER domain, correct
|
|
* snooping behaviour occurs naturally as the result of our domain
|
|
* tracking.
|
|
*/
|
|
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
return false;
|
|
|
|
trace_i915_gem_object_clflush(obj);
|
|
drm_clflush_sg(obj->pages);
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it immediately go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*
|
|
* However, we do have to enforce the order so that all writes through
|
|
* the GTT land before any writes to the device, such as updates to
|
|
* the GATT itself.
|
|
*/
|
|
wmb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
|
|
bool force)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
if (i915_gem_clflush_object(obj, force))
|
|
i915_gem_chipset_flush(obj->base.dev);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
/* Not valid to be called on unbound objects. */
|
|
if (!i915_gem_obj_bound_any(obj))
|
|
return -EINVAL;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, !write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
i915_gem_object_flush_cpu_write_domain(obj, false);
|
|
|
|
/* Serialise direct access to this object with the barriers for
|
|
* coherent writes from the GPU, by effectively invalidating the
|
|
* GTT domain upon first access.
|
|
*/
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
mb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj->dirty = 1;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
/* And bump the LRU for this access */
|
|
if (i915_gem_object_is_inactive(obj)) {
|
|
struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
|
|
if (vma)
|
|
list_move_tail(&vma->mm_list,
|
|
&dev_priv->gtt.base.inactive_list);
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct i915_vma *vma, *next;
|
|
int ret;
|
|
|
|
if (obj->cache_level == cache_level)
|
|
return 0;
|
|
|
|
if (i915_gem_obj_is_pinned(obj)) {
|
|
DRM_DEBUG("can not change the cache level of pinned objects\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
|
|
if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (i915_gem_obj_bound_any(obj)) {
|
|
ret = i915_gem_object_finish_gpu(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_finish_gtt(obj);
|
|
|
|
/* Before SandyBridge, you could not use tiling or fence
|
|
* registers with snooped memory, so relinquish any fences
|
|
* currently pointing to our region in the aperture.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 6) {
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
vma->bind_vma(vma, cache_level,
|
|
obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
vma->node.color = cache_level;
|
|
obj->cache_level = cache_level;
|
|
|
|
if (cpu_write_needs_clflush(obj)) {
|
|
u32 old_read_domains, old_write_domain;
|
|
|
|
/* If we're coming from LLC cached, then we haven't
|
|
* actually been tracking whether the data is in the
|
|
* CPU cache or not, since we only allow one bit set
|
|
* in obj->write_domain and have been skipping the clflushes.
|
|
* Just set it to the CPU cache for now.
|
|
*/
|
|
i915_gem_object_retire(obj);
|
|
WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
old_write_domain = obj->base.write_domain;
|
|
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
i915_gem_verify_gtt(dev);
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
switch (obj->cache_level) {
|
|
case I915_CACHE_LLC:
|
|
case I915_CACHE_L3_LLC:
|
|
args->caching = I915_CACHING_CACHED;
|
|
break;
|
|
|
|
case I915_CACHE_WT:
|
|
args->caching = I915_CACHING_DISPLAY;
|
|
break;
|
|
|
|
default:
|
|
args->caching = I915_CACHING_NONE;
|
|
break;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
enum i915_cache_level level;
|
|
int ret;
|
|
|
|
switch (args->caching) {
|
|
case I915_CACHING_NONE:
|
|
level = I915_CACHE_NONE;
|
|
break;
|
|
case I915_CACHING_CACHED:
|
|
level = I915_CACHE_LLC;
|
|
break;
|
|
case I915_CACHING_DISPLAY:
|
|
level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cache_level(obj, level);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static bool is_pin_display(struct drm_i915_gem_object *obj)
|
|
{
|
|
/* There are 3 sources that pin objects:
|
|
* 1. The display engine (scanouts, sprites, cursors);
|
|
* 2. Reservations for execbuffer;
|
|
* 3. The user.
|
|
*
|
|
* We can ignore reservations as we hold the struct_mutex and
|
|
* are only called outside of the reservation path. The user
|
|
* can only increment pin_count once, and so if after
|
|
* subtracting the potential reference by the user, any pin_count
|
|
* remains, it must be due to another use by the display engine.
|
|
*/
|
|
return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
|
|
}
|
|
|
|
/*
|
|
* Prepare buffer for display plane (scanout, cursors, etc).
