mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-20 03:47:55 +07:00
83ccf69d8f
Adds a new cpu type for the JZ4740 to the Linux MIPS architecture code. It also adds the iomem addresses for the different components found on a JZ4740 SoC. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/1464/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
1646 lines
44 KiB
C
1646 lines
44 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Synthesize TLB refill handlers at runtime.
|
|
*
|
|
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
|
|
* Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
|
|
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
|
|
* Copyright (C) 2008, 2009 Cavium Networks, Inc.
|
|
*
|
|
* ... and the days got worse and worse and now you see
|
|
* I've gone completly out of my mind.
|
|
*
|
|
* They're coming to take me a away haha
|
|
* they're coming to take me a away hoho hihi haha
|
|
* to the funny farm where code is beautiful all the time ...
|
|
*
|
|
* (Condolences to Napoleon XIV)
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/war.h>
|
|
#include <asm/uasm.h>
|
|
|
|
/*
|
|
* TLB load/store/modify handlers.
|
|
*
|
|
* Only the fastpath gets synthesized at runtime, the slowpath for
|
|
* do_page_fault remains normal asm.
|
|
*/
|
|
extern void tlb_do_page_fault_0(void);
|
|
extern void tlb_do_page_fault_1(void);
|
|
|
|
|
|
static inline int r45k_bvahwbug(void)
|
|
{
|
|
/* XXX: We should probe for the presence of this bug, but we don't. */
|
|
return 0;
|
|
}
|
|
|
|
static inline int r4k_250MHZhwbug(void)
|
|
{
|
|
/* XXX: We should probe for the presence of this bug, but we don't. */
|
|
return 0;
|
|
}
|
|
|
|
static inline int __maybe_unused bcm1250_m3_war(void)
|
|
{
|
|
return BCM1250_M3_WAR;
|
|
}
|
|
|
|
static inline int __maybe_unused r10000_llsc_war(void)
|
|
{
|
|
return R10000_LLSC_WAR;
|
|
}
|
|
|
|
/*
|
|
* Found by experiment: At least some revisions of the 4kc throw under
|
|
* some circumstances a machine check exception, triggered by invalid
|
|
* values in the index register. Delaying the tlbp instruction until
|
|
* after the next branch, plus adding an additional nop in front of
|
|
* tlbwi/tlbwr avoids the invalid index register values. Nobody knows
|
|
* why; it's not an issue caused by the core RTL.
|
|
*
|
|
*/
|
|
static int __cpuinit m4kc_tlbp_war(void)
|
|
{
|
|
return (current_cpu_data.processor_id & 0xffff00) ==
|
|
(PRID_COMP_MIPS | PRID_IMP_4KC);
|
|
}
|
|
|
|
/* Handle labels (which must be positive integers). */
|
|
enum label_id {
|
|
label_second_part = 1,
|
|
label_leave,
|
|
label_vmalloc,
|
|
label_vmalloc_done,
|
|
label_tlbw_hazard,
|
|
label_split,
|
|
label_tlbl_goaround1,
|
|
label_tlbl_goaround2,
|
|
label_nopage_tlbl,
|
|
label_nopage_tlbs,
|
|
label_nopage_tlbm,
|
|
label_smp_pgtable_change,
|
|
label_r3000_write_probe_fail,
|
|
label_large_segbits_fault,
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
label_tlb_huge_update,
|
|
#endif
|
|
};
|
|
|
|
UASM_L_LA(_second_part)
|
|
UASM_L_LA(_leave)
|
|
UASM_L_LA(_vmalloc)
|
|
UASM_L_LA(_vmalloc_done)
|
|
UASM_L_LA(_tlbw_hazard)
|
|
UASM_L_LA(_split)
|
|
UASM_L_LA(_tlbl_goaround1)
|
|
UASM_L_LA(_tlbl_goaround2)
|
|
UASM_L_LA(_nopage_tlbl)
|
|
UASM_L_LA(_nopage_tlbs)
|
|
UASM_L_LA(_nopage_tlbm)
|
|
UASM_L_LA(_smp_pgtable_change)
|
|
UASM_L_LA(_r3000_write_probe_fail)
|
|
UASM_L_LA(_large_segbits_fault)
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
UASM_L_LA(_tlb_huge_update)
|
|
#endif
|
|
|
|
/*
|
|
* For debug purposes.
|
|
*/
|
|
static inline void dump_handler(const u32 *handler, int count)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("\t.set push\n");
|
|
pr_debug("\t.set noreorder\n");
|
|
|
|
for (i = 0; i < count; i++)
|
|
pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
|
|
|
|
pr_debug("\t.set pop\n");
|
|
}
|
|
|
|
/* The only general purpose registers allowed in TLB handlers. */
|
|
#define K0 26
|
|
#define K1 27
|
|
|
|
/* Some CP0 registers */
|
|
#define C0_INDEX 0, 0
|
|
#define C0_ENTRYLO0 2, 0
|
|
#define C0_TCBIND 2, 2
|
|
#define C0_ENTRYLO1 3, 0
|
|
#define C0_CONTEXT 4, 0
|
|
#define C0_PAGEMASK 5, 0
|
|
#define C0_BADVADDR 8, 0
|
|
#define C0_ENTRYHI 10, 0
|
|
#define C0_EPC 14, 0
|
|
#define C0_XCONTEXT 20, 0
|
|
|
|
#ifdef CONFIG_64BIT
|
|
# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
|
|
#else
|
|
# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
|
|
#endif
|
|
|
|
/* The worst case length of the handler is around 18 instructions for
|
|
* R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
|
|
* Maximum space available is 32 instructions for R3000 and 64
|
|
* instructions for R4000.
|
|
*
|
|
* We deliberately chose a buffer size of 128, so we won't scribble
|
|
* over anything important on overflow before we panic.
|
|
*/
|
|
static u32 tlb_handler[128] __cpuinitdata;
|
|
|
|
/* simply assume worst case size for labels and relocs */
|
|
static struct uasm_label labels[128] __cpuinitdata;
|
|
static struct uasm_reloc relocs[128] __cpuinitdata;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static int check_for_high_segbits __cpuinitdata;
|
|
#endif
|
|
|
|
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
|
|
/*
|
|
* CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
|
|
* we cannot do r3000 under these circumstances.
|
|
*/
|
|
|
|
/*
|
|
* The R3000 TLB handler is simple.
