linux_dsm_epyc7002/drivers/net/ethernet/mediatek/mtk_eth_soc.c
John Crispin eece71e8fb net-next: mediatek: don't use intermediate variables to store IRQ masks
The code currently uses variables to store and never modify the bit masks
of interrupts. This is legacy code from an early version of the driver
that supported MIPS based SoCs where the IRQ bits depended on the actual
SoC. As the bits are the same for all ARM based SoCs using this driver we
can remove the intermediate variables.

Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-30 08:52:04 -04:00

1876 lines
44 KiB
C

/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include "mtk_eth_soc.h"
static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
#define MTK_ETHTOOL_STAT(x) { #x, \
offsetof(struct mtk_hw_stats, x) / sizeof(u64) }
/* strings used by ethtool */
static const struct mtk_ethtool_stats {
char str[ETH_GSTRING_LEN];
u32 offset;
} mtk_ethtool_stats[] = {
MTK_ETHTOOL_STAT(tx_bytes),
MTK_ETHTOOL_STAT(tx_packets),
MTK_ETHTOOL_STAT(tx_skip),
MTK_ETHTOOL_STAT(tx_collisions),
MTK_ETHTOOL_STAT(rx_bytes),
MTK_ETHTOOL_STAT(rx_packets),
MTK_ETHTOOL_STAT(rx_overflow),
MTK_ETHTOOL_STAT(rx_fcs_errors),
MTK_ETHTOOL_STAT(rx_short_errors),
MTK_ETHTOOL_STAT(rx_long_errors),
MTK_ETHTOOL_STAT(rx_checksum_errors),
MTK_ETHTOOL_STAT(rx_flow_control_packets),
};
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned reg)
{
return __raw_readl(eth->base + reg);
}
static int mtk_mdio_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS))
return 0;
if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT))
break;
usleep_range(10, 20);
}
dev_err(eth->dev, "mdio: MDIO timeout\n");
return -1;
}
u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr,
u32 phy_register, u32 write_data)
{
if (mtk_mdio_busy_wait(eth))
return -1;
write_data &= 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE |
(phy_register << PHY_IAC_REG_SHIFT) |
(phy_addr << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return -1;
return 0;
}
u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg)
{
u32 d;
if (mtk_mdio_busy_wait(eth))
return 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ |
(phy_reg << PHY_IAC_REG_SHIFT) |
(phy_addr << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return 0xffff;
d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff;
return d;
}
static int mtk_mdio_write(struct mii_bus *bus, int phy_addr,
int phy_reg, u16 val)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_write(eth, phy_addr, phy_reg, val);
}
static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_read(eth, phy_addr, phy_reg);
}
static void mtk_phy_link_adjust(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
u16 lcl_adv = 0, rmt_adv = 0;
u8 flowctrl;
u32 mcr = MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG |
MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN |
MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN |
MAC_MCR_BACKPR_EN;
switch (mac->phy_dev->speed) {
case SPEED_1000:
mcr |= MAC_MCR_SPEED_1000;
break;
case SPEED_100:
mcr |= MAC_MCR_SPEED_100;
break;
};
if (mac->phy_dev->link)
mcr |= MAC_MCR_FORCE_LINK;
if (mac->phy_dev->duplex) {
mcr |= MAC_MCR_FORCE_DPX;
if (mac->phy_dev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (mac->phy_dev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
if (mac->phy_dev->advertising & ADVERTISED_Pause)
lcl_adv |= ADVERTISE_PAUSE_CAP;
if (mac->phy_dev->advertising & ADVERTISED_Asym_Pause)
lcl_adv |= ADVERTISE_PAUSE_ASYM;
flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (flowctrl & FLOW_CTRL_TX)
mcr |= MAC_MCR_FORCE_TX_FC;
if (flowctrl & FLOW_CTRL_RX)
mcr |= MAC_MCR_FORCE_RX_FC;
netif_dbg(mac->hw, link, dev, "rx pause %s, tx pause %s\n",
flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled",
flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled");
}
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
if (mac->phy_dev->link)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
}
static int mtk_phy_connect_node(struct mtk_eth *eth, struct mtk_mac *mac,
struct device_node *phy_node)
{
const __be32 *_addr = NULL;
struct phy_device *phydev;
int phy_mode, addr;
_addr = of_get_property(phy_node, "reg", NULL);