|
|
* Can be called from an uninterruptible phase (modesetting) and allows
|
|
* any flushes to be pipelined (for pageflips).
|
|
*/
|
|
int
|
|
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
|
|
u32 alignment,
|
|
struct intel_ring_buffer *pipelined)
|
|
{
|
|
u32 old_read_domains, old_write_domain;
|
|
int ret;
|
|
|
|
if (pipelined != obj->ring) {
|
|
ret = i915_gem_object_sync(obj, pipelined);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Mark the pin_display early so that we account for the
|
|
* display coherency whilst setting up the cache domains.
|
|
*/
|
|
obj->pin_display = true;
|
|
|
|
/* The display engine is not coherent with the LLC cache on gen6. As
|
|
* a result, we make sure that the pinning that is about to occur is
|
|
* done with uncached PTEs. This is lowest common denominator for all
|
|
* chipsets.
|
|
*
|
|
* However for gen6+, we could do better by using the GFDT bit instead
|
|
* of uncaching, which would allow us to flush all the LLC-cached data
|
|
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
|
|
*/
|
|
ret = i915_gem_object_set_cache_level(obj,
|
|
HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
|
|
if (ret)
|
|
goto err_unpin_display;
|
|
|
|
/* As the user may map the buffer once pinned in the display plane
|
|
* (e.g. libkms for the bootup splash), we have to ensure that we
|
|
* always use map_and_fenceable for all scanout buffers.
|
|
*/
|
|
ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto err_unpin_display;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj, true);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
obj->base.write_domain = 0;
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
|
|
err_unpin_display:
|
|
obj->pin_display = is_pin_display(obj);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
obj->pin_display = is_pin_display(obj);
|
|
}
|
|
|
|
int
|
|
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure that we invalidate the GPU's caches and TLBs. */
|
|
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, !write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj, false);
|
|
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
|
|
struct drm_i915_gem_request *request;
|
|
struct intel_ring_buffer *ring = NULL;
|
|
unsigned reset_counter;
|
|
u32 seqno = 0;
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
ring = request->ring;
|
|
seqno = request->seqno;
|
|
}
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
|
|
if (ret == 0)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_pin(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
uint32_t alignment,
|
|
unsigned flags)
|
|
{
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
|
|
return -EINVAL;
|
|
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (vma) {
|
|
if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
|
|
return -EBUSY;
|
|
|
|
if ((alignment &&
|
|
vma->node.start & (alignment - 1)) ||
|
|
(flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
|
|
WARN(vma->pin_count,
|
|
"bo is already pinned with incorrect alignment:"
|
|
" offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
|
|
" obj->map_and_fenceable=%d\n",
|
|
i915_gem_obj_offset(obj, vm), alignment,
|
|
flags & PIN_MAPPABLE,
|
|
obj->map_and_fenceable);
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vma = NULL;
|
|
}
|
|
}
|
|
|
|
if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
|
|
vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
}
|
|
|
|
if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
|
|
vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
|
|
|
|
vma->pin_count++;
|
|
if (flags & PIN_MAPPABLE)
|
|
obj->pin_mappable |= true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
|
|
|
|
BUG_ON(!vma);
|
|
BUG_ON(vma->pin_count == 0);
|
|
BUG_ON(!i915_gem_obj_ggtt_bound(obj));
|
|
|
|
if (--vma->pin_count == 0)
|
|
obj->pin_mappable = false;
|
|
}
|
|
|
|
int
|
|
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6)
|
|
return -ENODEV;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to pin a purgeable buffer\n");
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->pin_filp != NULL && obj->pin_filp != file) {
|
|
DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->user_pin_count == ULONG_MAX) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->user_pin_count == 0) {
|
|
ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
obj->user_pin_count++;
|
|
obj->pin_filp = file;
|
|
|
|
args->offset = i915_gem_obj_ggtt_offset(obj);
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->pin_filp != file) {
|
|
DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
obj->user_pin_count--;
|
|
if (obj->user_pin_count == 0) {
|
|
obj->pin_filp = NULL;
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
}
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Count all active objects as busy, even if they are currently not used
|
|
* by the gpu. Users of this interface expect objects to eventually
|
|
* become non-busy without any further actions, therefore emit any
|
|
* necessary flushes here.