|
|
*/
|
|
static void __cpuinit build_r3000_tlb_refill_handler(void)
|
|
{
|
|
long pgdc = (long)pgd_current;
|
|
u32 *p;
|
|
|
|
memset(tlb_handler, 0, sizeof(tlb_handler));
|
|
p = tlb_handler;
|
|
|
|
uasm_i_mfc0(&p, K0, C0_BADVADDR);
|
|
uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
|
|
uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
|
|
uasm_i_srl(&p, K0, K0, 22); /* load delay */
|
|
uasm_i_sll(&p, K0, K0, 2);
|
|
uasm_i_addu(&p, K1, K1, K0);
|
|
uasm_i_mfc0(&p, K0, C0_CONTEXT);
|
|
uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
|
|
uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
|
|
uasm_i_addu(&p, K1, K1, K0);
|
|
uasm_i_lw(&p, K0, 0, K1);
|
|
uasm_i_nop(&p); /* load delay */
|
|
uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
|
|
uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
|
|
uasm_i_tlbwr(&p); /* cp0 delay */
|
|
uasm_i_jr(&p, K1);
|
|
uasm_i_rfe(&p); /* branch delay */
|
|
|
|
if (p > tlb_handler + 32)
|
|
panic("TLB refill handler space exceeded");
|
|
|
|
pr_debug("Wrote TLB refill handler (%u instructions).\n",
|
|
(unsigned int)(p - tlb_handler));
|
|
|
|
memcpy((void *)ebase, tlb_handler, 0x80);
|
|
|
|
dump_handler((u32 *)ebase, 32);
|
|
}
|
|
#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
|
|
|
|
/*
|
|
* The R4000 TLB handler is much more complicated. We have two
|
|
* consecutive handler areas with 32 instructions space each.
|
|
* Since they aren't used at the same time, we can overflow in the
|
|
* other one.To keep things simple, we first assume linear space,
|
|
* then we relocate it to the final handler layout as needed.
|
|
*/
|
|
static u32 final_handler[64] __cpuinitdata;
|
|
|
|
/*
|
|
* Hazards
|
|
*
|
|
* From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
|
|
* 2. A timing hazard exists for the TLBP instruction.
|
|
*
|
|
* stalling_instruction
|
|
* TLBP
|
|
*
|
|
* The JTLB is being read for the TLBP throughout the stall generated by the
|
|
* previous instruction. This is not really correct as the stalling instruction
|
|
* can modify the address used to access the JTLB. The failure symptom is that
|
|
* the TLBP instruction will use an address created for the stalling instruction
|
|
* and not the address held in C0_ENHI and thus report the wrong results.
|
|
*
|
|
* The software work-around is to not allow the instruction preceding the TLBP
|
|
* to stall - make it an NOP or some other instruction guaranteed not to stall.
|
|
*
|
|
* Errata 2 will not be fixed. This errata is also on the R5000.
|
|
*
|
|
* As if we MIPS hackers wouldn't know how to nop pipelines happy ...
|
|
*/
|
|
static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
|
|
{
|
|
switch (current_cpu_type()) {
|
|
/* Found by experiment: R4600 v2.0/R4700 needs this, too. */
|
|
case CPU_R4600:
|
|
case CPU_R4700:
|
|
case CPU_R5000:
|
|
case CPU_R5000A:
|
|
case CPU_NEVADA:
|
|
uasm_i_nop(p);
|
|
uasm_i_tlbp(p);
|
|
break;
|
|
|
|
default:
|
|
uasm_i_tlbp(p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write random or indexed TLB entry, and care about the hazards from
|
|
* the preceeding mtc0 and for the following eret.
|
|
*/
|
|
enum tlb_write_entry { tlb_random, tlb_indexed };
|
|
|
|
static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
|
|
struct uasm_reloc **r,
|
|
enum tlb_write_entry wmode)
|
|
{
|
|
void(*tlbw)(u32 **) = NULL;
|
|
|
|
switch (wmode) {
|
|
case tlb_random: tlbw = uasm_i_tlbwr; break;
|
|
case tlb_indexed: tlbw = uasm_i_tlbwi; break;
|
|
}
|
|
|
|
if (cpu_has_mips_r2) {
|
|
if (cpu_has_mips_r2_exec_hazard)
|
|
uasm_i_ehb(p);
|
|
tlbw(p);
|
|
return;
|
|
}
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_R4000PC:
|
|
case CPU_R4000SC:
|
|
case CPU_R4000MC:
|
|
case CPU_R4400PC:
|
|
case CPU_R4400SC:
|
|
case CPU_R4400MC:
|
|
/*
|
|
* This branch uses up a mtc0 hazard nop slot and saves
|
|
* two nops after the tlbw instruction.
|
|
*/
|
|
uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
|
|
tlbw(p);
|
|
uasm_l_tlbw_hazard(l, *p);
|
|
uasm_i_nop(p);
|
|
break;
|
|
|
|
case CPU_R4600:
|
|
case CPU_R4700:
|
|
case CPU_R5000:
|
|
case CPU_R5000A:
|
|
uasm_i_nop(p);
|
|
tlbw(p);
|
|
uasm_i_nop(p);
|
|
break;
|
|
|
|
case CPU_R4300:
|
|
case CPU_5KC:
|
|
case CPU_TX49XX:
|
|
case CPU_PR4450:
|
|
uasm_i_nop(p);
|
|
tlbw(p);
|
|
break;
|
|
|
|
case CPU_R10000:
|
|
case CPU_R12000:
|
|
case CPU_R14000:
|
|
case CPU_4KC:
|
|
case CPU_4KEC:
|
|
case CPU_SB1:
|
|
case CPU_SB1A:
|
|
case CPU_4KSC:
|
|
case CPU_20KC:
|
|
case CPU_25KF:
|
|
case CPU_BCM3302:
|
|
case CPU_BCM4710:
|
|
case CPU_LOONGSON2:
|
|
case CPU_BCM6338:
|
|
case CPU_BCM6345:
|
|
case CPU_BCM6348:
|
|
case CPU_BCM6358:
|
|
case CPU_R5500:
|
|
if (m4kc_tlbp_war())
|
|
uasm_i_nop(p);
|
|
case CPU_ALCHEMY:
|
|
tlbw(p);
|
|
break;
|
|
|
|
case CPU_NEVADA:
|
|
uasm_i_nop(p); /* QED specifies 2 nops hazard */
|
|
/*
|
|
* This branch uses up a mtc0 hazard nop slot and saves
|
|
* a nop after the tlbw instruction.
|
|
*/
|
|
uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
|
|
tlbw(p);
|
|
uasm_l_tlbw_hazard(l, *p);
|
|
break;
|
|
|
|
case CPU_RM7000:
|
|
uasm_i_nop(p);
|
|
uasm_i_nop(p);
|
|
uasm_i_nop(p);
|
|
uasm_i_nop(p);
|
|
tlbw(p);
|
|
break;
|
|
|
|
case CPU_RM9000:
|
|
/*
|
|
* When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
|
* use of the JTLB for instructions should not occur for 4
|
|
* cpu cycles and use for data translations should not occur
|
|
* for 3 cpu cycles.
