mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 07:39:32 +07:00
6eae29e7e7
Signed-off-by: Eric Biggers <ebiggers3@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1623 lines
55 KiB
C
1623 lines
55 KiB
C
/*
|
|
* Scatterlist Cryptographic API.
|
|
*
|
|
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
|
|
* Copyright (c) 2002 David S. Miller (davem@redhat.com)
|
|
* Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*
|
|
* Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
|
|
* and Nettle, by Niels Möller.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
*/
|
|
#ifndef _LINUX_CRYPTO_H
|
|
#define _LINUX_CRYPTO_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
/*
|
|
* Autoloaded crypto modules should only use a prefixed name to avoid allowing
|
|
* arbitrary modules to be loaded. Loading from userspace may still need the
|
|
* unprefixed names, so retains those aliases as well.
|
|
* This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
|
|
* gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
|
|
* expands twice on the same line. Instead, use a separate base name for the
|
|
* alias.
|
|
*/
|
|
#define MODULE_ALIAS_CRYPTO(name) \
|
|
__MODULE_INFO(alias, alias_userspace, name); \
|
|
__MODULE_INFO(alias, alias_crypto, "crypto-" name)
|
|
|
|
/*
|
|
* Algorithm masks and types.
|
|
*/
|
|
#define CRYPTO_ALG_TYPE_MASK 0x0000000f
|
|
#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
|
|
#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
|
|
#define CRYPTO_ALG_TYPE_AEAD 0x00000003
|
|
#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
|
|
#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
|
|
#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
|
|
#define CRYPTO_ALG_TYPE_DIGEST 0x00000008
|
|
#define CRYPTO_ALG_TYPE_HASH 0x00000008
|
|
#define CRYPTO_ALG_TYPE_SHASH 0x00000009
|
|
#define CRYPTO_ALG_TYPE_AHASH 0x0000000a
|
|
#define CRYPTO_ALG_TYPE_RNG 0x0000000c
|
|
#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
|
|
|
|
#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
|
|
#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
|
|
#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
|
|
|
|
#define CRYPTO_ALG_LARVAL 0x00000010
|
|
#define CRYPTO_ALG_DEAD 0x00000020
|
|
#define CRYPTO_ALG_DYING 0x00000040
|
|
#define CRYPTO_ALG_ASYNC 0x00000080
|
|
|
|
/*
|
|
* Set this bit if and only if the algorithm requires another algorithm of
|
|
* the same type to handle corner cases.
|
|
*/
|
|
#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
|
|
|
|
/*
|
|
* This bit is set for symmetric key ciphers that have already been wrapped
|
|
* with a generic IV generator to prevent them from being wrapped again.
|
|
*/
|
|
#define CRYPTO_ALG_GENIV 0x00000200
|
|
|
|
/*
|
|
* Set if the algorithm has passed automated run-time testing. Note that
|
|
* if there is no run-time testing for a given algorithm it is considered
|
|
* to have passed.
|
|
*/
|
|
|
|
#define CRYPTO_ALG_TESTED 0x00000400
|
|
|
|
/*
|
|
* Set if the algorithm is an instance that is build from templates.
|
|
*/
|
|
#define CRYPTO_ALG_INSTANCE 0x00000800
|
|
|
|
/* Set this bit if the algorithm provided is hardware accelerated but
|
|
* not available to userspace via instruction set or so.
|
|
*/
|
|
#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
|
|
|
|
/*
|
|
* Mark a cipher as a service implementation only usable by another
|
|
* cipher and never by a normal user of the kernel crypto API
|
|
*/
|
|
#define CRYPTO_ALG_INTERNAL 0x00002000
|
|
|
|
/*
|
|
* Transform masks and values (for crt_flags).
|
|
*/
|
|
#define CRYPTO_TFM_REQ_MASK 0x000fff00
|
|
#define CRYPTO_TFM_RES_MASK 0xfff00000
|
|
|
|
#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
|
|
#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
|
|
#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
|
|
#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
|
|
#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
|
|
#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
|
|
#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
|
|
#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
|
|
|
|
/*
|
|
* Miscellaneous stuff.