|
|
*/
|
|
ret = i915_gem_object_flush_active(obj);
|
|
|
|
args->busy = obj->active;
|
|
if (obj->ring) {
|
|
BUILD_BUG_ON(I915_NUM_RINGS > 16);
|
|
args->busy |= intel_ring_flag(obj->ring) << 16;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (i915_gem_obj_is_pinned(obj)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->madv != __I915_MADV_PURGED)
|
|
obj->madv = args->madv;
|
|
|
|
/* if the object is no longer attached, discard its backing storage */
|
|
if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->madv != __I915_MADV_PURGED;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_object_init(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_object_ops *ops)
|
|
{
|
|
INIT_LIST_HEAD(&obj->global_list);
|
|
INIT_LIST_HEAD(&obj->ring_list);
|
|
INIT_LIST_HEAD(&obj->obj_exec_link);
|
|
INIT_LIST_HEAD(&obj->vma_list);
|
|
|
|
obj->ops = ops;
|
|
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
obj->madv = I915_MADV_WILLNEED;
|
|
/* Avoid an unnecessary call to unbind on the first bind. */
|
|
obj->map_and_fenceable = true;
|
|
|
|
i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
|
|
.get_pages = i915_gem_object_get_pages_gtt,
|
|
.put_pages = i915_gem_object_put_pages_gtt,
|
|
};
|
|
|
|
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
|
|
size_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct address_space *mapping;
|
|
gfp_t mask;
|
|
|
|
obj = i915_gem_object_alloc(dev);
|
|
if (obj == NULL)
|
|
return NULL;
|
|
|
|
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
|
|
i915_gem_object_free(obj);
|
|
return NULL;
|
|
}
|
|
|
|
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
|
|
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
|
|
/* 965gm cannot relocate objects above 4GiB. */
|
|
mask &= ~__GFP_HIGHMEM;
|
|
mask |= __GFP_DMA32;
|
|
}
|
|
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
mapping_set_gfp_mask(mapping, mask);
|
|
|
|
i915_gem_object_init(obj, &i915_gem_object_ops);
|
|
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
if (HAS_LLC(dev)) {
|
|
/* On some devices, we can have the GPU use the LLC (the CPU
|
|
* cache) for about a 10% performance improvement
|
|
* compared to uncached. Graphics requests other than
|
|
* display scanout are coherent with the CPU in
|
|
* accessing this cache. This means in this mode we
|
|
* don't need to clflush on the CPU side, and on the
|
|
* GPU side we only need to flush internal caches to
|
|
* get data visible to the CPU.
|
|
*
|
|
* However, we maintain the display planes as UC, and so
|
|
* need to rebind when first used as such.
|
|
*/
|
|
obj->cache_level = I915_CACHE_LLC;
|
|
} else
|
|
obj->cache_level = I915_CACHE_NONE;
|
|
|
|
trace_i915_gem_object_create(obj);
|
|
|
|
return obj;
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *gem_obj)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_vma *vma, *next;
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
trace_i915_gem_object_destroy(obj);
|
|
|
|
if (obj->phys_obj)
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
|
|
int ret;
|
|
|
|
vma->pin_count = 0;
|
|
ret = i915_vma_unbind(vma);
|
|
if (WARN_ON(ret == -ERESTARTSYS)) {
|
|
bool was_interruptible;
|
|
|
|
was_interruptible = dev_priv->mm.interruptible;
|
|
dev_priv->mm.interruptible = false;
|
|
|
|
WARN_ON(i915_vma_unbind(vma));
|
|
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
}
|
|
}
|
|
|
|
/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
|
|
* before progressing. */
|
|
if (obj->stolen)
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (WARN_ON(obj->pages_pin_count))
|
|
obj->pages_pin_count = 0;
|
|
i915_gem_object_put_pages(obj);
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
i915_gem_object_release_stolen(obj);
|
|
|
|
BUG_ON(obj->pages);
|
|
|
|
if (obj->base.import_attach)
|
|
drm_prime_gem_destroy(&obj->base, NULL);
|
|
|
|
drm_gem_object_release(&obj->base);
|
|
i915_gem_info_remove_obj(dev_priv, obj->base.size);
|
|
|
|
kfree(obj->bit_17);
|
|
i915_gem_object_free(obj);
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
if (vma->vm == vm)
|
|
return vma;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void i915_gem_vma_destroy(struct i915_vma *vma)
|
|
{
|
|
WARN_ON(vma->node.allocated);
|
|
|
|
/* Keep the vma as a placeholder in the execbuffer reservation lists */
|
|
if (!list_empty(&vma->exec_list))
|
|
return;
|
|
|
|
list_del(&vma->vma_link);
|
|
|
|
kfree(vma);
|
|
}
|
|
|
|
static void
|
|
i915_gem_stop_ringbuffers(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i)
|
|
intel_stop_ring_buffer(ring);
|
|
}
|
|
|
|
int
|
|
i915_gem_suspend(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (dev_priv->ums.mm_suspended)
|
|
goto err;
|
|
|
|
ret = i915_gpu_idle(dev);
|
|
if (ret)
|
|
goto err;
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* Under UMS, be paranoid and evict. */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
i915_gem_evict_everything(dev);
|
|
|
|
i915_kernel_lost_context(dev);
|
|
i915_gem_stop_ringbuffers(dev);
|
|
|
|
/* Hack! Don't let anybody do execbuf while we don't control the chip.