|
|
*/
|
|
uasm_i_ssnop(p);
|
|
uasm_i_ssnop(p);
|
|
uasm_i_ssnop(p);
|
|
uasm_i_ssnop(p);
|
|
tlbw(p);
|
|
uasm_i_ssnop(p);
|
|
uasm_i_ssnop(p);
|
|
uasm_i_ssnop(p);
|
|
uasm_i_ssnop(p);
|
|
break;
|
|
|
|
case CPU_VR4111:
|
|
case CPU_VR4121:
|
|
case CPU_VR4122:
|
|
case CPU_VR4181:
|
|
case CPU_VR4181A:
|
|
uasm_i_nop(p);
|
|
uasm_i_nop(p);
|
|
tlbw(p);
|
|
uasm_i_nop(p);
|
|
uasm_i_nop(p);
|
|
break;
|
|
|
|
case CPU_VR4131:
|
|
case CPU_VR4133:
|
|
case CPU_R5432:
|
|
uasm_i_nop(p);
|
|
uasm_i_nop(p);
|
|
tlbw(p);
|
|
break;
|
|
|
|
case CPU_JZRISC:
|
|
tlbw(p);
|
|
uasm_i_nop(p);
|
|
break;
|
|
|
|
default:
|
|
panic("No TLB refill handler yet (CPU type: %d)",
|
|
current_cpu_data.cputype);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
|
|
unsigned int reg)
|
|
{
|
|
if (kernel_uses_smartmips_rixi) {
|
|
UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
|
|
UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
|
|
} else {
|
|
#ifdef CONFIG_64BIT_PHYS_ADDR
|
|
uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
|
|
#else
|
|
UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
static __cpuinit void build_restore_pagemask(u32 **p,
|
|
struct uasm_reloc **r,
|
|
unsigned int tmp,
|
|
enum label_id lid)
|
|
{
|
|
/* Reset default page size */
|
|
if (PM_DEFAULT_MASK >> 16) {
|
|
uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
|
|
uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
|
|
uasm_il_b(p, r, lid);
|
|
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
|
|
} else if (PM_DEFAULT_MASK) {
|
|
uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
|
|
uasm_il_b(p, r, lid);
|
|
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
|
|
} else {
|
|
uasm_il_b(p, r, lid);
|
|
uasm_i_mtc0(p, 0, C0_PAGEMASK);
|
|
}
|
|
}
|
|
|
|
static __cpuinit void build_huge_tlb_write_entry(u32 **p,
|
|
struct uasm_label **l,
|
|
struct uasm_reloc **r,
|
|
unsigned int tmp,
|
|
enum tlb_write_entry wmode)
|
|
{
|
|
/* Set huge page tlb entry size */
|
|
uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
|
|
uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
|
|
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
|
|
|
|
build_tlb_write_entry(p, l, r, wmode);
|
|
|
|
build_restore_pagemask(p, r, tmp, label_leave);
|
|
}
|
|
|
|
/*
|
|
* Check if Huge PTE is present, if so then jump to LABEL.
|
|
*/
|
|
static void __cpuinit
|
|
build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
|
|
unsigned int pmd, int lid)
|
|
{
|
|
UASM_i_LW(p, tmp, 0, pmd);
|
|
uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
|
|
uasm_il_bnez(p, r, tmp, lid);
|
|
}
|
|
|
|
static __cpuinit void build_huge_update_entries(u32 **p,
|
|
unsigned int pte,
|
|
unsigned int tmp)
|
|
{
|
|
int small_sequence;
|
|
|
|
/*
|
|
* A huge PTE describes an area the size of the
|
|
* configured huge page size. This is twice the
|
|
* of the large TLB entry size we intend to use.
|
|
* A TLB entry half the size of the configured
|
|
* huge page size is configured into entrylo0
|
|
* and entrylo1 to cover the contiguous huge PTE
|
|
* address space.
|
|
*/
|
|
small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
|
|
|
|
/* We can clobber tmp. It isn't used after this.*/
|
|
if (!small_sequence)
|
|
uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
|
|
|
|
build_convert_pte_to_entrylo(p, pte);
|
|
UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
|
|
/* convert to entrylo1 */
|
|
if (small_sequence)
|
|
UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
|
|
else
|
|
UASM_i_ADDU(p, pte, pte, tmp);
|
|
|
|
UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
|
|
}
|
|
|
|
static __cpuinit void build_huge_handler_tail(u32 **p,
|
|
struct uasm_reloc **r,
|
|
struct uasm_label **l,
|
|
unsigned int pte,
|
|
unsigned int ptr)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
UASM_i_SC(p, pte, 0, ptr);
|
|
uasm_il_beqz(p, r, pte, label_tlb_huge_update);
|
|
UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
|
|
#else
|
|
UASM_i_SW(p, pte, 0, ptr);
|
|
#endif
|
|
build_huge_update_entries(p, pte, ptr);
|
|
build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed);
|
|
}
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/*
|
|
* TMP and PTR are scratch.
|
|
* TMP will be clobbered, PTR will hold the pmd entry.
|
|
*/
|
|
static void __cpuinit
|
|
build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
|
|
unsigned int tmp, unsigned int ptr)
|
|
{
|
|
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
|
|
long pgdc = (long)pgd_current;
|
|
#endif
|
|
/*
|
|
* The vmalloc handling is not in the hotpath.
|
|
*/
|
|
uasm_i_dmfc0(p, tmp, C0_BADVADDR);
|
|
|
|
if (check_for_high_segbits) {
|
|
/*
|
|
* The kernel currently implicitely assumes that the
|
|
* MIPS SEGBITS parameter for the processor is
|
|
* (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
|
|
* allocate virtual addresses outside the maximum
|
|
* range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
|
|
* that doesn't prevent user code from accessing the
|
|
* higher xuseg addresses. Here, we make sure that
|
|
* everything but the lower xuseg addresses goes down
|
|
* the module_alloc/vmalloc path.
|
|
*/
|
|
uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
|
|
uasm_il_bnez(p, r, ptr, label_vmalloc);
|
|
} else {
|
|
uasm_il_bltz(p, r, tmp, label_vmalloc);
|
|
}
|
|
/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
|
|
|
|
#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
|
|
/*
|
|
* &pgd << 11 stored in CONTEXT [23..63].
|
|
*/
|
|
UASM_i_MFC0(p, ptr, C0_CONTEXT);
|
|
uasm_i_dins(p, ptr, 0, 0, 23); /* Clear lower 23 bits of context. */
|
|
uasm_i_ori(p, ptr, ptr, 0x540); /* 1 0 1 0 1 << 6 xkphys cached */
|
|
uasm_i_drotr(p, ptr, ptr, 11);
|
|
#elif defined(CONFIG_SMP)
|
|
# ifdef CONFIG_MIPS_MT_SMTC
|
|
/*
|
|
* SMTC uses TCBind value as "CPU" index
|
|
*/
|
|
uasm_i_mfc0(p, ptr, C0_TCBIND);
|
|
uasm_i_dsrl_safe(p, ptr, ptr, 19);
|
|
# else
|
|
/*
|
|
* 64 bit SMP running in XKPHYS has smp_processor_id() << 3
|
|
* stored in CONTEXT.