|
|
*/
|
|
#define CRYPTO_MAX_ALG_NAME 64
|
|
|
|
/*
|
|
* The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
|
|
* declaration) is used to ensure that the crypto_tfm context structure is
|
|
* aligned correctly for the given architecture so that there are no alignment
|
|
* faults for C data types. In particular, this is required on platforms such
|
|
* as arm where pointers are 32-bit aligned but there are data types such as
|
|
* u64 which require 64-bit alignment.
|
|
*/
|
|
#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
|
|
|
|
#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
|
|
|
|
struct scatterlist;
|
|
struct crypto_ablkcipher;
|
|
struct crypto_async_request;
|
|
struct crypto_blkcipher;
|
|
struct crypto_tfm;
|
|
struct crypto_type;
|
|
struct skcipher_givcrypt_request;
|
|
|
|
typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
|
|
|
|
/**
|
|
* DOC: Block Cipher Context Data Structures
|
|
*
|
|
* These data structures define the operating context for each block cipher
|
|
* type.
|
|
*/
|
|
|
|
struct crypto_async_request {
|
|
struct list_head list;
|
|
crypto_completion_t complete;
|
|
void *data;
|
|
struct crypto_tfm *tfm;
|
|
|
|
u32 flags;
|
|
};
|
|
|
|
struct ablkcipher_request {
|
|
struct crypto_async_request base;
|
|
|
|
unsigned int nbytes;
|
|
|
|
void *info;
|
|
|
|
struct scatterlist *src;
|
|
struct scatterlist *dst;
|
|
|
|
void *__ctx[] CRYPTO_MINALIGN_ATTR;
|
|
};
|
|
|
|
struct blkcipher_desc {
|
|
struct crypto_blkcipher *tfm;
|
|
void *info;
|
|
u32 flags;
|
|
};
|
|
|
|
struct cipher_desc {
|
|
struct crypto_tfm *tfm;
|
|
void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
|
|
const u8 *src, unsigned int nbytes);
|
|
void *info;
|
|
};
|
|
|
|
/**
|
|
* DOC: Block Cipher Algorithm Definitions
|
|
*
|
|
* These data structures define modular crypto algorithm implementations,
|
|
* managed via crypto_register_alg() and crypto_unregister_alg().
|
|
*/
|
|
|
|
/**
|
|
* struct ablkcipher_alg - asynchronous block cipher definition
|
|
* @min_keysize: Minimum key size supported by the transformation. This is the
|
|
* smallest key length supported by this transformation algorithm.
|
|
* This must be set to one of the pre-defined values as this is
|
|
* not hardware specific. Possible values for this field can be
|
|
* found via git grep "_MIN_KEY_SIZE" include/crypto/
|
|
* @max_keysize: Maximum key size supported by the transformation. This is the
|
|
* largest key length supported by this transformation algorithm.
|
|
* This must be set to one of the pre-defined values as this is
|
|
* not hardware specific. Possible values for this field can be
|
|
* found via git grep "_MAX_KEY_SIZE" include/crypto/
|
|
* @setkey: Set key for the transformation. This function is used to either
|
|
* program a supplied key into the hardware or store the key in the
|
|
* transformation context for programming it later. Note that this
|
|
* function does modify the transformation context. This function can
|
|
* be called multiple times during the existence of the transformation
|
|
* object, so one must make sure the key is properly reprogrammed into
|
|
* the hardware. This function is also responsible for checking the key
|
|
* length for validity. In case a software fallback was put in place in
|
|
* the @cra_init call, this function might need to use the fallback if
|
|
* the algorithm doesn't support all of the key sizes.
|
|
* @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
|
|
* the supplied scatterlist containing the blocks of data. The crypto
|
|
* API consumer is responsible for aligning the entries of the
|
|
* scatterlist properly and making sure the chunks are correctly
|
|
* sized. In case a software fallback was put in place in the
|
|
* @cra_init call, this function might need to use the fallback if
|
|
* the algorithm doesn't support all of the key sizes. In case the
|
|
* key was stored in transformation context, the key might need to be
|
|
* re-programmed into the hardware in this function. This function
|
|
* shall not modify the transformation context, as this function may
|
|
* be called in parallel with the same transformation object.
|
|
* @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
|
|
* and the conditions are exactly the same.
|
|
* @givencrypt: Update the IV for encryption. With this function, a cipher
|
|
* implementation may provide the function on how to update the IV
|
|
* for encryption.