|
|
* We need to replace this with a semaphore, or something.
|
|
* And not confound ums.mm_suspended!
|
|
*/
|
|
dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
|
|
DRIVER_MODESET);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
|
|
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
|
|
cancel_delayed_work_sync(&dev_priv->mm.idle_work);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
|
|
u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
|
|
int i, ret;
|
|
|
|
if (!HAS_L3_DPF(dev) || !remap_info)
|
|
return 0;
|
|
|
|
ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Note: We do not worry about the concurrent register cacheline hang
|
|
* here because no other code should access these registers other than
|
|
* at initialization time.
|
|
*/
|
|
for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, reg_base + i);
|
|
intel_ring_emit(ring, remap_info[i/4]);
|
|
}
|
|
|
|
intel_ring_advance(ring);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_init_swizzling(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (INTEL_INFO(dev)->gen < 5 ||
|
|
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
|
|
return;
|
|
|
|
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
|
|
DISP_TILE_SURFACE_SWIZZLING);
|
|
|
|
if (IS_GEN5(dev))
|
|
return;
|
|
|
|
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
|
|
if (IS_GEN6(dev))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
|
|
else if (IS_GEN7(dev))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
|
|
else if (IS_GEN8(dev))
|
|
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
static bool
|
|
intel_enable_blt(struct drm_device *dev)
|
|
{
|
|
if (!HAS_BLT(dev))
|
|
return false;
|
|
|
|
/* The blitter was dysfunctional on early prototypes */
|
|
if (IS_GEN6(dev) && dev->pdev->revision < 8) {
|
|
DRM_INFO("BLT not supported on this pre-production hardware;"
|
|
" graphics performance will be degraded.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int i915_gem_init_rings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_init_render_ring_buffer(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (HAS_BSD(dev)) {
|
|
ret = intel_init_bsd_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_render_ring;
|
|
}
|
|
|
|
if (intel_enable_blt(dev)) {
|
|
ret = intel_init_blt_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_bsd_ring;
|
|
}
|
|
|
|
if (HAS_VEBOX(dev)) {
|
|
ret = intel_init_vebox_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_blt_ring;
|
|
}
|
|
|
|
if (HAS_BSD2(dev)) {
|
|
ret = intel_init_bsd2_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_vebox_ring;
|
|
}
|
|
|
|
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
|
|
if (ret)
|
|
goto cleanup_bsd2_ring;
|
|
|
|
return 0;
|
|
|
|
cleanup_bsd2_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
|
|
cleanup_vebox_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
|
|
cleanup_blt_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
|
|
cleanup_bsd_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
|
|
cleanup_render_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_hw(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret, i;
|
|
|
|
if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
|
|
return -EIO;
|
|
|
|
if (dev_priv->ellc_size)
|
|
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
|
|
|
|
if (IS_HASWELL(dev))
|
|
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
|
|
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
|
|
|
|
if (HAS_PCH_NOP(dev)) {
|
|
if (IS_IVYBRIDGE(dev)) {
|
|
u32 temp = I915_READ(GEN7_MSG_CTL);
|
|
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
|
|
I915_WRITE(GEN7_MSG_CTL, temp);
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
|
|
temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
|
|
I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
|
|
}
|
|
}
|
|
|
|
i915_gem_init_swizzling(dev);
|
|
|
|
ret = i915_gem_init_rings(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < NUM_L3_SLICES(dev); i++)
|
|
i915_gem_l3_remap(&dev_priv->ring[RCS], i);
|
|
|
|
/*
|
|
* XXX: Contexts should only be initialized once. Doing a switch to the
|
|
* default context switch however is something we'd like to do after
|
|
* reset or thaw (the latter may not actually be necessary for HW, but
|
|
* goes with our code better). Context switching requires rings (for
|
|
* the do_switch), but before enabling PPGTT. So don't move this.
