mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 17:06:06 +07:00
eeee78cf77
of the TRACE_DEFINE_ENUM() macro that can be used by tracepoints. Tracepoints have helper functions for the TP_printk() called __print_symbolic() and __print_flags() that lets a numeric number be displayed as a a human comprehensible text. What is placed in the TP_printk() is also shown in the tracepoint format file such that user space tools like perf and trace-cmd can parse the binary data and express the values too. Unfortunately, the way the TRACE_EVENT() macro works, anything placed in the TP_printk() will be shown pretty much exactly as is. The problem arises when enums are used. That's because unlike macros, enums will not be changed into their values by the C pre-processor. Thus, the enum string is exported to the format file, and this makes it useless for user space tools. The TRACE_DEFINE_ENUM() solves this by converting the enum strings in the TP_printk() format into their number, and that is what is shown to user space. For example, the tracepoint tlb_flush currently has this in its format file: __print_symbolic(REC->reason, { TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" }, { TLB_REMOTE_SHOOTDOWN, "remote shootdown" }, { TLB_LOCAL_SHOOTDOWN, "local shootdown" }, { TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" }) After adding: TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH); TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN); TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN); TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN); Its format file will contain this: __print_symbolic(REC->reason, { 0, "flush on task switch" }, { 1, "remote shootdown" }, { 2, "local shootdown" }, { 3, "local mm shootdown" }) -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJVLBTuAAoJEEjnJuOKh9ldjHMIALdRS755TXCZGOf0r7O2akOR wMPeum7C+ae1mH+jCsJKUC0/jUfQKaMt/UxoHlipDgcGg8kD2jtGnGCw4Xlwvdsr y4rFmcTRSl1mo0zDSsg6ujoupHlVYN0+JPjrd7S3cv/llJoY49zcanNLF7S2XLeM dZCtWRLWYpBiWO68ai6AqJTnE/eGFIqBI048qb5Eg8dbK243SSeSIf9Ywhb+VsA+ aq6F7cWI/H6j4tbeza8tAN19dcwenDro5EfCDY8ARQHJu1f6Y3+DLf2imjkd6Aiu JVAoGIjHIpI+djwCZC1u4gi4urjfOqYartrM3Q54tb3YWYqHeNqP2ASI2a4EpYk= =Ixwt -----END PGP SIGNATURE----- Merge tag 'trace-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "Some clean ups and small fixes, but the biggest change is the addition of the TRACE_DEFINE_ENUM() macro that can be used by tracepoints. Tracepoints have helper functions for the TP_printk() called __print_symbolic() and __print_flags() that lets a numeric number be displayed as a a human comprehensible text. What is placed in the TP_printk() is also shown in the tracepoint format file such that user space tools like perf and trace-cmd can parse the binary data and express the values too. Unfortunately, the way the TRACE_EVENT() macro works, anything placed in the TP_printk() will be shown pretty much exactly as is. The problem arises when enums are used. That's because unlike macros, enums will not be changed into their values by the C pre-processor. Thus, the enum string is exported to the format file, and this makes it useless for user space tools. The TRACE_DEFINE_ENUM() solves this by converting the enum strings in the TP_printk() format into their number, and that is what is shown to user space. For example, the tracepoint tlb_flush currently has this in its format file: __print_symbolic(REC->reason, { TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" }, { TLB_REMOTE_SHOOTDOWN, "remote shootdown" }, { TLB_LOCAL_SHOOTDOWN, "local shootdown" }, { TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" }) After adding: TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH); TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN); TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN); TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN); Its format file will contain this: __print_symbolic(REC->reason, { 0, "flush on task switch" }, { 1, "remote shootdown" }, { 2, "local shootdown" }, { 3, "local mm shootdown" })" * tag 'trace-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (27 commits) tracing: Add enum_map file to show enums that have been mapped writeback: Export enums used by tracepoint to user space v4l: Export enums used by tracepoints to user space SUNRPC: Export enums in tracepoints to user space mm: tracing: Export enums in tracepoints to user space irq/tracing: Export enums in tracepoints to user space f2fs: Export the enums in the tracepoints to userspace net/9p/tracing: Export enums in tracepoints to userspace x86/tlb/trace: Export enums in used by tlb_flush tracepoint tracing/samples: Update the trace-event-sample.h with TRACE_DEFINE_ENUM() tracing: Allow for modules to convert their enums to values tracing: Add TRACE_DEFINE_ENUM() macro to map enums to their values tracing: Update trace-event-sample with TRACE_SYSTEM_VAR documentation tracing: Give system name a pointer brcmsmac: Move each system tracepoints to their own header iwlwifi: Move each system tracepoints to their own header mac80211: Move message tracepoints to their own header tracing: Add TRACE_SYSTEM_VAR to xhci-hcd tracing: Add TRACE_SYSTEM_VAR to kvm-s390 tracing: Add TRACE_SYSTEM_VAR to intel-sst ... |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
common | ||
core | ||
dwc2 | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
isp1760 | ||
misc | ||
mon | ||
musb | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
usbip | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("hub_wq"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.