|
|
* @givdecrypt: Update the IV for decryption. This is the reverse of
|
|
* @givencrypt .
|
|
* @geniv: The transformation implementation may use an "IV generator" provided
|
|
* by the kernel crypto API. Several use cases have a predefined
|
|
* approach how IVs are to be updated. For such use cases, the kernel
|
|
* crypto API provides ready-to-use implementations that can be
|
|
* referenced with this variable.
|
|
* @ivsize: IV size applicable for transformation. The consumer must provide an
|
|
* IV of exactly that size to perform the encrypt or decrypt operation.
|
|
*
|
|
* All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
|
|
* mandatory and must be filled.
|
|
*/
|
|
struct ablkcipher_alg {
|
|
int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
|
|
unsigned int keylen);
|
|
int (*encrypt)(struct ablkcipher_request *req);
|
|
int (*decrypt)(struct ablkcipher_request *req);
|
|
int (*givencrypt)(struct skcipher_givcrypt_request *req);
|
|
int (*givdecrypt)(struct skcipher_givcrypt_request *req);
|
|
|
|
const char *geniv;
|
|
|
|
unsigned int min_keysize;
|
|
unsigned int max_keysize;
|
|
unsigned int ivsize;
|
|
};
|
|
|
|
/**
|
|
* struct blkcipher_alg - synchronous block cipher definition
|
|
* @min_keysize: see struct ablkcipher_alg
|
|
* @max_keysize: see struct ablkcipher_alg
|
|
* @setkey: see struct ablkcipher_alg
|
|
* @encrypt: see struct ablkcipher_alg
|
|
* @decrypt: see struct ablkcipher_alg
|
|
* @geniv: see struct ablkcipher_alg
|
|
* @ivsize: see struct ablkcipher_alg
|
|
*
|
|
* All fields except @geniv and @ivsize are mandatory and must be filled.
|
|
*/
|
|
struct blkcipher_alg {
|
|
int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
|
|
unsigned int keylen);
|
|
int (*encrypt)(struct blkcipher_desc *desc,
|
|
struct scatterlist *dst, struct scatterlist *src,
|
|
unsigned int nbytes);
|
|
int (*decrypt)(struct blkcipher_desc *desc,
|
|
struct scatterlist *dst, struct scatterlist *src,
|
|
unsigned int nbytes);
|
|
|
|
const char *geniv;
|
|
|
|
unsigned int min_keysize;
|
|
unsigned int max_keysize;
|
|
unsigned int ivsize;
|
|
};
|
|
|
|
/**
|
|
* struct cipher_alg - single-block symmetric ciphers definition
|
|
* @cia_min_keysize: Minimum key size supported by the transformation. This is
|
|
* the smallest key length supported by this transformation
|
|
* algorithm. This must be set to one of the pre-defined
|
|
* values as this is not hardware specific. Possible values
|
|
* for this field can be found via git grep "_MIN_KEY_SIZE"
|
|
* include/crypto/
|
|
* @cia_max_keysize: Maximum key size supported by the transformation. This is
|
|
* the largest key length supported by this transformation
|
|
* algorithm. This must be set to one of the pre-defined values
|
|
* as this is not hardware specific. Possible values for this
|
|
* field can be found via git grep "_MAX_KEY_SIZE"
|
|
* include/crypto/
|
|
* @cia_setkey: Set key for the transformation. This function is used to either
|
|
* program a supplied key into the hardware or store the key in the
|
|
* transformation context for programming it later. Note that this
|
|
* function does modify the transformation context. This function
|
|
* can be called multiple times during the existence of the
|
|
* transformation object, so one must make sure the key is properly
|
|
* reprogrammed into the hardware. This function is also
|
|
* responsible for checking the key length for validity.
|
|
* @cia_encrypt: Encrypt a single block. This function is used to encrypt a
|
|
* single block of data, which must be @cra_blocksize big. This
|
|
* always operates on a full @cra_blocksize and it is not possible
|
|
* to encrypt a block of smaller size. The supplied buffers must
|
|
* therefore also be at least of @cra_blocksize size. Both the
|
|
* input and output buffers are always aligned to @cra_alignmask.