|
|
*/
|
|
ret = i915_gem_context_enable(dev_priv);
|
|
if (ret && ret != -EIO) {
|
|
DRM_ERROR("Context enable failed %d\n", ret);
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
/* VLVA0 (potential hack), BIOS isn't actually waking us */
|
|
I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
|
|
if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
|
|
VLV_GTLC_ALLOWWAKEACK), 10))
|
|
DRM_DEBUG_DRIVER("allow wake ack timed out\n");
|
|
}
|
|
|
|
i915_gem_init_global_gtt(dev);
|
|
|
|
ret = i915_gem_context_init(dev);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_gem_init_hw(dev);
|
|
if (ret == -EIO) {
|
|
/* Allow ring initialisation to fail by marking the GPU as
|
|
* wedged. But we only want to do this where the GPU is angry,
|
|
* for all other failure, such as an allocation failure, bail.
|
|
*/
|
|
DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
|
|
atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
|
|
ret = 0;
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
dev_priv->dri1.allow_batchbuffer = 1;
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i)
|
|
intel_cleanup_ring_buffer(ring);
|
|
}
|
|
|
|
int
|
|
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
if (i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
DRM_ERROR("Reenabling wedged hardware, good luck\n");
|
|
atomic_set(&dev_priv->gpu_error.reset_counter, 0);
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->ums.mm_suspended = 0;
|
|
|
|
ret = i915_gem_init_hw(dev);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
|
|
|
|
ret = drm_irq_install(dev, dev->pdev->irq);
|
|
if (ret)
|
|
goto cleanup_ringbuffer;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
|
|
cleanup_ringbuffer:
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
dev_priv->ums.mm_suspended = 1;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_irq_uninstall(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return i915_gem_suspend(dev);
|
|
}
|
|
|
|
void
|
|
i915_gem_lastclose(struct drm_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
ret = i915_gem_suspend(dev);
|
|
if (ret)
|
|
DRM_ERROR("failed to idle hardware: %d\n", ret);
|
|
}
|
|
|
|
static void
|
|
init_ring_lists(struct intel_ring_buffer *ring)
|
|
{
|
|
INIT_LIST_HEAD(&ring->active_list);
|
|
INIT_LIST_HEAD(&ring->request_list);
|
|
}
|
|
|
|
void i915_init_vm(struct drm_i915_private *dev_priv,
|
|
struct i915_address_space *vm)
|
|
{
|
|
if (!i915_is_ggtt(vm))
|
|
drm_mm_init(&vm->mm, vm->start, vm->total);
|
|
vm->dev = dev_priv->dev;
|
|
INIT_LIST_HEAD(&vm->active_list);
|
|
INIT_LIST_HEAD(&vm->inactive_list);
|
|
INIT_LIST_HEAD(&vm->global_link);
|
|
list_add_tail(&vm->global_link, &dev_priv->vm_list);
|
|
}
|
|
|
|
void
|
|
i915_gem_load(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
dev_priv->slab =
|
|
kmem_cache_create("i915_gem_object",
|
|
sizeof(struct drm_i915_gem_object), 0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
|
|
INIT_LIST_HEAD(&dev_priv->vm_list);
|
|
i915_init_vm(dev_priv, &dev_priv->gtt.base);
|
|
|
|
INIT_LIST_HEAD(&dev_priv->context_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
for (i = 0; i < I915_NUM_RINGS; i++)
|
|
init_ring_lists(&dev_priv->ring[i]);
|
|
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
|
|
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
|
|
i915_gem_idle_work_handler);
|
|
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
|
|
|
|
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
|
|
if (IS_GEN3(dev)) {
|
|
I915_WRITE(MI_ARB_STATE,
|
|
_MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
|
|
}
|
|
|
|
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
|
|
|
|
/* Old X drivers will take 0-2 for front, back, depth buffers */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
dev_priv->fence_reg_start = 3;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
|
|
dev_priv->num_fence_regs = 32;
|
|
else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
