mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 05:35:16 +07:00
22ca7ee933
To support IPI shorthands wrap invocations of apic->send_IPI_allbutself() in a helper function, so the static key controlling the shorthand mode is only in one place. Fixup all callers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190722105220.492691679@linutronix.de
785 lines
19 KiB
C
785 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
|
|
* Copyright (C) 2000-2001 VERITAS Software Corporation.
|
|
* Copyright (C) 2002 Andi Kleen, SuSE Labs
|
|
* Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
|
|
* Copyright (C) 2007 MontaVista Software, Inc.
|
|
* Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
|
|
*/
|
|
/****************************************************************************
|
|
* Contributor: Lake Stevens Instrument Division$
|
|
* Written by: Glenn Engel $
|
|
* Updated by: Amit Kale<akale@veritas.com>
|
|
* Updated by: Tom Rini <trini@kernel.crashing.org>
|
|
* Updated by: Jason Wessel <jason.wessel@windriver.com>
|
|
* Modified for 386 by Jim Kingdon, Cygnus Support.
|
|
* Origianl kgdb, compatibility with 2.1.xx kernel by
|
|
* David Grothe <dave@gcom.com>
|
|
* Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
|
|
* X86_64 changes from Andi Kleen's patch merged by Jim Houston
|
|
*/
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/memory.h>
|
|
|
|
#include <asm/text-patching.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/apicdef.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/switch_to.h>
|
|
|
|
struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
{ "ax", 4, offsetof(struct pt_regs, ax) },
|
|
{ "cx", 4, offsetof(struct pt_regs, cx) },
|
|
{ "dx", 4, offsetof(struct pt_regs, dx) },
|
|
{ "bx", 4, offsetof(struct pt_regs, bx) },
|
|
{ "sp", 4, offsetof(struct pt_regs, sp) },
|
|
{ "bp", 4, offsetof(struct pt_regs, bp) },
|
|
{ "si", 4, offsetof(struct pt_regs, si) },
|
|
{ "di", 4, offsetof(struct pt_regs, di) },
|
|
{ "ip", 4, offsetof(struct pt_regs, ip) },
|
|
{ "flags", 4, offsetof(struct pt_regs, flags) },
|
|
{ "cs", 4, offsetof(struct pt_regs, cs) },
|
|
{ "ss", 4, offsetof(struct pt_regs, ss) },
|
|
{ "ds", 4, offsetof(struct pt_regs, ds) },
|
|
{ "es", 4, offsetof(struct pt_regs, es) },
|
|
#else
|
|
{ "ax", 8, offsetof(struct pt_regs, ax) },
|
|
{ "bx", 8, offsetof(struct pt_regs, bx) },
|
|
{ "cx", 8, offsetof(struct pt_regs, cx) },
|
|
{ "dx", 8, offsetof(struct pt_regs, dx) },
|
|
{ "si", 8, offsetof(struct pt_regs, si) },
|
|
{ "di", 8, offsetof(struct pt_regs, di) },
|
|
{ "bp", 8, offsetof(struct pt_regs, bp) },
|
|
{ "sp", 8, offsetof(struct pt_regs, sp) },
|
|
{ "r8", 8, offsetof(struct pt_regs, r8) },
|
|
{ "r9", 8, offsetof(struct pt_regs, r9) },
|
|
{ "r10", 8, offsetof(struct pt_regs, r10) },
|
|
{ "r11", 8, offsetof(struct pt_regs, r11) },
|
|
{ "r12", 8, offsetof(struct pt_regs, r12) },
|
|
{ "r13", 8, offsetof(struct pt_regs, r13) },
|
|
{ "r14", 8, offsetof(struct pt_regs, r14) },
|
|
{ "r15", 8, offsetof(struct pt_regs, r15) },
|
|
{ "ip", 8, offsetof(struct pt_regs, ip) },
|
|
{ "flags", 4, offsetof(struct pt_regs, flags) },
|
|
{ "cs", 4, offsetof(struct pt_regs, cs) },
|
|
{ "ss", 4, offsetof(struct pt_regs, ss) },
|
|
{ "ds", 4, -1 },
|
|
{ "es", 4, -1 },
|
|
#endif
|
|
{ "fs", 4, -1 },
|
|
{ "gs", 4, -1 },
|
|
};
|
|
|
|
int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
|
|
{
|
|
if (
|
|
#ifdef CONFIG_X86_32
|
|
regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
|
|
#endif
|
|
regno == GDB_SP || regno == GDB_ORIG_AX)
|
|
return 0;
|
|
|
|
if (dbg_reg_def[regno].offset != -1)
|
|
memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
|
|
dbg_reg_def[regno].size);
|
|
return 0;
|
|
}
|
|
|
|
char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
|
|
{
|
|
if (regno == GDB_ORIG_AX) {
|
|
memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
|
|
return "orig_ax";
|
|
}
|
|
if (regno >= DBG_MAX_REG_NUM || regno < 0)
|
|
return NULL;
|
|
|
|
if (dbg_reg_def[regno].offset != -1)
|
|
memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
|
|
dbg_reg_def[regno].size);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
switch (regno) {
|
|
case GDB_GS:
|
|
case GDB_FS:
|
|
*(unsigned long *)mem = 0xFFFF;
|
|
break;
|
|
}
|
|
#endif
|
|
return dbg_reg_def[regno].name;
|
|
}
|
|
|
|
/**
|
|
* sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
|
|
* @gdb_regs: A pointer to hold the registers in the order GDB wants.