|
|
* In case either of the input or output buffer supplied by user
|
|
* of the crypto API is not aligned to @cra_alignmask, the crypto
|
|
* API will re-align the buffers. The re-alignment means that a
|
|
* new buffer will be allocated, the data will be copied into the
|
|
* new buffer, then the processing will happen on the new buffer,
|
|
* then the data will be copied back into the original buffer and
|
|
* finally the new buffer will be freed. In case a software
|
|
* fallback was put in place in the @cra_init call, this function
|
|
* might need to use the fallback if the algorithm doesn't support
|
|
* all of the key sizes. In case the key was stored in
|
|
* transformation context, the key might need to be re-programmed
|
|
* into the hardware in this function. This function shall not
|
|
* modify the transformation context, as this function may be
|
|
* called in parallel with the same transformation object.
|
|
* @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
|
|
* @cia_encrypt, and the conditions are exactly the same.
|
|
*
|
|
* All fields are mandatory and must be filled.
|
|
*/
|
|
struct cipher_alg {
|
|
unsigned int cia_min_keysize;
|
|
unsigned int cia_max_keysize;
|
|
int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
|
|
unsigned int keylen);
|
|
void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
};
|
|
|
|
struct compress_alg {
|
|
int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
|
|
unsigned int slen, u8 *dst, unsigned int *dlen);
|
|
int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
|
|
unsigned int slen, u8 *dst, unsigned int *dlen);
|
|
};
|
|
|
|
|
|
#define cra_ablkcipher cra_u.ablkcipher
|
|
#define cra_blkcipher cra_u.blkcipher
|
|
#define cra_cipher cra_u.cipher
|
|
#define cra_compress cra_u.compress
|
|
|
|
/**
|
|
* struct crypto_alg - definition of a cryptograpic cipher algorithm
|
|
* @cra_flags: Flags describing this transformation. See include/linux/crypto.h
|
|
* CRYPTO_ALG_* flags for the flags which go in here. Those are
|
|
* used for fine-tuning the description of the transformation
|
|
* algorithm.
|
|
* @cra_blocksize: Minimum block size of this transformation. The size in bytes
|
|
* of the smallest possible unit which can be transformed with
|
|
* this algorithm. The users must respect this value.
|
|
* In case of HASH transformation, it is possible for a smaller
|
|
* block than @cra_blocksize to be passed to the crypto API for
|
|
* transformation, in case of any other transformation type, an
|
|
* error will be returned upon any attempt to transform smaller
|
|
* than @cra_blocksize chunks.
|
|
* @cra_ctxsize: Size of the operational context of the transformation. This
|
|
* value informs the kernel crypto API about the memory size
|
|
* needed to be allocated for the transformation context.
|
|
* @cra_alignmask: Alignment mask for the input and output data buffer. The data
|
|
* buffer containing the input data for the algorithm must be
|
|
* aligned to this alignment mask. The data buffer for the
|
|
* output data must be aligned to this alignment mask. Note that
|
|
* the Crypto API will do the re-alignment in software, but
|
|
* only under special conditions and there is a performance hit.
|
|
* The re-alignment happens at these occasions for different
|
|
* @cra_u types: cipher -- For both input data and output data
|
|
* buffer; ahash -- For output hash destination buf; shash --
|
|
* For output hash destination buf.
|
|
* This is needed on hardware which is flawed by design and
|
|
* cannot pick data from arbitrary addresses.
|
|
* @cra_priority: Priority of this transformation implementation. In case
|
|
* multiple transformations with same @cra_name are available to
|
|
* the Crypto API, the kernel will use the one with highest
|
|
* @cra_priority.
|
|
* @cra_name: Generic name (usable by multiple implementations) of the
|
|
* transformation algorithm. This is the name of the transformation
|
|
* itself. This field is used by the kernel when looking up the
|
|
* providers of particular transformation.
|
|
* @cra_driver_name: Unique name of the transformation provider. This is the
|
|
* name of the provider of the transformation. This can be any
|
|
* arbitrary value, but in the usual case, this contains the
|
|
* name of the chip or provider and the name of the
|
|
* transformation algorithm.
|
|
* @cra_type: Type of the cryptographic transformation. This is a pointer to
|
|
* struct crypto_type, which implements callbacks common for all
|
|
* transformation types. There are multiple options:
|
|
* &crypto_blkcipher_type, &crypto_ablkcipher_type,
|
|
* &crypto_ahash_type, &crypto_rng_type.