/* Initialize fence registers to zero */
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
i915_gem_restore_fences(dev);
|
|
|
|
i915_gem_detect_bit_6_swizzle(dev);
|
|
init_waitqueue_head(&dev_priv->pending_flip_queue);
|
|
|
|
dev_priv->mm.interruptible = true;
|
|
|
|
dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
|
|
dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
|
|
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&dev_priv->mm.inactive_shrinker);
|
|
}
|
|
|
|
/*
|
|
* Create a physically contiguous memory object for this object
|
|
* e.g. for cursor + overlay regs
|
|
*/
|
|
static int i915_gem_init_phys_object(struct drm_device *dev,
|
|
int id, int size, int align)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
int ret;
|
|
|
|
if (dev_priv->mm.phys_objs[id - 1] || !size)
|
|
return 0;
|
|
|
|
phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
|
|
if (!phys_obj)
|
|
return -ENOMEM;
|
|
|
|
phys_obj->id = id;
|
|
|
|
phys_obj->handle = drm_pci_alloc(dev, size, align);
|
|
if (!phys_obj->handle) {
|
|
ret = -ENOMEM;
|
|
goto kfree_obj;
|
|
}
|
|
#ifdef CONFIG_X86
|
|
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
|
|
dev_priv->mm.phys_objs[id - 1] = phys_obj;
|
|
|
|
return 0;
|
|
kfree_obj:
|
|
kfree(phys_obj);
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
|
|
if (!dev_priv->mm.phys_objs[id - 1])
|
|
return;
|
|
|
|
phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
if (phys_obj->cur_obj) {
|
|
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
drm_pci_free(dev, phys_obj->handle);
|
|
kfree(phys_obj);
|
|
dev_priv->mm.phys_objs[id - 1] = NULL;
|
|
}
|
|
|
|
void i915_gem_free_all_phys_object(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
|
|
i915_gem_free_phys_object(dev, i);
|
|
}
|
|
|
|
void i915_gem_detach_phys_object(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
|
|
char *vaddr;
|
|
int i;
|
|
int page_count;
|
|
|
|
if (!obj->phys_obj)
|
|
return;
|
|
vaddr = obj->phys_obj->handle->vaddr;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
for (i = 0; i < page_count; i++) {
|
|
struct page *page = shmem_read_mapping_page(mapping, i);
|
|
if (!IS_ERR(page)) {
|
|
char *dst = kmap_atomic(page);
|
|
memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
|
|
kunmap_atomic(dst);
|
|
|
|
drm_clflush_pages(&page, 1);
|
|
|
|
set_page_dirty(page);
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
}
|
|
i915_gem_chipset_flush(dev);
|
|
|
|
obj->phys_obj->cur_obj = NULL;
|
|
obj->phys_obj = NULL;
|
|
}
|
|
|
|
int
|
|
i915_gem_attach_phys_object(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
int id,
|
|
int align)
|
|
{
|
|
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
int page_count;
|
|
int i;
|
|
|
|
if (id > I915_MAX_PHYS_OBJECT)
|
|
return -EINVAL;
|
|
|
|
if (obj->phys_obj) {
|
|
if (obj->phys_obj->id == id)
|
|
return 0;
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
}
|
|
|
|
/* create a new object */
|
|
if (!dev_priv->mm.phys_objs[id - 1]) {
|
|
ret = i915_gem_init_phys_object(dev, id,
|
|
obj->base.size, align);
|
|
if (ret) {
|
|
DRM_ERROR("failed to init phys object %d size: %zu\n",
|
|
id, obj->base.size);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* bind to the object */
|
|
obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
obj->phys_obj->cur_obj = obj;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
struct page *page;
|
|
char *dst, *src;
|
|
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
src = kmap_atomic(page);
|
|
dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(src);
|
|
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
|
|
char __user *user_data = to_user_ptr(args->data_ptr);
|
|
|
|
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
|
|
unsigned long unwritten;
|
|
|
|
/* The physical object once assigned is fixed for the lifetime
|
|
* of the obj, so we can safely drop the lock and continue
|
|
* to access vaddr.