|
|
* @p: The &struct task_struct of the desired process.
|
|
*
|
|
* Convert the register values of the sleeping process in @p to
|
|
* the format that GDB expects.
|
|
* This function is called when kgdb does not have access to the
|
|
* &struct pt_regs and therefore it should fill the gdb registers
|
|
* @gdb_regs with what has been saved in &struct thread_struct
|
|
* thread field during switch_to.
|
|
*/
|
|
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
|
|
{
|
|
#ifndef CONFIG_X86_32
|
|
u32 *gdb_regs32 = (u32 *)gdb_regs;
|
|
#endif
|
|
gdb_regs[GDB_AX] = 0;
|
|
gdb_regs[GDB_BX] = 0;
|
|
gdb_regs[GDB_CX] = 0;
|
|
gdb_regs[GDB_DX] = 0;
|
|
gdb_regs[GDB_SI] = 0;
|
|
gdb_regs[GDB_DI] = 0;
|
|
gdb_regs[GDB_BP] = ((struct inactive_task_frame *)p->thread.sp)->bp;
|
|
#ifdef CONFIG_X86_32
|
|
gdb_regs[GDB_DS] = __KERNEL_DS;
|
|
gdb_regs[GDB_ES] = __KERNEL_DS;
|
|
gdb_regs[GDB_PS] = 0;
|
|
gdb_regs[GDB_CS] = __KERNEL_CS;
|
|
gdb_regs[GDB_SS] = __KERNEL_DS;
|
|
gdb_regs[GDB_FS] = 0xFFFF;
|
|
gdb_regs[GDB_GS] = 0xFFFF;
|
|
#else
|
|
gdb_regs32[GDB_PS] = 0;
|
|
gdb_regs32[GDB_CS] = __KERNEL_CS;
|
|
gdb_regs32[GDB_SS] = __KERNEL_DS;
|
|
gdb_regs[GDB_R8] = 0;
|
|
gdb_regs[GDB_R9] = 0;
|
|
gdb_regs[GDB_R10] = 0;
|
|
gdb_regs[GDB_R11] = 0;
|
|
gdb_regs[GDB_R12] = 0;
|
|
gdb_regs[GDB_R13] = 0;
|
|
gdb_regs[GDB_R14] = 0;
|
|
gdb_regs[GDB_R15] = 0;
|
|
#endif
|
|
gdb_regs[GDB_PC] = 0;
|
|
gdb_regs[GDB_SP] = p->thread.sp;
|
|
}
|
|
|
|
static struct hw_breakpoint {
|
|
unsigned enabled;
|
|
unsigned long addr;
|
|
int len;
|
|
int type;
|
|
struct perf_event * __percpu *pev;
|
|
} breakinfo[HBP_NUM];
|
|
|
|
static unsigned long early_dr7;
|
|
|
|
static void kgdb_correct_hw_break(void)
|
|
{
|
|
int breakno;
|
|
|
|
for (breakno = 0; breakno < HBP_NUM; breakno++) {
|
|
struct perf_event *bp;
|
|
struct arch_hw_breakpoint *info;
|
|
int val;
|
|
int cpu = raw_smp_processor_id();
|
|
if (!breakinfo[breakno].enabled)
|
|
continue;
|
|
if (dbg_is_early) {
|
|
set_debugreg(breakinfo[breakno].addr, breakno);
|
|
early_dr7 |= encode_dr7(breakno,
|
|
breakinfo[breakno].len,
|
|
breakinfo[breakno].type);
|
|
set_debugreg(early_dr7, 7);
|
|
continue;
|
|
}
|
|
bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
|
|
info = counter_arch_bp(bp);
|
|
if (bp->attr.disabled != 1)
|
|
continue;
|
|
bp->attr.bp_addr = breakinfo[breakno].addr;
|
|
bp->attr.bp_len = breakinfo[breakno].len;
|
|
bp->attr.bp_type = breakinfo[breakno].type;
|
|
info->address = breakinfo[breakno].addr;
|
|
info->len = breakinfo[breakno].len;
|
|
info->type = breakinfo[breakno].type;
|
|
val = arch_install_hw_breakpoint(bp);
|
|
if (!val)
|
|
bp->attr.disabled = 0;
|
|
}
|
|
if (!dbg_is_early)
|
|
hw_breakpoint_restore();
|
|
}
|
|
|
|
static int hw_break_reserve_slot(int breakno)
|
|
{
|
|
int cpu;
|
|
int cnt = 0;
|
|
struct perf_event **pevent;
|
|
|
|
if (dbg_is_early)