|
|
*/
|
|
uasm_i_dmfc0(p, ptr, C0_CONTEXT);
|
|
uasm_i_dsrl_safe(p, ptr, ptr, 23);
|
|
# endif
|
|
UASM_i_LA_mostly(p, tmp, pgdc);
|
|
uasm_i_daddu(p, ptr, ptr, tmp);
|
|
uasm_i_dmfc0(p, tmp, C0_BADVADDR);
|
|
uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
|
|
#else
|
|
UASM_i_LA_mostly(p, ptr, pgdc);
|
|
uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
|
|
#endif
|
|
|
|
uasm_l_vmalloc_done(l, *p);
|
|
|
|
/* get pgd offset in bytes */
|
|
uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
|
|
|
|
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
|
|
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
|
|
uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
|
|
uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
|
|
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
|
|
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
|
|
#endif
|
|
}
|
|
|
|
enum vmalloc64_mode {not_refill, refill};
|
|
/*
|
|
* BVADDR is the faulting address, PTR is scratch.
|
|
* PTR will hold the pgd for vmalloc.
|
|
*/
|
|
static void __cpuinit
|
|
build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
|
|
unsigned int bvaddr, unsigned int ptr,
|
|
enum vmalloc64_mode mode)
|
|
{
|
|
long swpd = (long)swapper_pg_dir;
|
|
int single_insn_swpd;
|
|
int did_vmalloc_branch = 0;
|
|
|
|
single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
|
|
|
|
uasm_l_vmalloc(l, *p);
|
|
|
|
if (mode == refill && check_for_high_segbits) {
|
|
if (single_insn_swpd) {
|
|
uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
|
|
uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
|
|
did_vmalloc_branch = 1;
|
|
/* fall through */
|
|
} else {
|
|
uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
|
|
}
|
|
}
|
|
if (!did_vmalloc_branch) {
|
|
if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
|
|
uasm_il_b(p, r, label_vmalloc_done);
|
|
uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
|
|
} else {
|
|
UASM_i_LA_mostly(p, ptr, swpd);
|
|
uasm_il_b(p, r, label_vmalloc_done);
|
|
if (uasm_in_compat_space_p(swpd))
|
|
uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
|
|
else
|
|
uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
|
|
}
|
|
}
|
|
if (mode == refill && check_for_high_segbits) {
|
|
uasm_l_large_segbits_fault(l, *p);
|
|
/*
|
|
* We get here if we are an xsseg address, or if we are
|
|
* an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
|
|
*
|
|
* Ignoring xsseg (assume disabled so would generate
|
|
* (address errors?), the only remaining possibility
|
|
* is the upper xuseg addresses. On processors with
|
|
* TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
|
|
* addresses would have taken an address error. We try
|
|
* to mimic that here by taking a load/istream page
|
|
* fault.
|
|
*/
|
|
UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
|
|
uasm_i_jr(p, ptr);
|
|
uasm_i_nop(p);
|
|
}
|
|
}
|
|
|
|
#else /* !CONFIG_64BIT */
|
|
|
|
/*
|
|
* TMP and PTR are scratch.
|
|
* TMP will be clobbered, PTR will hold the pgd entry.
|
|
*/
|
|
static void __cpuinit __maybe_unused
|
|
build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
|
|
{
|
|
long pgdc = (long)pgd_current;
|
|
|
|
/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_MIPS_MT_SMTC
|
|
/*
|
|
* SMTC uses TCBind value as "CPU" index
|
|
*/
|
|
uasm_i_mfc0(p, ptr, C0_TCBIND);
|
|
UASM_i_LA_mostly(p, tmp, pgdc);
|
|
uasm_i_srl(p, ptr, ptr, 19);
|
|
#else
|
|
/*
|
|
* smp_processor_id() << 3 is stored in CONTEXT.
|
|
*/
|
|
uasm_i_mfc0(p, ptr, C0_CONTEXT);
|
|
UASM_i_LA_mostly(p, tmp, pgdc);
|
|
uasm_i_srl(p, ptr, ptr, 23);
|
|
#endif
|
|
uasm_i_addu(p, ptr, tmp, ptr);
|
|
#else
|
|
UASM_i_LA_mostly(p, ptr, pgdc);
|
|
#endif
|
|
uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
|
|
uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
|
|
uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
|
|
uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
|
|
uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
|
|
}
|
|
|
|
#endif /* !CONFIG_64BIT */
|
|
|
|
static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
|
|
{
|
|
unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
|
|
unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_VR41XX:
|
|
case CPU_VR4111:
|
|
case CPU_VR4121:
|
|
case CPU_VR4122:
|
|
case CPU_VR4131:
|
|
case CPU_VR4181:
|
|
case CPU_VR4181A:
|
|
case CPU_VR4133:
|
|
shift += 2;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (shift)
|
|
UASM_i_SRL(p, ctx, ctx, shift);
|
|
uasm_i_andi(p, ctx, ctx, mask);
|
|
}
|
|
|
|
static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
|
|
{
|
|
/*
|
|
* Bug workaround for the Nevada. It seems as if under certain
|
|
* circumstances the move from cp0_context might produce a
|
|
* bogus result when the mfc0 instruction and its consumer are
|
|
* in a different cacheline or a load instruction, probably any
|
|
* memory reference, is between them.
|
|
*/
|
|
switch (current_cpu_type()) {
|
|
case CPU_NEVADA:
|
|
UASM_i_LW(p, ptr, 0, ptr);
|
|
GET_CONTEXT(p, tmp); /* get context reg */
|
|
break;
|
|
|
|
default:
|
|
GET_CONTEXT(p, tmp); /* get context reg */
|
|
UASM_i_LW(p, ptr, 0, ptr);
|
|
break;
|
|
}
|
|
|
|
build_adjust_context(p, tmp);
|
|
UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
|
|
}
|
|
|
|
static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
|
|
unsigned int ptep)
|
|
{
|
|
/*
|
|
* 64bit address support (36bit on a 32bit CPU) in a 32bit
|
|
* Kernel is a special case. Only a few CPUs use it.