|
|
*/
|
|
mutex_unlock(&dev->struct_mutex);
|
|
unwritten = copy_from_user(vaddr, user_data, args->size);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
}
|
|
|
|
i915_gem_chipset_flush(dev);
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
cancel_delayed_work_sync(&file_priv->mm.idle_work);
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
while (!list_empty(&file_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&file_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
client_list);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
}
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
static void
|
|
i915_gem_file_idle_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_file_private *file_priv =
|
|
container_of(work, typeof(*file_priv), mm.idle_work.work);
|
|
|
|
atomic_set(&file_priv->rps_wait_boost, false);
|
|
}
|
|
|
|
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
int ret;
|
|
|
|
DRM_DEBUG_DRIVER("\n");
|
|
|
|
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
|
|
if (!file_priv)
|
|
return -ENOMEM;
|
|
|
|
file->driver_priv = file_priv;
|
|
file_priv->dev_priv = dev->dev_private;
|
|
file_priv->file = file;
|
|
|
|
spin_lock_init(&file_priv->mm.lock);
|
|
INIT_LIST_HEAD(&file_priv->mm.request_list);
|
|
INIT_DELAYED_WORK(&file_priv->mm.idle_work,
|
|
i915_gem_file_idle_work_handler);
|
|
|
|
ret = i915_gem_context_open(dev, file);
|
|
if (ret)
|
|
kfree(file_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
|
|
{
|
|
if (!mutex_is_locked(mutex))
|
|
return false;
|
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
|
|
return mutex->owner == task;
|
|
#else
|
|
/* Since UP may be pre-empted, we cannot assume that we own the lock */
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker,
|
|
struct drm_i915_private,
|
|
mm.inactive_shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_i915_gem_object *obj;
|
|
bool unlock = true;
|
|
unsigned long count;
|
|
|
|
if (!mutex_trylock(&dev->struct_mutex)) {
|
|
if (!mutex_is_locked_by(&dev->struct_mutex, current))
|
|
return 0;
|
|
|
|
if (dev_priv->mm.shrinker_no_lock_stealing)
|
|
return 0;
|
|
|
|
unlock = false;
|
|
}
|
|
|
|
count = 0;
|
|
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
|
|
if (obj->pages_pin_count == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
if (obj->active)
|
|
continue;
|
|
|
|
if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
}
|
|
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* All the new VM stuff */
|
|
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
|
|
if (!dev_priv->mm.aliasing_ppgtt ||
|
|
vm == &dev_priv->mm.aliasing_ppgtt->base)
|
|
vm = &dev_priv->gtt.base;
|
|
|
|
BUG_ON(list_empty(&o->vma_list));
|
|
list_for_each_entry(vma, &o->vma_list, vma_link) {
|
|
if (vma->vm == vm)
|
|
return vma->node.start;
|
|
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link)
|
|
if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link)
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
|
|
if (!dev_priv->mm.aliasing_ppgtt ||
|
|
vm == &dev_priv->mm.aliasing_ppgtt->base)
|
|
vm = &dev_priv->gtt.base;
|
|
|
|
BUG_ON(list_empty(&o->vma_list));
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link)
|
|
if (vma->vm == vm)
|
|
return vma->node.size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker,
|
|
struct drm_i915_private,
|
|
mm.inactive_shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
unsigned long freed;
|
|
bool unlock = true;
|
|
|
|
if (!mutex_trylock(&dev->struct_mutex)) {
|
|
if (!mutex_is_locked_by(&dev->struct_mutex, current))
|
|
return SHRINK_STOP;
|
|
|
|
if (dev_priv->mm.shrinker_no_lock_stealing)
|
|
return SHRINK_STOP;
|
|
|
|
unlock = false;
|
|
}
|
|
|
|
freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
|
|
if (freed < sc->nr_to_scan)
|
|
freed += __i915_gem_shrink(dev_priv,
|
|
sc->nr_to_scan - freed,
|
|
false);
|
|
if (freed < sc->nr_to_scan)
|
|
freed += i915_gem_shrink_all(dev_priv);
|
|
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return freed;
|
|
}
|
|
|
|
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
if (WARN_ON(list_empty(&obj->vma_list)))
|
|
return NULL;
|
|
|
|
vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
|
|
if (vma->vm != obj_to_ggtt(obj))
|
|
return NULL;
|
|
|
|
return vma;
|
|
}
|