if (!_addr || (be32_to_cpu(*_addr) >= 0x20)) {
pr_err("%s: invalid phy address\n", phy_node->name);
return -EINVAL;
}
addr = be32_to_cpu(*_addr);
phy_mode = of_get_phy_mode(phy_node);
if (phy_mode < 0) {
dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode);
return -EINVAL;
}
phydev = of_phy_connect(eth->netdev[mac->id], phy_node,
mtk_phy_link_adjust, 0, phy_mode);
if (!phydev) {
dev_err(eth->dev, "could not connect to PHY\n");
return -ENODEV;
}
dev_info(eth->dev,
"connected mac %d to PHY at %s [uid=%08x, driver=%s]\n",
mac->id, phydev_name(phydev), phydev->phy_id,
phydev->drv->name);
mac->phy_dev = phydev;
return 0;
}
static int mtk_phy_connect(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
struct device_node *np;
u32 val, ge_mode;
np = of_parse_phandle(mac->of_node, "phy-handle", 0);
if (!np && of_phy_is_fixed_link(mac->of_node))
if (!of_phy_register_fixed_link(mac->of_node))
np = of_node_get(mac->of_node);
if (!np)
return -ENODEV;
switch (of_get_phy_mode(np)) {
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII:
ge_mode = 0;
break;
case PHY_INTERFACE_MODE_MII:
ge_mode = 1;
break;
case PHY_INTERFACE_MODE_RMII:
ge_mode = 2;
break;
default:
dev_err(eth->dev, "invalid phy_mode\n");
return -1;
}
/* put the gmac into the right mode */
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id);
val |= SYSCFG0_GE_MODE(ge_mode, mac->id);
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
mtk_phy_connect_node(eth, mac, np);
mac->phy_dev->autoneg = AUTONEG_ENABLE;
mac->phy_dev->speed = 0;
mac->phy_dev->duplex = 0;
mac->phy_dev->supported &= PHY_GBIT_FEATURES | SUPPORTED_Pause |
SUPPORTED_Asym_Pause;
mac->phy_dev->advertising = mac->phy_dev->supported |
ADVERTISED_Autoneg;
phy_start_aneg(mac->phy_dev);
return 0;
}
static int mtk_mdio_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int err;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
err = 0;
goto err_put_node;
}
eth->mii_bus = mdiobus_alloc();
if (!eth->mii_bus) {
err = -ENOMEM;
goto err_put_node;
}
eth->mii_bus->name = "mdio";
eth->mii_bus->read = mtk_mdio_read;
eth->mii_bus->write = mtk_mdio_write;
eth->mii_bus->priv = eth;
eth->mii_bus->parent = eth->dev;
snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%s", mii_np->name);
err = of_mdiobus_register(eth->mii_bus, mii_np);
if (err)
goto err_free_bus;
return 0;
err_free_bus:
mdiobus_free(eth->mii_bus);
err_put_node:
of_node_put(mii_np);
eth->mii_bus = NULL;
return err;
}
static void mtk_mdio_cleanup(struct mtk_eth *eth)
{
if (!eth->mii_bus)
return;
mdiobus_unregister(eth->mii_bus);
of_node_put(eth->mii_bus->dev.of_node);
mdiobus_free(eth->mii_bus);
}
static inline void mtk_irq_disable(struct mtk_eth *eth, u32 mask)
{
u32 val;
val = mtk_r32(eth, MTK_QDMA_INT_MASK);
mtk_w32(eth, val & ~mask, MTK_QDMA_INT_MASK);
}
static inline void mtk_irq_enable(struct mtk_eth *eth, u32 mask)
{
u32 val;
val = mtk_r32(eth, MTK_QDMA_INT_MASK);
mtk_w32(eth, val | mask, MTK_QDMA_INT_MASK);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
const char *macaddr = dev->dev_addr;
unsigned long flags;
if (ret)
return ret;
spin_lock_irqsave(&mac->hw->page_lock, flags);
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MTK_GDMA_MAC_ADRH(mac->id));
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA_MAC_ADRL(mac->id));
spin_unlock_irqrestore(&mac->hw->page_lock, flags);
return 0;
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = MTK_GDM1_TX_GBCNT;
u64 stats;
base += hw_stats->reg_offset;
u64_stats_update_begin(&hw_stats->syncp);
hw_stats->rx_bytes += mtk_r32(mac->hw, base);
stats = mtk_r32(mac->hw, base + 0x04);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x24);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
stats = mtk_r32(mac->hw, base + 0x34);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static struct rtnl_link_stats64 *mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int start;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
return storage;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MTK_MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH)
mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MTK_MAX_RX_LENGTH);
return buf_size;
}
static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd,