|
|
* This field might be empty. In that case, there are no common
|
|
* callbacks. This is the case for: cipher, compress, shash.
|
|
* @cra_u: Callbacks implementing the transformation. This is a union of
|
|
* multiple structures. Depending on the type of transformation selected
|
|
* by @cra_type and @cra_flags above, the associated structure must be
|
|
* filled with callbacks. This field might be empty. This is the case
|
|
* for ahash, shash.
|
|
* @cra_init: Initialize the cryptographic transformation object. This function
|
|
* is used to initialize the cryptographic transformation object.
|
|
* This function is called only once at the instantiation time, right
|
|
* after the transformation context was allocated. In case the
|
|
* cryptographic hardware has some special requirements which need to
|
|
* be handled by software, this function shall check for the precise
|
|
* requirement of the transformation and put any software fallbacks
|
|
* in place.
|
|
* @cra_exit: Deinitialize the cryptographic transformation object. This is a
|
|
* counterpart to @cra_init, used to remove various changes set in
|
|
* @cra_init.
|
|
* @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
|
|
* @cra_list: internally used
|
|
* @cra_users: internally used
|
|
* @cra_refcnt: internally used
|
|
* @cra_destroy: internally used
|
|
*
|
|
* The struct crypto_alg describes a generic Crypto API algorithm and is common
|
|
* for all of the transformations. Any variable not documented here shall not
|
|
* be used by a cipher implementation as it is internal to the Crypto API.
|
|
*/
|
|
struct crypto_alg {
|
|
struct list_head cra_list;
|
|
struct list_head cra_users;
|
|
|
|
u32 cra_flags;
|
|
unsigned int cra_blocksize;
|
|
unsigned int cra_ctxsize;
|
|
unsigned int cra_alignmask;
|
|
|
|
int cra_priority;
|
|
atomic_t cra_refcnt;
|
|
|
|
char cra_name[CRYPTO_MAX_ALG_NAME];
|
|
char cra_driver_name[CRYPTO_MAX_ALG_NAME];
|
|
|
|
const struct crypto_type *cra_type;
|
|
|
|
union {
|
|
struct ablkcipher_alg ablkcipher;
|
|
struct blkcipher_alg blkcipher;
|
|
struct cipher_alg cipher;
|
|
struct compress_alg compress;
|
|
} cra_u;
|
|
|
|
int (*cra_init)(struct crypto_tfm *tfm);
|
|
void (*cra_exit)(struct crypto_tfm *tfm);
|
|
void (*cra_destroy)(struct crypto_alg *alg);
|
|
|
|
struct module *cra_module;
|
|
} CRYPTO_MINALIGN_ATTR;
|
|
|
|
/*
|
|
* Algorithm registration interface.
|
|
*/
|
|
int crypto_register_alg(struct crypto_alg *alg);
|
|
int crypto_unregister_alg(struct crypto_alg *alg);
|
|
int crypto_register_algs(struct crypto_alg *algs, int count);
|
|
int crypto_unregister_algs(struct crypto_alg *algs, int count);
|
|
|
|
/*
|
|
* Algorithm query interface.
|
|
*/
|
|
int crypto_has_alg(const char *name, u32 type, u32 mask);
|
|
|
|
/*
|
|
* Transforms: user-instantiated objects which encapsulate algorithms
|
|
* and core processing logic. Managed via crypto_alloc_*() and
|
|
* crypto_free_*(), as well as the various helpers below.