|
|
*/
|
|
#ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (cpu_has_64bits) {
|
|
uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
|
|
uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
|
|
if (kernel_uses_smartmips_rixi) {
|
|
UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
|
|
UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
|
|
UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
|
|
UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
|
|
UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
|
|
} else {
|
|
uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
|
|
UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
|
|
uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
|
|
}
|
|
UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
|
|
} else {
|
|
int pte_off_even = sizeof(pte_t) / 2;
|
|
int pte_off_odd = pte_off_even + sizeof(pte_t);
|
|
|
|
/* The pte entries are pre-shifted */
|
|
uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
|
|
UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
|
|
uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
|
|
UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
|
|
}
|
|
#else
|
|
UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
|
|
UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
|
|
if (r45k_bvahwbug())
|
|
build_tlb_probe_entry(p);
|
|
if (kernel_uses_smartmips_rixi) {
|
|
UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
|
|
UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
|
|
UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
|
|
if (r4k_250MHZhwbug())
|
|
UASM_i_MTC0(p, 0, C0_ENTRYLO0);
|
|
UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
|
|
UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
|
|
} else {
|
|
UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
|
|
if (r4k_250MHZhwbug())
|
|
UASM_i_MTC0(p, 0, C0_ENTRYLO0);
|
|
UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
|
|
UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
|
|
if (r45k_bvahwbug())
|
|
uasm_i_mfc0(p, tmp, C0_INDEX);
|
|
}
|
|
if (r4k_250MHZhwbug())
|
|
UASM_i_MTC0(p, 0, C0_ENTRYLO1);
|
|
UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* For a 64-bit kernel, we are using the 64-bit XTLB refill exception
|
|
* because EXL == 0. If we wrap, we can also use the 32 instruction
|
|
* slots before the XTLB refill exception handler which belong to the
|
|
* unused TLB refill exception.
|
|
*/
|
|
#define MIPS64_REFILL_INSNS 32
|
|
|
|
static void __cpuinit build_r4000_tlb_refill_handler(void)
|
|
{
|
|
u32 *p = tlb_handler;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
u32 *f;
|
|
unsigned int final_len;
|
|
|
|
memset(tlb_handler, 0, sizeof(tlb_handler));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
memset(final_handler, 0, sizeof(final_handler));
|
|
|
|
/*
|
|
* create the plain linear handler
|
|
*/
|
|
if (bcm1250_m3_war()) {
|
|
unsigned int segbits = 44;
|
|
|
|
uasm_i_dmfc0(&p, K0, C0_BADVADDR);
|
|
uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
|
|
uasm_i_xor(&p, K0, K0, K1);
|
|
uasm_i_dsrl_safe(&p, K1, K0, 62);
|
|
uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
|
|
uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
|
|
uasm_i_or(&p, K0, K0, K1);
|
|
uasm_il_bnez(&p, &r, K0, label_leave);
|
|
/* No need for uasm_i_nop */
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
|
|
#else
|
|
build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
|
|
#endif
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
|
|
#endif
|
|
|
|
build_get_ptep(&p, K0, K1);
|
|
build_update_entries(&p, K0, K1);
|
|
build_tlb_write_entry(&p, &l, &r, tlb_random);
|
|
uasm_l_leave(&l, p);
|
|
uasm_i_eret(&p); /* return from trap */
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
uasm_l_tlb_huge_update(&l, p);
|
|
UASM_i_LW(&p, K0, 0, K1);
|
|
build_huge_update_entries(&p, K0, K1);
|
|
build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random);
|
|
#endif
|
|
|
|
#ifdef CONFIG_64BIT
|
|
build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, refill);
|
|
#endif
|
|
|
|
/*
|
|
* Overflow check: For the 64bit handler, we need at least one
|
|
* free instruction slot for the wrap-around branch. In worst
|
|
* case, if the intended insertion point is a delay slot, we
|
|
* need three, with the second nop'ed and the third being
|
|
* unused.
|
|
*/
|
|
/* Loongson2 ebase is different than r4k, we have more space */
|
|
#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
|
|
if ((p - tlb_handler) > 64)
|
|
panic("TLB refill handler space exceeded");
|
|
#else
|
|
if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
|
|
|| (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
|
|
&& uasm_insn_has_bdelay(relocs,
|
|
tlb_handler + MIPS64_REFILL_INSNS - 3)))
|
|
panic("TLB refill handler space exceeded");
|
|
#endif
|
|
|
|
/*
|
|
* Now fold the handler in the TLB refill handler space.
|
|
*/
|
|
#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
|
|
f = final_handler;
|
|
/* Simplest case, just copy the handler. */
|
|
uasm_copy_handler(relocs, labels, tlb_handler, p, f);
|
|
final_len = p - tlb_handler;
|
|
#else /* CONFIG_64BIT */
|
|
f = final_handler + MIPS64_REFILL_INSNS;
|
|
if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
|
|
/* Just copy the handler. */
|
|
uasm_copy_handler(relocs, labels, tlb_handler, p, f);
|
|
final_len = p - tlb_handler;
|
|
} else {
|
|
#if defined(CONFIG_HUGETLB_PAGE)
|
|
const enum label_id ls = label_tlb_huge_update;
|
|
#else
|
|
const enum label_id ls = label_vmalloc;
|
|
#endif
|
|
u32 *split;
|
|
int ov = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
|
|
;
|
|
BUG_ON(i == ARRAY_SIZE(labels));
|
|
split = labels[i].addr;
|
|
|
|
/*
|
|
* See if we have overflown one way or the other.
|
|
*/
|
|
if (split > tlb_handler + MIPS64_REFILL_INSNS ||
|
|
split < p - MIPS64_REFILL_INSNS)
|
|
ov = 1;
|
|
|
|
if (ov) {
|
|
/*
|
|
* Split two instructions before the end. One
|
|
* for the branch and one for the instruction
|
|
* in the delay slot.
|
|
*/
|
|
split = tlb_handler + MIPS64_REFILL_INSNS - 2;
|
|
|
|
/*
|
|
* If the branch would fall in a delay slot,
|
|
* we must back up an additional instruction
|
|
* so that it is no longer in a delay slot.
|
|
*/
|
|
if (uasm_insn_has_bdelay(relocs, split - 1))
|
|
split--;
|
|
}
|
|
/* Copy first part of the handler. */
|
|
uasm_copy_handler(relocs, labels, tlb_handler, split, f);
|
|
f += split - tlb_handler;
|
|
|
|
if (ov) {
|
|
/* Insert branch. */
|
|
uasm_l_split(&l, final_handler);
|
|
uasm_il_b(&f, &r, label_split);
|
|
if (uasm_insn_has_bdelay(relocs, split))
|
|
uasm_i_nop(&f);
|
|
else {
|
|
uasm_copy_handler(relocs, labels,
|
|
split, split + 1, f);
|
|
uasm_move_labels(labels, f, f + 1, -1);
|
|
f++;
|
|
split++;
|
|
}
|
|
}
|
|
|
|
/* Copy the rest of the handler. */
|
|
uasm_copy_handler(relocs, labels, split, p, final_handler);
|
|
final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
|
|
(p - split);
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB refill handler (%u instructions).\n",
|
|
final_len);
|
|
|
|
memcpy((void *)ebase, final_handler, 0x100);
|
|
|
|
dump_handler((u32 *)ebase, 64);
|
|
}
|
|
|
|
/*
|
|
* 128 instructions for the fastpath handler is generous and should
|
|
* never be exceeded.