struct mtk_rx_dma *dma_rxd)
{
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
dma_addr_t phy_ring_tail;
int cnt = MTK_DMA_SIZE;
dma_addr_t dma_addr;
int i;
eth->scratch_ring = dma_alloc_coherent(eth->dev,
cnt * sizeof(struct mtk_tx_dma),
&eth->phy_scratch_ring,
GFP_ATOMIC | __GFP_ZERO);
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE,
GFP_KERNEL);
if (unlikely(!eth->scratch_head))
return -ENOMEM;
dma_addr = dma_map_single(eth->dev,
eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
phy_ring_tail = eth->phy_scratch_ring +
(sizeof(struct mtk_tx_dma) * (cnt - 1));
for (i = 0; i < cnt; i++) {
eth->scratch_ring[i].txd1 =
(dma_addr + (i * MTK_QDMA_PAGE_SIZE));
if (i < cnt - 1)
eth->scratch_ring[i].txd2 = (eth->phy_scratch_ring +
((i + 1) * sizeof(struct mtk_tx_dma)));
eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE);
}
mtk_w32(eth, eth->phy_scratch_ring, MTK_QDMA_FQ_HEAD);
mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);
return 0;
}
static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
void *ret = ring->dma;
return ret + (desc - ring->phys);
}
static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
int idx = txd - ring->dma;
return &ring->buf[idx];
}
static void mtk_tx_unmap(struct device *dev, struct mtk_tx_buf *tx_buf)
{
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
tx_buf->flags = 0;
if (tx_buf->skb &&
(tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_buf *tx_buf;
dma_addr_t mapped_addr;
unsigned int nr_frags;
int i, n_desc = 1;
u32 txd4 = 0;
itxd = ring->next_free;
if (itxd == ring->last_free)
return -ENOMEM;
/* set the forward port */
txd4 |= (mac->id + 1) << TX_DMA_FPORT_SHIFT;
tx_buf = mtk_desc_to_tx_buf(ring, itxd);
memset(tx_buf, 0, sizeof(*tx_buf));
if (gso)
txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb))
txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb);
mapped_addr = dma_map_single(&dev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
return -ENOMEM;
WRITE_ONCE(itxd->txd1, mapped_addr);
tx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
txd = itxd;
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool last_frag = false;
unsigned int frag_map_size;
txd = mtk_qdma_phys_to_virt(ring, txd->txd2);
if (txd == ring->last_free)
goto err_dma;
n_desc++;
frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_dma;
if (i == nr_frags - 1 &&
(frag_size - frag_map_size) == 0)
last_frag = true;
WRITE_ONCE(txd->txd1, mapped_addr);
WRITE_ONCE(txd->txd3, (TX_DMA_SWC |
TX_DMA_PLEN0(frag_map_size) |
last_frag * TX_DMA_LS0));
WRITE_ONCE(txd->txd4, 0);
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
tx_buf = mtk_desc_to_tx_buf(ring, txd);
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
frag_size -= frag_map_size;
offset += frag_map_size;
}
}
/* store skb to cleanup */
tx_buf->skb = skb;
WRITE_ONCE(itxd->txd4, txd4);
WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
(!nr_frags * TX_DMA_LS0)));
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2);
atomic_sub(n_desc, &ring->free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, itxd);
/* unmap dma */
mtk_tx_unmap(&dev->dev, tx_buf);
itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
struct skb_frag_struct *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(frag->size, MTK_TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return nfrags;
}
static int mtk_queue_stopped(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
if (netif_queue_stopped(eth->netdev[i]))
return 1;
}
return 0;
}
static void mtk_wake_queue(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
netif_wake_queue(eth->netdev[i]);
}
}
static void mtk_stop_queue(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
netif_stop_queue(eth->netdev[i]);
}
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
unsigned long flags;
bool gso = false;
int tx_num;
/* normally we can rely on the stack not calling this more than once,
* however we have 2 queues running on the same ring so we need to lock
* the ring access
*/
spin_lock_irqsave(&eth->page_lock, flags);
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->free_count) <= tx_num)) {
mtk_stop_queue(eth);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