|
|
*/
|
|
|
|
struct ablkcipher_tfm {
|
|
int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
|
|
unsigned int keylen);
|
|
int (*encrypt)(struct ablkcipher_request *req);
|
|
int (*decrypt)(struct ablkcipher_request *req);
|
|
int (*givencrypt)(struct skcipher_givcrypt_request *req);
|
|
int (*givdecrypt)(struct skcipher_givcrypt_request *req);
|
|
|
|
struct crypto_ablkcipher *base;
|
|
|
|
unsigned int ivsize;
|
|
unsigned int reqsize;
|
|
};
|
|
|
|
struct blkcipher_tfm {
|
|
void *iv;
|
|
int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
|
|
unsigned int keylen);
|
|
int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
|
|
struct scatterlist *src, unsigned int nbytes);
|
|
int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
|
|
struct scatterlist *src, unsigned int nbytes);
|
|
};
|
|
|
|
struct cipher_tfm {
|
|
int (*cit_setkey)(struct crypto_tfm *tfm,
|
|
const u8 *key, unsigned int keylen);
|
|
void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
};
|
|
|
|
struct compress_tfm {
|
|
int (*cot_compress)(struct crypto_tfm *tfm,
|
|
const u8 *src, unsigned int slen,
|
|
u8 *dst, unsigned int *dlen);
|
|
int (*cot_decompress)(struct crypto_tfm *tfm,
|
|
const u8 *src, unsigned int slen,
|
|
u8 *dst, unsigned int *dlen);
|
|
};
|
|
|
|
#define crt_ablkcipher crt_u.ablkcipher
|
|
#define crt_blkcipher crt_u.blkcipher
|
|
#define crt_cipher crt_u.cipher
|
|
#define crt_compress crt_u.compress
|
|
|
|
struct crypto_tfm {
|
|
|
|
u32 crt_flags;
|
|
|
|
union {
|
|
struct ablkcipher_tfm ablkcipher;
|
|
struct blkcipher_tfm blkcipher;
|
|
struct cipher_tfm cipher;
|
|
struct compress_tfm compress;
|
|
} crt_u;
|
|
|
|
void (*exit)(struct crypto_tfm *tfm);
|
|
|
|
struct crypto_alg *__crt_alg;
|
|
|
|
void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
|
|
};
|
|
|
|
struct crypto_ablkcipher {
|
|
struct crypto_tfm base;
|
|
};
|
|
|
|
struct crypto_blkcipher {
|
|
struct crypto_tfm base;
|
|
};
|
|
|
|
struct crypto_cipher {
|
|
struct crypto_tfm base;
|
|
};
|
|
|
|
struct crypto_comp {
|
|
struct crypto_tfm base;
|
|
};
|
|
|
|
enum {
|
|
CRYPTOA_UNSPEC,
|
|
CRYPTOA_ALG,
|
|
CRYPTOA_TYPE,
|
|
CRYPTOA_U32,
|
|
__CRYPTOA_MAX,
|
|
};
|
|
|
|
#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
|
|
|
|
/* Maximum number of (rtattr) parameters for each template. */
|
|
#define CRYPTO_MAX_ATTRS 32
|
|
|
|
struct crypto_attr_alg {
|
|
char name[CRYPTO_MAX_ALG_NAME];
|
|
};
|
|
|
|
struct crypto_attr_type {
|
|
u32 type;
|
|
u32 mask;
|
|
};
|
|
|
|
struct crypto_attr_u32 {
|
|
u32 num;
|
|
};
|
|
|
|
/*
|
|
* Transform user interface.
|
|
*/
|
|
|
|
struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
|
|
void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
|
|
|
|
static inline void crypto_free_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
return crypto_destroy_tfm(tfm, tfm);
|
|
}
|
|
|
|
int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
|
|
|
|
/*
|
|
* Transform helpers which query the underlying algorithm.
|
|
*/
|
|
static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_alg->cra_name;
|
|
}
|
|
|
|
static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_alg->cra_driver_name;
|
|
}
|
|
|
|
static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_alg->cra_priority;
|
|
}
|
|
|
|
static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
|
|
}
|
|
|
|
static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_alg->cra_blocksize;
|
|
}
|
|
|
|
static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_alg->cra_alignmask;
|
|
}
|
|
|
|
static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->crt_flags;
|
|
}
|
|
|
|
static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
|
|
{
|
|
tfm->crt_flags |= flags;
|
|
}
|
|
|
|
static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
|
|
{
|
|
tfm->crt_flags &= ~flags;
|
|
}
|
|
|
|
static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
|
|
{
|
|
return tfm->__crt_ctx;
|
|
}
|
|
|
|
static inline unsigned int crypto_tfm_ctx_alignment(void)
|
|
{
|
|
struct crypto_tfm *tfm;
|
|
return __alignof__(tfm->__crt_ctx);
|
|
}
|
|
|
|
/*
|
|
* API wrappers.