|
|
return 0;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
cnt++;
|
|
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
|
|
if (dbg_reserve_bp_slot(*pevent))
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
for_each_online_cpu(cpu) {
|
|
cnt--;
|
|
if (!cnt)
|
|
break;
|
|
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
|
|
dbg_release_bp_slot(*pevent);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int hw_break_release_slot(int breakno)
|
|
{
|
|
struct perf_event **pevent;
|
|
int cpu;
|
|
|
|
if (dbg_is_early)
|
|
return 0;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
|
|
if (dbg_release_bp_slot(*pevent))
|
|
/*
|
|
* The debugger is responsible for handing the retry on
|
|
* remove failure.
|
|
*/
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HBP_NUM; i++)
|
|
if (breakinfo[i].addr == addr && breakinfo[i].enabled)
|
|
break;
|
|
if (i == HBP_NUM)
|
|
return -1;
|
|
|
|
if (hw_break_release_slot(i)) {
|
|
printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
|
|
return -1;
|
|
}
|
|
breakinfo[i].enabled = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kgdb_remove_all_hw_break(void)
|
|
{
|
|
int i;
|
|
int cpu = raw_smp_processor_id();
|
|
struct perf_event *bp;
|
|
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
if (!breakinfo[i].enabled)
|
|
continue;
|
|
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
|
|
if (!bp->attr.disabled) {
|
|
arch_uninstall_hw_breakpoint(bp);
|
|
bp->attr.disabled = 1;
|
|
continue;
|
|
}
|
|
if (dbg_is_early)
|
|
early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
|
|
breakinfo[i].type);
|
|
else if (hw_break_release_slot(i))
|
|
printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
|
|
breakinfo[i].addr);
|
|
breakinfo[i].enabled = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HBP_NUM; i++)
|
|
if (!breakinfo[i].enabled)
|
|
break;
|
|
if (i == HBP_NUM)
|
|
return -1;
|
|
|
|
switch (bptype) {
|
|
case BP_HARDWARE_BREAKPOINT:
|
|
len = 1;
|
|
breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
|
|
break;
|
|
case BP_WRITE_WATCHPOINT:
|
|
breakinfo[i].type = X86_BREAKPOINT_WRITE;
|
|
break;
|
|
case BP_ACCESS_WATCHPOINT:
|
|
breakinfo[i].type = X86_BREAKPOINT_RW;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
switch (len) {
|
|
case 1:
|
|
breakinfo[i].len = X86_BREAKPOINT_LEN_1;
|
|
break;
|
|
case 2:
|
|
breakinfo[i].len = X86_BREAKPOINT_LEN_2;
|
|
break;
|
|
case 4:
|
|
breakinfo[i].len = X86_BREAKPOINT_LEN_4;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case 8:
|
|
breakinfo[i].len = X86_BREAKPOINT_LEN_8;
|
|
break;
|
|
#endif
|
|
default:
|
|
return -1;
|
|
}
|
|
breakinfo[i].addr = addr;
|
|
if (hw_break_reserve_slot(i)) {
|
|
breakinfo[i].addr = 0;
|
|
return -1;
|
|
}
|
|
breakinfo[i].enabled = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
|
|
* @regs: Current &struct pt_regs.