|
|
*/
|
|
#define FASTPATH_SIZE 128
|
|
|
|
u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
|
|
u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
|
|
u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
|
|
|
|
static void __cpuinit
|
|
iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
# ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (cpu_has_64bits)
|
|
uasm_i_lld(p, pte, 0, ptr);
|
|
else
|
|
# endif
|
|
UASM_i_LL(p, pte, 0, ptr);
|
|
#else
|
|
# ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (cpu_has_64bits)
|
|
uasm_i_ld(p, pte, 0, ptr);
|
|
else
|
|
# endif
|
|
UASM_i_LW(p, pte, 0, ptr);
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit
|
|
iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
|
|
unsigned int mode)
|
|
{
|
|
#ifdef CONFIG_64BIT_PHYS_ADDR
|
|
unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
|
|
#endif
|
|
|
|
uasm_i_ori(p, pte, pte, mode);
|
|
#ifdef CONFIG_SMP
|
|
# ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (cpu_has_64bits)
|
|
uasm_i_scd(p, pte, 0, ptr);
|
|
else
|
|
# endif
|
|
UASM_i_SC(p, pte, 0, ptr);
|
|
|
|
if (r10000_llsc_war())
|
|
uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
|
|
else
|
|
uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
|
|
|
|
# ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (!cpu_has_64bits) {
|
|
/* no uasm_i_nop needed */
|
|
uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
|
|
uasm_i_ori(p, pte, pte, hwmode);
|
|
uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
|
|
uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
|
|
/* no uasm_i_nop needed */
|
|
uasm_i_lw(p, pte, 0, ptr);
|
|
} else
|
|
uasm_i_nop(p);
|
|
# else
|
|
uasm_i_nop(p);
|
|
# endif
|
|
#else
|
|
# ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (cpu_has_64bits)
|
|
uasm_i_sd(p, pte, 0, ptr);
|
|
else
|
|
# endif
|
|
UASM_i_SW(p, pte, 0, ptr);
|
|
|
|
# ifdef CONFIG_64BIT_PHYS_ADDR
|
|
if (!cpu_has_64bits) {
|
|
uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
|
|
uasm_i_ori(p, pte, pte, hwmode);
|
|
uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
|
|
uasm_i_lw(p, pte, 0, ptr);
|
|
}
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if PTE is present, if not then jump to LABEL. PTR points to
|
|
* the page table where this PTE is located, PTE will be re-loaded
|
|
* with it's original value.
|
|
*/
|
|
static void __cpuinit
|
|
build_pte_present(u32 **p, struct uasm_reloc **r,
|
|
unsigned int pte, unsigned int ptr, enum label_id lid)
|
|
{
|
|
if (kernel_uses_smartmips_rixi) {
|
|
uasm_i_andi(p, pte, pte, _PAGE_PRESENT);
|
|
uasm_il_beqz(p, r, pte, lid);
|
|
} else {
|
|
uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
|
|
uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
|
|
uasm_il_bnez(p, r, pte, lid);
|
|
}
|
|
iPTE_LW(p, pte, ptr);
|
|
}
|
|
|
|
/* Make PTE valid, store result in PTR. */
|
|
static void __cpuinit
|
|
build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
|
|
unsigned int ptr)
|
|
{
|
|
unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
|
|
|
|
iPTE_SW(p, r, pte, ptr, mode);
|
|
}
|
|
|
|
/*
|
|
* Check if PTE can be written to, if not branch to LABEL. Regardless
|
|
* restore PTE with value from PTR when done.
|
|
*/
|
|
static void __cpuinit
|
|
build_pte_writable(u32 **p, struct uasm_reloc **r,
|
|
unsigned int pte, unsigned int ptr, enum label_id lid)
|
|
{
|
|
uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
|
|
uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
|
|
uasm_il_bnez(p, r, pte, lid);
|
|
iPTE_LW(p, pte, ptr);
|
|
}
|
|
|
|
/* Make PTE writable, update software status bits as well, then store
|
|
* at PTR.
|
|
*/
|
|
static void __cpuinit
|
|
build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
|
|
unsigned int ptr)
|
|
{
|
|
unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
|
|
| _PAGE_DIRTY);
|
|
|
|
iPTE_SW(p, r, pte, ptr, mode);
|
|
}
|
|
|
|
/*
|
|
* Check if PTE can be modified, if not branch to LABEL. Regardless
|
|
* restore PTE with value from PTR when done.
|
|
*/
|
|
static void __cpuinit
|
|
build_pte_modifiable(u32 **p, struct uasm_reloc **r,
|
|
unsigned int pte, unsigned int ptr, enum label_id lid)
|
|
{
|
|
uasm_i_andi(p, pte, pte, _PAGE_WRITE);
|
|
uasm_il_beqz(p, r, pte, lid);
|
|
iPTE_LW(p, pte, ptr);
|
|
}
|
|
|
|
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
|
|
/*
|
|
* R3000 style TLB load/store/modify handlers.
|
|
*/
|
|
|
|
/*
|
|
* This places the pte into ENTRYLO0 and writes it with tlbwi.
|
|
* Then it returns.
|
|
*/
|
|
static void __cpuinit
|
|
build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
|
|
{
|
|
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
|
|
uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
|
|
uasm_i_tlbwi(p);
|
|
uasm_i_jr(p, tmp);
|
|
uasm_i_rfe(p); /* branch delay */
|
|
}
|
|
|
|
/*
|
|
* This places the pte into ENTRYLO0 and writes it with tlbwi
|
|
* or tlbwr as appropriate. This is because the index register
|
|
* may have the probe fail bit set as a result of a trap on a
|
|
* kseg2 access, i.e. without refill. Then it returns.