spin_unlock_irqrestore(&eth->page_lock, flags);
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
if (unlikely(atomic_read(&ring->free_count) <= ring->thresh))
mtk_stop_queue(eth);
spin_unlock_irqrestore(&eth->page_lock, flags);
return NETDEV_TX_OK;
drop:
spin_unlock_irqrestore(&eth->page_lock, flags);
stats->tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring;
int idx = ring->calc_idx;
struct sk_buff *skb;
u8 *data, *new_data;
struct mtk_rx_dma *rxd, trxd;
int done = 0;
while (done < budget) {
struct net_device *netdev;
unsigned int pktlen;
dma_addr_t dma_addr;
int mac = 0;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &ring->dma[idx];
data = ring->data[idx];
mtk_rx_get_desc(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* find out which mac the packet come from. values start at 1 */
mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
RX_DMA_FPORT_MASK;
mac--;
netdev = eth->netdev[mac];
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(&eth->netdev[mac]->dev,
new_data + NET_SKB_PAD,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
skb_free_frag(new_data);
netdev->stats.rx_dropped++;
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
put_page(virt_to_head_page(new_data));
netdev->stats.rx_dropped++;
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(&netdev->dev, trxd.rxd1,
ring->buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & RX_DMA_L4_VALID)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
napi_gro_receive(napi, skb);
ring->data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size);
ring->calc_idx = idx;
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
mtk_w32(eth, ring->calc_idx, MTK_QRX_CRX_IDX0);
done++;
}
if (done < budget)
mtk_w32(eth, MTK_RX_DONE_INT, MTK_QMTK_INT_STATUS);
return done;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget, bool *tx_again)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
int total = 0, done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
u32 cpu, dma;
static int condition;
int i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
dma = mtk_r32(eth, MTK_QTX_DRX_PTR);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac;
desc = mtk_qdma_phys_to_virt(ring, desc->txd2);
if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0)
break;
mac = (desc->txd4 >> TX_DMA_FPORT_SHIFT) &
TX_DMA_FPORT_MASK;
mac--;
tx_buf = mtk_desc_to_tx_buf(ring, desc);
skb = tx_buf->skb;
if (!skb) {
condition = 1;
break;
}
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_tx_unmap(eth->dev, tx_buf);
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = next_cpu;
}
mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i] || !done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
/* read hw index again make sure no new tx packet */
if (cpu != dma || cpu != mtk_r32(eth, MTK_QTX_DRX_PTR))
*tx_again = true;
else
mtk_w32(eth, MTK_TX_DONE_INT, MTK_QMTK_INT_STATUS);
if (!total)
return 0;
if (mtk_queue_stopped(eth) &&
(atomic_read(&ring->free_count) > ring->thresh))
mtk_wake_queue(eth);
return total;
}
static int mtk_poll(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
u32 status, status2, mask;
int tx_done, rx_done;
bool tx_again = false;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
status2 = mtk_r32(eth, MTK_INT_STATUS2);
tx_done = 0;
rx_done = 0;
tx_again = 0;
if (status & MTK_TX_DONE_INT)
tx_done = mtk_poll_tx(eth, budget, &tx_again);
if (status & MTK_RX_DONE_INT)
rx_done = mtk_poll_rx(napi, budget, eth);
if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) {
mtk_stats_update(eth);
mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF),
MTK_INT_STATUS2);
}
if (unlikely(netif_msg_intr(eth))) {
mask = mtk_r32(eth, MTK_QDMA_INT_MASK);
netdev_info(eth->netdev[0],
"done tx %d, rx %d, intr 0x%08x/0x%x\n",
tx_done, rx_done, status, mask);
}
if (tx_again || rx_done == budget)
return budget;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
if (status & (tx_intr | rx_intr))
return budget;
napi_complete(napi);
mtk_irq_enable(eth, MTK_RX_DONE_INT | MTK_RX_DONE_INT);
return rx_done;
}
static int mtk_tx_alloc(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = sizeof(*ring->dma);
ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf),