|
|
*
|
|
* This function will be called if the particular architecture must
|
|
* disable hardware debugging while it is processing gdb packets or
|
|
* handling exception.
|
|
*/
|
|
static void kgdb_disable_hw_debug(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
int cpu = raw_smp_processor_id();
|
|
struct perf_event *bp;
|
|
|
|
/* Disable hardware debugging while we are in kgdb: */
|
|
set_debugreg(0UL, 7);
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
if (!breakinfo[i].enabled)
|
|
continue;
|
|
if (dbg_is_early) {
|
|
early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
|
|
breakinfo[i].type);
|
|
continue;
|
|
}
|
|
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
|
|
if (bp->attr.disabled == 1)
|
|
continue;
|
|
arch_uninstall_hw_breakpoint(bp);
|
|
bp->attr.disabled = 1;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* kgdb_roundup_cpus - Get other CPUs into a holding pattern
|
|
*
|
|
* On SMP systems, we need to get the attention of the other CPUs
|
|
* and get them be in a known state. This should do what is needed
|
|
* to get the other CPUs to call kgdb_wait(). Note that on some arches,
|
|
* the NMI approach is not used for rounding up all the CPUs. For example,
|
|
* in case of MIPS, smp_call_function() is used to roundup CPUs.
|
|
*
|
|
* On non-SMP systems, this is not called.
|
|
*/
|
|
void kgdb_roundup_cpus(void)
|
|
{
|
|
apic_send_IPI_allbutself(NMI_VECTOR);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* kgdb_arch_handle_exception - Handle architecture specific GDB packets.
|
|
* @e_vector: The error vector of the exception that happened.
|
|
* @signo: The signal number of the exception that happened.
|
|
* @err_code: The error code of the exception that happened.
|
|
* @remcomInBuffer: The buffer of the packet we have read.
|
|
* @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
|
|
* @linux_regs: The &struct pt_regs of the current process.
|
|
*
|
|
* This function MUST handle the 'c' and 's' command packets,
|
|
* as well packets to set / remove a hardware breakpoint, if used.
|
|
* If there are additional packets which the hardware needs to handle,
|
|
* they are handled here. The code should return -1 if it wants to
|
|
* process more packets, and a %0 or %1 if it wants to exit from the
|
|
* kgdb callback.
|
|
*/
|
|
int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
|
|
char *remcomInBuffer, char *remcomOutBuffer,
|
|
struct pt_regs *linux_regs)
|
|
{
|
|
unsigned long addr;
|
|
char *ptr;
|
|
|
|
switch (remcomInBuffer[0]) {
|
|
case 'c':
|
|
case 's':
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
ptr = &remcomInBuffer[1];
|
|
if (kgdb_hex2long(&ptr, &addr))
|
|
linux_regs->ip = addr;
|
|
/* fall through */
|
|
case 'D':
|
|
case 'k':
|
|
/* clear the trace bit */
|
|
linux_regs->flags &= ~X86_EFLAGS_TF;
|
|
atomic_set(&kgdb_cpu_doing_single_step, -1);
|
|
|
|
/* set the trace bit if we're stepping */
|
|
if (remcomInBuffer[0] == 's') {
|
|
linux_regs->flags |= X86_EFLAGS_TF;
|
|
atomic_set(&kgdb_cpu_doing_single_step,
|
|
raw_smp_processor_id());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* this means that we do not want to exit from the handler: */
|
|
return -1;
|
|
}
|
|
|
|
static inline int
|
|
single_step_cont(struct pt_regs *regs, struct die_args *args)
|
|
{
|
|
/*
|
|
* Single step exception from kernel space to user space so
|
|
* eat the exception and continue the process:
|
|
*/
|
|
printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
|