|
|
*/
|
|
static void __cpuinit
|
|
build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
|
|
struct uasm_reloc **r, unsigned int pte,
|
|
unsigned int tmp)
|
|
{
|
|
uasm_i_mfc0(p, tmp, C0_INDEX);
|
|
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
|
|
uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
|
|
uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
|
|
uasm_i_tlbwi(p); /* cp0 delay */
|
|
uasm_i_jr(p, tmp);
|
|
uasm_i_rfe(p); /* branch delay */
|
|
uasm_l_r3000_write_probe_fail(l, *p);
|
|
uasm_i_tlbwr(p); /* cp0 delay */
|
|
uasm_i_jr(p, tmp);
|
|
uasm_i_rfe(p); /* branch delay */
|
|
}
|
|
|
|
static void __cpuinit
|
|
build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
|
|
unsigned int ptr)
|
|
{
|
|
long pgdc = (long)pgd_current;
|
|
|
|
uasm_i_mfc0(p, pte, C0_BADVADDR);
|
|
uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
|
|
uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
|
|
uasm_i_srl(p, pte, pte, 22); /* load delay */
|
|
uasm_i_sll(p, pte, pte, 2);
|
|
uasm_i_addu(p, ptr, ptr, pte);
|
|
uasm_i_mfc0(p, pte, C0_CONTEXT);
|
|
uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
|
|
uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
|
|
uasm_i_addu(p, ptr, ptr, pte);
|
|
uasm_i_lw(p, pte, 0, ptr);
|
|
uasm_i_tlbp(p); /* load delay */
|
|
}
|
|
|
|
static void __cpuinit build_r3000_tlb_load_handler(void)
|
|
{
|
|
u32 *p = handle_tlbl;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(handle_tlbl, 0, sizeof(handle_tlbl));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
build_r3000_tlbchange_handler_head(&p, K0, K1);
|
|
build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
|
|
uasm_i_nop(&p); /* load delay */
|
|
build_make_valid(&p, &r, K0, K1);
|
|
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
|
|
|
|
uasm_l_nopage_tlbl(&l, p);
|
|
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
|
|
uasm_i_nop(&p);
|
|
|
|
if ((p - handle_tlbl) > FASTPATH_SIZE)
|
|
panic("TLB load handler fastpath space exceeded");
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
|
|
(unsigned int)(p - handle_tlbl));
|
|
|
|
dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
|
|
}
|
|
|
|
static void __cpuinit build_r3000_tlb_store_handler(void)
|
|
{
|
|
u32 *p = handle_tlbs;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(handle_tlbs, 0, sizeof(handle_tlbs));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
build_r3000_tlbchange_handler_head(&p, K0, K1);
|
|
build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
|
|
uasm_i_nop(&p); /* load delay */
|
|
build_make_write(&p, &r, K0, K1);
|
|
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
|
|
|
|
uasm_l_nopage_tlbs(&l, p);
|
|
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
|
|
uasm_i_nop(&p);
|
|
|
|
if ((p - handle_tlbs) > FASTPATH_SIZE)
|
|
panic("TLB store handler fastpath space exceeded");
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
|
|
(unsigned int)(p - handle_tlbs));
|
|
|
|
dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
|
|
}
|
|
|
|
static void __cpuinit build_r3000_tlb_modify_handler(void)
|
|
{
|
|
u32 *p = handle_tlbm;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(handle_tlbm, 0, sizeof(handle_tlbm));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
build_r3000_tlbchange_handler_head(&p, K0, K1);
|
|
build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
|
|
uasm_i_nop(&p); /* load delay */
|
|
build_make_write(&p, &r, K0, K1);
|
|
build_r3000_pte_reload_tlbwi(&p, K0, K1);
|
|
|
|
uasm_l_nopage_tlbm(&l, p);
|
|
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
|
|
uasm_i_nop(&p);
|
|
|
|
if ((p - handle_tlbm) > FASTPATH_SIZE)
|
|
panic("TLB modify handler fastpath space exceeded");
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
|
|
(unsigned int)(p - handle_tlbm));
|
|
|
|
dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
|
|
}
|
|
#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
|
|
|
|
/*
|
|
* R4000 style TLB load/store/modify handlers.
|
|
*/
|
|
static void __cpuinit
|
|
build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
|
|
struct uasm_reloc **r, unsigned int pte,
|
|
unsigned int ptr)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
|
|
#else
|
|
build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
|
|
#endif
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* For huge tlb entries, pmd doesn't contain an address but
|
|
* instead contains the tlb pte. Check the PAGE_HUGE bit and
|
|
* see if we need to jump to huge tlb processing.
|
|
*/
|
|
build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
|
|
#endif
|
|
|
|
UASM_i_MFC0(p, pte, C0_BADVADDR);
|
|
UASM_i_LW(p, ptr, 0, ptr);
|
|
UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
|
|
uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
|
|
UASM_i_ADDU(p, ptr, ptr, pte);
|
|
|
|
#ifdef CONFIG_SMP
|
|
uasm_l_smp_pgtable_change(l, *p);
|
|
#endif
|
|
iPTE_LW(p, pte, ptr); /* get even pte */
|
|
if (!m4kc_tlbp_war())
|
|
build_tlb_probe_entry(p);
|
|
}
|
|
|
|
static void __cpuinit
|
|
build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
|
|
struct uasm_reloc **r, unsigned int tmp,
|
|
unsigned int ptr)
|
|
{
|
|
uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
|
|
uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
|
|
build_update_entries(p, tmp, ptr);
|
|
build_tlb_write_entry(p, l, r, tlb_indexed);
|
|
uasm_l_leave(l, *p);
|
|
uasm_i_eret(p); /* return from trap */
|
|
|
|
#ifdef CONFIG_64BIT
|
|
build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit build_r4000_tlb_load_handler(void)
|
|
{
|
|
u32 *p = handle_tlbl;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(handle_tlbl, 0, sizeof(handle_tlbl));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
if (bcm1250_m3_war()) {
|
|
unsigned int segbits = 44;
|
|
|
|
uasm_i_dmfc0(&p, K0, C0_BADVADDR);
|
|
uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
|
|
uasm_i_xor(&p, K0, K0, K1);
|
|
uasm_i_dsrl_safe(&p, K1, K0, 62);
|
|
uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
|
|
uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
|
|
uasm_i_or(&p, K0, K0, K1);
|
|
uasm_il_bnez(&p, &r, K0, label_leave);
|
|
/* No need for uasm_i_nop */
|
|
}
|
|
|
|
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
|
|
build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
|
|
if (m4kc_tlbp_war())
|
|
build_tlb_probe_entry(&p);
|
|
|
|
if (kernel_uses_smartmips_rixi) {
|
|
/*
|
|
* If the page is not _PAGE_VALID, RI or XI could not
|
|
* have triggered it. Skip the expensive test..
|
|
*/
|
|
uasm_i_andi(&p, K0, K0, _PAGE_VALID);
|
|
uasm_il_beqz(&p, &r, K0, label_tlbl_goaround1);
|
|
uasm_i_nop(&p);
|
|
|
|
uasm_i_tlbr(&p);
|
|
/* Examine entrylo 0 or 1 based on ptr. */
|
|
uasm_i_andi(&p, K0, K1, sizeof(pte_t));
|
|
uasm_i_beqz(&p, K0, 8);
|
|
|
|
UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
|
|
UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
|
|
/*
|
|
* If the entryLo (now in K0) is valid (bit 1), RI or
|
|
* XI must have triggered it.
|
|
*/
|
|
uasm_i_andi(&p, K0, K0, 2);
|
|
uasm_il_bnez(&p, &r, K0, label_nopage_tlbl);
|
|
|
|
uasm_l_tlbl_goaround1(&l, p);
|
|
/* Reload the PTE value */
|
|
iPTE_LW(&p, K0, K1);
|
|
}
|
|
build_make_valid(&p, &r, K0, K1);
|
|
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* This is the entry point when build_r4000_tlbchange_handler_head
|
|
* spots a huge page.