GFP_KERNEL);
if (!ring->buf)
goto no_tx_mem;
ring->dma = dma_alloc_coherent(eth->dev,
MTK_DMA_SIZE * sz,
&ring->phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->dma)
goto no_tx_mem;
memset(ring->dma, 0, MTK_DMA_SIZE * sz);
for (i = 0; i < MTK_DMA_SIZE; i++) {
int next = (i + 1) % MTK_DMA_SIZE;
u32 next_ptr = ring->phys + next * sz;
ring->dma[i].txd2 = next_ptr;
ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
}
atomic_set(&ring->free_count, MTK_DMA_SIZE - 2);
ring->next_free = &ring->dma[0];
ring->last_free = &ring->dma[MTK_DMA_SIZE - 1];
ring->thresh = MAX_SKB_FRAGS;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR);
mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
MTK_QTX_CRX_PTR);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
MTK_QTX_DRX_PTR);
return 0;
no_tx_mem:
return -ENOMEM;
}
static void mtk_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->buf) {
for (i = 0; i < MTK_DMA_SIZE; i++)
mtk_tx_unmap(eth->dev, &ring->buf[i]);
kfree(ring->buf);
ring->buf = NULL;
}
if (ring->dma) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
static int mtk_rx_alloc(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring;
int i;
ring->frag_size = mtk_max_frag_size(ETH_DATA_LEN);
ring->buf_size = mtk_max_buf_size(ring->frag_size);
ring->data = kcalloc(MTK_DMA_SIZE, sizeof(*ring->data),
GFP_KERNEL);
if (!ring->data)
return -ENOMEM;
for (i = 0; i < MTK_DMA_SIZE; i++) {
ring->data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->data[i])
return -ENOMEM;
}
ring->dma = dma_alloc_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
&ring->phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->dma)
return -ENOMEM;
for (i = 0; i < MTK_DMA_SIZE; i++) {
dma_addr_t dma_addr = dma_map_single(eth->dev,
ring->data[i] + NET_SKB_PAD,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
ring->dma[i].rxd1 = (unsigned int)dma_addr;
ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size);
}
ring->calc_idx = MTK_DMA_SIZE - 1;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, eth->rx_ring.phys, MTK_QRX_BASE_PTR0);
mtk_w32(eth, MTK_DMA_SIZE, MTK_QRX_MAX_CNT0);
mtk_w32(eth, eth->rx_ring.calc_idx, MTK_QRX_CRX_IDX0);
mtk_w32(eth, MTK_PST_DRX_IDX0, MTK_QDMA_RST_IDX);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
return 0;
}
static void mtk_rx_clean(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring = &eth->rx_ring;
int i;
if (ring->data && ring->dma) {
for (i = 0; i < MTK_DMA_SIZE; i++) {
if (!ring->data[i])
continue;
if (!ring->dma[i].rxd1)
continue;
dma_unmap_single(eth->dev,
ring->dma[i].rxd1,
ring->buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->data[i]);
}
kfree(ring->data);
ring->data = NULL;
}
if (ring->dma) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
/* wait for DMA to finish whatever it is doing before we start using it again */
static int mtk_dma_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) &
(MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)))
return 0;
if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT))
break;
}
dev_err(eth->dev, "DMA init timeout\n");
return -1;
}
static int mtk_dma_init(struct mtk_eth *eth)
{
int err;
if (mtk_dma_busy_wait(eth))
return -EBUSY;
/* QDMA needs scratch memory for internal reordering of the
* descriptors
*/
err = mtk_init_fq_dma(eth);
if (err)
return err;
err = mtk_tx_alloc(eth);
if (err)
return err;
err = mtk_rx_alloc(eth);
if (err)
return err;
/* Enable random early drop and set drop threshold automatically */
mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN,
MTK_QDMA_FC_THRES);
mtk_w32(eth, 0x0, MTK_QDMA_HRED2);
return 0;
}
static void mtk_dma_free(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
if (eth->scratch_ring) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(struct mtk_tx_dma),
eth->scratch_ring,
eth->phy_scratch_ring);
eth->scratch_ring = NULL;
eth->phy_scratch_ring = 0;
}
mtk_tx_clean(eth);
mtk_rx_clean(eth);
kfree(eth->scratch_head);
}
static void mtk_tx_timeout(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
eth->netdev[mac->id]->stats.tx_errors++;
netif_err(eth, tx_err, dev,
"transmit timed out\n");
schedule_work(&eth->pending_work);
}