|
"resuming...\n");
|
|
kgdb_arch_handle_exception(args->trapnr, args->signr,
|
|
args->err, "c", "", regs);
|
|
/*
|
|
* Reset the BS bit in dr6 (pointed by args->err) to
|
|
* denote completion of processing
|
|
*/
|
|
(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
|
|
|
|
static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
|
|
{
|
|
int cpu;
|
|
|
|
switch (cmd) {
|
|
case NMI_LOCAL:
|
|
if (atomic_read(&kgdb_active) != -1) {
|
|
/* KGDB CPU roundup */
|
|
cpu = raw_smp_processor_id();
|
|
kgdb_nmicallback(cpu, regs);
|
|
set_bit(cpu, was_in_debug_nmi);
|
|
touch_nmi_watchdog();
|
|
|
|
return NMI_HANDLED;
|
|
}
|
|
break;
|
|
|
|
case NMI_UNKNOWN:
|
|
cpu = raw_smp_processor_id();
|
|
|
|
if (__test_and_clear_bit(cpu, was_in_debug_nmi))
|
|
return NMI_HANDLED;
|
|
|
|
break;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
return NMI_DONE;
|
|
}
|
|
|
|
static int __kgdb_notify(struct die_args *args, unsigned long cmd)
|
|
{
|
|
struct pt_regs *regs = args->regs;
|
|
|
|
switch (cmd) {
|
|
case DIE_DEBUG:
|
|
if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
|
|
if (user_mode(regs))
|
|
return single_step_cont(regs, args);
|
|
break;
|
|
} else if (test_thread_flag(TIF_SINGLESTEP))
|
|
/* This means a user thread is single stepping
|
|
* a system call which should be ignored
|
|
*/
|
|
return NOTIFY_DONE;
|
|
/* fall through */
|
|
default:
|
|
if (user_mode(regs))
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
|
|
return NOTIFY_DONE;
|
|
|
|
/* Must touch watchdog before return to normal operation */
|
|
touch_nmi_watchdog();
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
int kgdb_ll_trap(int cmd, const char *str,
|
|
struct pt_regs *regs, long err, int trap, int sig)
|
|
{
|
|
struct die_args args = {
|
|
.regs = regs,
|
|
.str = str,
|
|
.err = err,
|
|
.trapnr = trap,
|
|
.signr = sig,
|
|
|
|
};
|
|
|
|
if (!kgdb_io_module_registered)
|
|
return NOTIFY_DONE;
|
|
|
|
return __kgdb_notify(&args, cmd);
|
|
}
|
|
|
|
static int
|
|
kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
local_irq_save(flags);
|
|
ret = __kgdb_notify(ptr, cmd);
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct notifier_block kgdb_notifier = {
|
|
.notifier_call = kgdb_notify,
|
|
};
|
|
|
|
/**
|
|
* kgdb_arch_init - Perform any architecture specific initialization.
|
|
*
|
|
* This function will handle the initialization of any architecture
|
|
* specific callbacks.
|
|
*/
|
|
int kgdb_arch_init(void)
|
|
{
|
|
int retval;
|
|
|
|
retval = register_die_notifier(&kgdb_notifier);
|
|
if (retval)
|
|
goto out;
|
|
|
|
retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
|
|
0, "kgdb");
|
|
if (retval)
|
|
goto out1;
|
|
|
|
retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
|
|
0, "kgdb");
|
|
|
|
if (retval)
|
|
goto out2;
|
|
|
|
return retval;
|
|
|
|
out2:
|
|
unregister_nmi_handler(NMI_LOCAL, "kgdb");
|
|
out1:
|
|
unregister_die_notifier(&kgdb_notifier);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
static void kgdb_hw_overflow_handler(struct perf_event *event,
|
|
struct perf_sample_data *data, struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
if (breakinfo[i].enabled)
|
|
tsk->thread.debugreg6 |= (DR_TRAP0 << i);
|
|
}
|
|
|
|
void kgdb_arch_late(void)
|
|
{
|
|
int i, cpu;
|
|
struct perf_event_attr attr;
|
|
struct perf_event **pevent;
|
|
|
|
/*
|
|
* Pre-allocate the hw breakpoint structions in the non-atomic
|
|
* portion of kgdb because this operation requires mutexs to
|
|
* complete.