|
|
*/
|
|
uasm_l_tlb_huge_update(&l, p);
|
|
iPTE_LW(&p, K0, K1);
|
|
build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
|
|
build_tlb_probe_entry(&p);
|
|
|
|
if (kernel_uses_smartmips_rixi) {
|
|
/*
|
|
* If the page is not _PAGE_VALID, RI or XI could not
|
|
* have triggered it. Skip the expensive test..
|
|
*/
|
|
uasm_i_andi(&p, K0, K0, _PAGE_VALID);
|
|
uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
|
|
uasm_i_nop(&p);
|
|
|
|
uasm_i_tlbr(&p);
|
|
/* Examine entrylo 0 or 1 based on ptr. */
|
|
uasm_i_andi(&p, K0, K1, sizeof(pte_t));
|
|
uasm_i_beqz(&p, K0, 8);
|
|
|
|
UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
|
|
UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
|
|
/*
|
|
* If the entryLo (now in K0) is valid (bit 1), RI or
|
|
* XI must have triggered it.
|
|
*/
|
|
uasm_i_andi(&p, K0, K0, 2);
|
|
uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
|
|
/* Reload the PTE value */
|
|
iPTE_LW(&p, K0, K1);
|
|
|
|
/*
|
|
* We clobbered C0_PAGEMASK, restore it. On the other branch
|
|
* it is restored in build_huge_tlb_write_entry.
|
|
*/
|
|
build_restore_pagemask(&p, &r, K0, label_nopage_tlbl);
|
|
|
|
uasm_l_tlbl_goaround2(&l, p);
|
|
}
|
|
uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
|
|
build_huge_handler_tail(&p, &r, &l, K0, K1);
|
|
#endif
|
|
|
|
uasm_l_nopage_tlbl(&l, p);
|
|
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
|
|
uasm_i_nop(&p);
|
|
|
|
if ((p - handle_tlbl) > FASTPATH_SIZE)
|
|
panic("TLB load handler fastpath space exceeded");
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
|
|
(unsigned int)(p - handle_tlbl));
|
|
|
|
dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
|
|
}
|
|
|
|
static void __cpuinit build_r4000_tlb_store_handler(void)
|
|
{
|
|
u32 *p = handle_tlbs;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(handle_tlbs, 0, sizeof(handle_tlbs));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
|
|
build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
|
|
if (m4kc_tlbp_war())
|
|
build_tlb_probe_entry(&p);
|
|
build_make_write(&p, &r, K0, K1);
|
|
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* This is the entry point when
|
|
* build_r4000_tlbchange_handler_head spots a huge page.
|
|
*/
|
|
uasm_l_tlb_huge_update(&l, p);
|
|
iPTE_LW(&p, K0, K1);
|
|
build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
|
|
build_tlb_probe_entry(&p);
|
|
uasm_i_ori(&p, K0, K0,
|
|
_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
|
|
build_huge_handler_tail(&p, &r, &l, K0, K1);
|
|
#endif
|
|
|
|
uasm_l_nopage_tlbs(&l, p);
|
|
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
|
|
uasm_i_nop(&p);
|
|
|
|
if ((p - handle_tlbs) > FASTPATH_SIZE)
|
|
panic("TLB store handler fastpath space exceeded");
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
|
|
(unsigned int)(p - handle_tlbs));
|
|
|
|
dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
|
|
}
|
|
|
|
static void __cpuinit build_r4000_tlb_modify_handler(void)
|
|
{
|
|
u32 *p = handle_tlbm;
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(handle_tlbm, 0, sizeof(handle_tlbm));
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
|
|
build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
|
|
if (m4kc_tlbp_war())
|
|
build_tlb_probe_entry(&p);
|
|
/* Present and writable bits set, set accessed and dirty bits. */
|
|
build_make_write(&p, &r, K0, K1);
|
|
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* This is the entry point when
|
|
* build_r4000_tlbchange_handler_head spots a huge page.
|
|
*/
|
|
uasm_l_tlb_huge_update(&l, p);
|
|
iPTE_LW(&p, K0, K1);
|
|
build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
|
|
build_tlb_probe_entry(&p);
|
|
uasm_i_ori(&p, K0, K0,
|
|
_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
|
|
build_huge_handler_tail(&p, &r, &l, K0, K1);
|
|
#endif
|
|
|
|
uasm_l_nopage_tlbm(&l, p);
|
|
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
|
|
uasm_i_nop(&p);
|
|
|
|
if ((p - handle_tlbm) > FASTPATH_SIZE)
|
|
panic("TLB modify handler fastpath space exceeded");
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
|
|
(unsigned int)(p - handle_tlbm));
|
|
|
|
dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
|
|
}
|
|
|
|
void __cpuinit build_tlb_refill_handler(void)
|
|
{
|
|
/*
|
|
* The refill handler is generated per-CPU, multi-node systems
|
|
* may have local storage for it. The other handlers are only
|
|
* needed once.
|
|
*/
|
|
static int run_once = 0;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
|
|
#endif
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_R2000:
|
|
case CPU_R3000:
|
|
case CPU_R3000A:
|
|
case CPU_R3081E:
|
|
case CPU_TX3912:
|
|
case CPU_TX3922:
|
|
case CPU_TX3927:
|
|
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
|
|
build_r3000_tlb_refill_handler();
|
|
if (!run_once) {
|
|
build_r3000_tlb_load_handler();
|
|
build_r3000_tlb_store_handler();
|
|
build_r3000_tlb_modify_handler();
|
|
run_once++;
|
|
}
|
|
#else
|
|
panic("No R3000 TLB refill handler");
|
|
#endif
|
|
break;
|
|
|
|
case CPU_R6000:
|
|
case CPU_R6000A:
|
|
panic("No R6000 TLB refill handler yet");
|
|
break;
|
|
|
|
case CPU_R8000:
|
|
panic("No R8000 TLB refill handler yet");
|
|
break;
|
|
|
|
default:
|
|
build_r4000_tlb_refill_handler();
|
|
if (!run_once) {
|
|
build_r4000_tlb_load_handler();
|
|
build_r4000_tlb_store_handler();
|
|
build_r4000_tlb_modify_handler();
|
|
run_once++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void __cpuinit flush_tlb_handlers(void)
|
|
{
|
|
local_flush_icache_range((unsigned long)handle_tlbl,
|
|
(unsigned long)handle_tlbl + sizeof(handle_tlbl));
|
|
local_flush_icache_range((unsigned long)handle_tlbs,
|
|
(unsigned long)handle_tlbs + sizeof(handle_tlbs));
|
|
local_flush_icache_range((unsigned long)handle_tlbm,
|
|
(unsigned long)handle_tlbm + sizeof(handle_tlbm));
|
|
}
|