static irqreturn_t mtk_handle_irq(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
u32 status;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
if (unlikely(!status))
return IRQ_NONE;
if (likely(status & (MTK_RX_DONE_INT | MTK_TX_DONE_INT))) {
if (likely(napi_schedule_prep(&eth->rx_napi)))
__napi_schedule(&eth->rx_napi);
} else {
mtk_w32(eth, status, MTK_QMTK_INT_STATUS);
}
mtk_irq_disable(eth, (MTK_RX_DONE_INT | MTK_TX_DONE_INT));
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 int_mask = MTK_TX_DONE_INT | MTK_RX_DONE_INT;
mtk_irq_disable(eth, int_mask);
mtk_handle_irq(dev->irq, dev);
mtk_irq_enable(eth, int_mask);
}
#endif
static int mtk_start_dma(struct mtk_eth *eth)
{
int err;
err = mtk_dma_init(eth);
if (err) {
mtk_dma_free(eth);
return err;
}
mtk_w32(eth,
MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN |
MTK_RX_2B_OFFSET | MTK_DMA_SIZE_16DWORDS |
MTK_RX_BT_32DWORDS | MTK_NDP_CO_PRO,
MTK_QDMA_GLO_CFG);
return 0;
}
static int mtk_open(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
/* we run 2 netdevs on the same dma ring so we only bring it up once */
if (!atomic_read(&eth->dma_refcnt)) {
int err = mtk_start_dma(eth);
if (err)
return err;
napi_enable(&eth->rx_napi);
mtk_irq_enable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT);
}
atomic_inc(&eth->dma_refcnt);
phy_start(mac->phy_dev);
netif_start_queue(dev);
return 0;
}
static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
unsigned long flags;
u32 val;
int i;
/* stop the dma engine */
spin_lock_irqsave(&eth->page_lock, flags);
val = mtk_r32(eth, glo_cfg);
mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
glo_cfg);
spin_unlock_irqrestore(&eth->page_lock, flags);
/* wait for dma stop */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, glo_cfg);
if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
}
static int mtk_stop(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
netif_tx_disable(dev);
phy_stop(mac->phy_dev);
/* only shutdown DMA if this is the last user */
if (!atomic_dec_and_test(&eth->dma_refcnt))
return 0;
mtk_irq_disable(eth, MTK_TX_DONE_INT | MTK_RX_DONE_INT);
napi_disable(&eth->rx_napi);
mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);
mtk_dma_free(eth);
return 0;
}
static int __init mtk_hw_init(struct mtk_eth *eth)
{
int err, i;
/* reset the frame engine */
reset_control_assert(eth->rstc);
usleep_range(10, 20);
reset_control_deassert(eth->rstc);
usleep_range(10, 20);
/* Set GE2 driving and slew rate */
regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00);
/* set GE2 TDSEL */
regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5);
/* set GE2 TUNE */
regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0);
/* GE1, Force 1000M/FD, FC ON */
mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(0));
/* GE2, Force 1000M/FD, FC ON */
mtk_w32(eth, MAC_MCR_FIXED_LINK, MTK_MAC_MCR(1));
/* Enable RX VLan Offloading */
mtk_w32(eth, 1, MTK_CDMP_EG_CTRL);
err = devm_request_irq(eth->dev, eth->irq, mtk_handle_irq, 0,
dev_name(eth->dev), eth);
if (err)
return err;
err = mtk_mdio_init(eth);
if (err)
return err;
/* disable delay and normal interrupt */
mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
mtk_irq_disable(eth, ~0);
mtk_w32(eth, RST_GL_PSE, MTK_RST_GL);
mtk_w32(eth, 0, MTK_RST_GL);
/* FE int grouping */
mtk_w32(eth, 0, MTK_FE_INT_GRP);
for (i = 0; i < 2; i++) {
u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i));
/* setup the forward port to send frame to QDMA */
val &= ~0xffff;
val |= 0x5555;
/* Enable RX checksum */
val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN;
/* setup the mac dma */
mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i));
}
return 0;
}
static int __init mtk_init(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const char *mac_addr;
mac_addr = of_get_mac_address(mac->of_node);
if (mac_addr)
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
random_ether_addr(dev->dev_addr);
dev_err(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
dev->addr_assign_type = NET_ADDR_RANDOM;
}
return mtk_phy_connect(mac);
}
static void mtk_uninit(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
phy_disconnect(mac->phy_dev);
mtk_mdio_cleanup(eth);
mtk_irq_disable(eth, ~0);