|
|
*/
|
|
hw_breakpoint_init(&attr);
|
|
attr.bp_addr = (unsigned long)kgdb_arch_init;
|
|
attr.bp_len = HW_BREAKPOINT_LEN_1;
|
|
attr.bp_type = HW_BREAKPOINT_W;
|
|
attr.disabled = 1;
|
|
for (i = 0; i < HBP_NUM; i++) {
|
|
if (breakinfo[i].pev)
|
|
continue;
|
|
breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
|
|
if (IS_ERR((void * __force)breakinfo[i].pev)) {
|
|
printk(KERN_ERR "kgdb: Could not allocate hw"
|
|
"breakpoints\nDisabling the kernel debugger\n");
|
|
breakinfo[i].pev = NULL;
|
|
kgdb_arch_exit();
|
|
return;
|
|
}
|
|
for_each_online_cpu(cpu) {
|
|
pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
|
|
pevent[0]->hw.sample_period = 1;
|
|
pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
|
|
if (pevent[0]->destroy != NULL) {
|
|
pevent[0]->destroy = NULL;
|
|
release_bp_slot(*pevent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kgdb_arch_exit - Perform any architecture specific uninitalization.
|
|
*
|
|
* This function will handle the uninitalization of any architecture
|
|
* specific callbacks, for dynamic registration and unregistration.
|
|
*/
|
|
void kgdb_arch_exit(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 4; i++) {
|
|
if (breakinfo[i].pev) {
|
|
unregister_wide_hw_breakpoint(breakinfo[i].pev);
|
|
breakinfo[i].pev = NULL;
|
|
}
|
|
}
|
|
unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
|
|
unregister_nmi_handler(NMI_LOCAL, "kgdb");
|
|
unregister_die_notifier(&kgdb_notifier);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* kgdb_skipexception - Bail out of KGDB when we've been triggered.
|
|
* @exception: Exception vector number
|
|
* @regs: Current &struct pt_regs.
|
|
*
|
|
* On some architectures we need to skip a breakpoint exception when
|
|
* it occurs after a breakpoint has been removed.
|
|
*
|
|
* Skip an int3 exception when it occurs after a breakpoint has been
|
|
* removed. Backtrack eip by 1 since the int3 would have caused it to
|
|
* increment by 1.
|
|
*/
|
|
int kgdb_skipexception(int exception, struct pt_regs *regs)
|
|
{
|
|
if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
|
|
regs->ip -= 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
|
|
{
|
|
if (exception == 3)
|
|
return instruction_pointer(regs) - 1;
|
|
return instruction_pointer(regs);
|
|
}
|
|
|
|
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
|
|
{
|
|
regs->ip = ip;
|
|
}
|
|
|
|
int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
|
|
{
|
|
int err;
|
|
|
|
bpt->type = BP_BREAKPOINT;
|
|
err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
|
|
BREAK_INSTR_SIZE);
|
|
if (err)
|
|
return err;
|
|
err = probe_kernel_write((char *)bpt->bpt_addr,
|
|
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
|
|
if (!err)
|
|
return err;
|
|
/*
|
|
* It is safe to call text_poke_kgdb() because normal kernel execution
|
|
* is stopped on all cores, so long as the text_mutex is not locked.
|
|
*/
|
|
if (mutex_is_locked(&text_mutex))
|
|
return -EBUSY;
|
|
text_poke_kgdb((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
|
|
BREAK_INSTR_SIZE);
|
|
bpt->type = BP_POKE_BREAKPOINT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
|
|
{
|
|
if (bpt->type != BP_POKE_BREAKPOINT)
|
|
goto knl_write;
|
|
/*
|
|
* It is safe to call text_poke_kgdb() because normal kernel execution
|
|
* is stopped on all cores, so long as the text_mutex is not locked.
|
|
*/
|
|
if (mutex_is_locked(&text_mutex))
|
|
goto knl_write;
|
|
text_poke_kgdb((void *)bpt->bpt_addr, bpt->saved_instr,
|
|
BREAK_INSTR_SIZE);
|
|
return 0;
|
|
|
|
knl_write:
|
|
return probe_kernel_write((char *)bpt->bpt_addr,
|
|
(char *)bpt->saved_instr, BREAK_INSTR_SIZE);
|
|
}
|
|
|
|
const struct kgdb_arch arch_kgdb_ops = {
|
|
/* Breakpoint instruction: */
|
|
.gdb_bpt_instr = { 0xcc },
|
|
.flags = KGDB_HW_BREAKPOINT,
|
|
.set_hw_breakpoint = kgdb_set_hw_break,
|
|
.remove_hw_breakpoint = kgdb_remove_hw_break,
|
|
.disable_hw_break = kgdb_disable_hw_debug,
|
|
.remove_all_hw_break = kgdb_remove_all_hw_break,
|
|
.correct_hw_break = kgdb_correct_hw_break,
|
|
};
|