free_irq(dev->irq, dev);
}
static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(mac->phy_dev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static void mtk_pending_work(struct work_struct *work)
{
struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work);
int err, i;
unsigned long restart = 0;
rtnl_lock();
/* stop all devices to make sure that dma is properly shut down */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
mtk_stop(eth->netdev[i]);
__set_bit(i, &restart);
}
/* restart DMA and enable IRQs */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!test_bit(i, &restart))
continue;
err = mtk_open(eth->netdev[i]);
if (err) {
netif_alert(eth, ifup, eth->netdev[i],
"Driver up/down cycle failed, closing device.\n");
dev_close(eth->netdev[i]);
}
}
rtnl_unlock();
}
static int mtk_cleanup(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
unregister_netdev(eth->netdev[i]);
free_netdev(eth->netdev[i]);
}
cancel_work_sync(&eth->pending_work);
return 0;
}
static int mtk_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
err = phy_read_status(mac->phy_dev);
if (err)
return -ENODEV;
return phy_ethtool_gset(mac->phy_dev, cmd);
}
static int mtk_set_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
if (cmd->phy_address != mac->phy_dev->mdio.addr) {
mac->phy_dev = mdiobus_get_phy(mac->hw->mii_bus,
cmd->phy_address);
if (!mac->phy_dev)
return -ENODEV;
}
return phy_ethtool_sset(mac->phy_dev, cmd);
}
static void mtk_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct mtk_mac *mac = netdev_priv(dev);
strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver));
strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info));
info->n_stats = ARRAY_SIZE(mtk_ethtool_stats);
}
static u32 mtk_get_msglevel(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return mac->hw->msg_enable;
}
static void mtk_set_msglevel(struct net_device *dev, u32 value)
{
struct mtk_mac *mac = netdev_priv(dev);
mac->hw->msg_enable = value;
}
static int mtk_nway_reset(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return genphy_restart_aneg(mac->phy_dev);
}
static u32 mtk_get_link(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
err = genphy_update_link(mac->phy_dev);
if (err)
return ethtool_op_get_link(dev);
return mac->phy_dev->link;
}
static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) {
memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int mtk_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(mtk_ethtool_stats);
default:
return -EOPNOTSUPP;
}
}
static void mtk_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hwstats = mac->hw_stats;
u64 *data_src, *data_dst;
unsigned int start;
int i;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock(&hwstats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock(&hwstats->stats_lock);
}
}
do {
data_src = (u64*)hwstats;
data_dst = data;
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++)
*data_dst++ = *(data_src + mtk_ethtool_stats[i].offset);
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
}
static struct ethtool_ops mtk_ethtool_ops = {
.get_settings = mtk_get_settings,
.set_settings = mtk_set_settings,
.get_drvinfo = mtk_get_drvinfo,
.get_msglevel = mtk_get_msglevel,
.set_msglevel = mtk_set_msglevel,
.nway_reset = mtk_nway_reset,
.get_link = mtk_get_link,
.get_strings = mtk_get_strings,
.get_sset_count = mtk_get_sset_count,
.get_ethtool_stats = mtk_get_ethtool_stats,
};
static const struct net_device_ops mtk_netdev_ops = {
.ndo_init = mtk_init,
.ndo_uninit = mtk_uninit,
.ndo_open = mtk_open,
.ndo_stop = mtk_stop,
.ndo_start_xmit = mtk_start_xmit,
.ndo_set_mac_address = mtk_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mtk_do_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_tx_timeout = mtk_tx_timeout,
.ndo_get_stats64 = mtk_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mtk_poll_controller,
#endif
};
static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
struct mtk_mac *mac;
const __be32 *_id = of_get_property(np, "reg", NULL);
int id, err;
if (!_id) {
dev_err(eth->dev, "missing mac id\n");
return -EINVAL;
}
id = be32_to_cpup(_id);
if (id >= MTK_MAC_COUNT) {
dev_err(eth->dev, "%d is not a valid mac id\n", id);
return -EINVAL;
}
if (eth->netdev[id]) {
dev_err(eth->dev, "duplicate mac id found: %d\n", id);
return -EINVAL;
}
eth->netdev[id] = alloc_etherdev(sizeof(*mac));
if (!eth->netdev[id]) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
mac = netdev_priv(eth->netdev[id]);
eth->mac[id] = mac;
mac->id = id;
mac->hw = eth;
mac->of_node = np;
mac->hw_stats = devm_kzalloc(eth->dev,
sizeof(*mac->hw_stats),
GFP_KERNEL);
if (!mac->hw_stats) {
dev_err(eth->dev, "failed to allocate counter memory\n");
err = -ENOMEM;
goto free_netdev;
}
spin_lock_init(&mac->hw_stats->stats_lock);
mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
SET_NETDEV_DEV(eth->netdev[id], eth->dev);
eth->netdev[id]->watchdog_timeo = 5 * HZ;
eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
eth->netdev[id]->base_addr = (unsigned long)eth->base;
eth->netdev[id]->vlan_features = MTK_HW_FEATURES &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
eth->netdev[id]->features |= MTK_HW_FEATURES;
eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops;
err = register_netdev(eth->netdev[id]);
if (err) {
dev_err(eth->dev, "error bringing up device\n");
goto free_netdev;
}
eth->netdev[id]->irq = eth->irq;
netif_info(eth, probe, eth->netdev[id],
"mediatek frame engine at 0x%08lx, irq %d\n",
eth->netdev[id]->base_addr, eth->netdev[id]->irq);
return 0;
free_netdev:
free_netdev(eth->netdev[id]);
return err;
}
static int mtk_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct device_node *mac_np;
const struct of_device_id *match;
struct mtk_soc_data *soc;
struct mtk_eth *eth;
int err;
match = of_match_device(of_mtk_match, &pdev->dev);
soc = (struct mtk_soc_data *)match->data;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(eth->base))
return PTR_ERR(eth->base);
spin_lock_init(&eth->page_lock);
eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,ethsys");
if (IS_ERR(eth->ethsys)) {
dev_err(&pdev->dev, "no ethsys regmap found\n");
return PTR_ERR(eth->ethsys);
}
eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,pctl");
if (IS_ERR(eth->pctl)) {
dev_err(&pdev->dev, "no pctl regmap found\n");
return PTR_ERR(eth->pctl);
}
eth->rstc = devm_reset_control_get(&pdev->dev, "eth");
if (IS_ERR(eth->rstc)) {
dev_err(&pdev->dev, "no eth reset found\n");
return PTR_ERR(eth->rstc);
}
eth->irq = platform_get_irq(pdev, 0);
if (eth->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
return -ENXIO;
}
eth->clk_ethif = devm_clk_get(&pdev->dev, "ethif");
eth->clk_esw = devm_clk_get(&pdev->dev, "esw");
eth->clk_gp1 = devm_clk_get(&pdev->dev, "gp1");
eth->clk_gp2 = devm_clk_get(&pdev->dev, "gp2");
if (IS_ERR(eth->clk_esw) || IS_ERR(eth->clk_gp1) ||
IS_ERR(eth->clk_gp2) || IS_ERR(eth->clk_ethif))
return -ENODEV;
clk_prepare_enable(eth->clk_ethif);
clk_prepare_enable(eth->clk_esw);
clk_prepare_enable(eth->clk_gp1);
clk_prepare_enable(eth->clk_gp2);
eth->dev = &pdev->dev;
eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
INIT_WORK(&eth->pending_work, mtk_pending_work);
err = mtk_hw_init(eth);
if (err)
return err;
for_each_child_of_node(pdev->dev.of_node, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
if (!of_device_is_available(mac_np))
continue;
err = mtk_add_mac(eth, mac_np);
if (err)
goto err_free_dev;
}
/* we run 2 devices on the same DMA ring so we need a dummy device
* for NAPI to work
*/
init_dummy_netdev(&eth->dummy_dev);
netif_napi_add(&eth->dummy_dev, &eth->rx_napi, mtk_poll,
MTK_NAPI_WEIGHT);
platform_set_drvdata(pdev, eth);
return 0;
err_free_dev:
mtk_cleanup(eth);
return err;
}
static int mtk_remove(struct platform_device *pdev)
{
struct mtk_eth *eth = platform_get_drvdata(pdev);
clk_disable_unprepare(eth->clk_ethif);
clk_disable_unprepare(eth->clk_esw);
clk_disable_unprepare(eth->clk_gp1);
clk_disable_unprepare(eth->clk_gp2);
netif_napi_del(&eth->rx_napi);
mtk_cleanup(eth);
platform_set_drvdata(pdev, NULL);
return 0;
}
const struct of_device_id of_mtk_match[] = {
{ .compatible = "mediatek,mt7623-eth" },
{},
};
static struct platform_driver mtk_driver = {
.probe = mtk_probe,
.remove = mtk_remove,
.driver = {
.name = "mtk_soc_eth",
.owner = THIS_MODULE,
.of_match_table = of_mtk_match,
},
};
module_platform_driver(mtk_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");