|
|
*/
|
|
static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
|
|
struct crypto_tfm *tfm)
|
|
{
|
|
return (struct crypto_ablkcipher *)tfm;
|
|
}
|
|
|
|
static inline u32 crypto_skcipher_type(u32 type)
|
|
{
|
|
type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
|
|
type |= CRYPTO_ALG_TYPE_BLKCIPHER;
|
|
return type;
|
|
}
|
|
|
|
static inline u32 crypto_skcipher_mask(u32 mask)
|
|
{
|
|
mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
|
|
mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* DOC: Asynchronous Block Cipher API
|
|
*
|
|
* Asynchronous block cipher API is used with the ciphers of type
|
|
* CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
|
|
*
|
|
* Asynchronous cipher operations imply that the function invocation for a
|
|
* cipher request returns immediately before the completion of the operation.
|
|
* The cipher request is scheduled as a separate kernel thread and therefore
|
|
* load-balanced on the different CPUs via the process scheduler. To allow
|
|
* the kernel crypto API to inform the caller about the completion of a cipher
|
|
* request, the caller must provide a callback function. That function is
|
|
* invoked with the cipher handle when the request completes.
|
|
*
|
|
* To support the asynchronous operation, additional information than just the
|
|
* cipher handle must be supplied to the kernel crypto API. That additional
|
|
* information is given by filling in the ablkcipher_request data structure.
|
|
*
|
|
* For the asynchronous block cipher API, the state is maintained with the tfm
|
|
* cipher handle. A single tfm can be used across multiple calls and in
|
|
* parallel. For asynchronous block cipher calls, context data supplied and
|
|
* only used by the caller can be referenced the request data structure in
|
|
* addition to the IV used for the cipher request. The maintenance of such
|
|
* state information would be important for a crypto driver implementer to
|
|
* have, because when calling the callback function upon completion of the
|
|
* cipher operation, that callback function may need some information about
|
|
* which operation just finished if it invoked multiple in parallel. This
|
|
* state information is unused by the kernel crypto API.
|
|
*/
|
|
|
|
/**
|
|
* crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* ablkcipher cipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Allocate a cipher handle for an ablkcipher. The returned struct
|
|
* crypto_ablkcipher is the cipher handle that is required for any subsequent
|
|
* API invocation for that ablkcipher.
|
|
*
|
|
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
|
|
* of an error, PTR_ERR() returns the error code.
|
|
*/
|
|
struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
|
|
u32 type, u32 mask);
|
|
|
|
static inline struct crypto_tfm *crypto_ablkcipher_tfm(
|
|
struct crypto_ablkcipher *tfm)
|
|
{
|
|
return &tfm->base;
|
|
}
|
|
|
|
/**
|
|
* crypto_free_ablkcipher() - zeroize and free cipher handle
|
|
* @tfm: cipher handle to be freed
|
|
*/
|
|
static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
|
|
{
|
|
crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
|
|
}
|
|
|
|
/**
|
|
* crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* ablkcipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Return: true when the ablkcipher is known to the kernel crypto API; false
|
|
* otherwise
|
|
*/
|
|
static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
|
|
u32 mask)
|
|
{
|
|
return crypto_has_alg(alg_name, crypto_skcipher_type(type),
|
|
crypto_skcipher_mask(mask));
|
|
}
|
|
|
|
static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
|
|
struct crypto_ablkcipher *tfm)
|
|
{
|
|
return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
|
|
}
|
|
|
|
/**
|
|
* crypto_ablkcipher_ivsize() - obtain IV size
|
|
* @tfm: cipher handle
|
|
*
|
|
* The size of the IV for the ablkcipher referenced by the cipher handle is
|
|
* returned. This IV size may be zero if the cipher does not need an IV.
|
|
*
|
|
* Return: IV size in bytes
|
|
*/
|
|
static inline unsigned int crypto_ablkcipher_ivsize(
|
|
struct crypto_ablkcipher *tfm)
|
|
{
|
|
return crypto_ablkcipher_crt(tfm)->ivsize;
|
|
}
|
|
|
|
/**
|
|
* crypto_ablkcipher_blocksize() - obtain block size of cipher
|
|
* @tfm: cipher handle
|
|
*
|
|
* The block size for the ablkcipher referenced with the cipher handle is
|
|
* returned. The caller may use that information to allocate appropriate
|
|
* memory for the data returned by the encryption or decryption operation
|
|
*
|
|
* Return: block size of cipher
|
|
*/
|
|
static inline unsigned int crypto_ablkcipher_blocksize(
|
|
struct crypto_ablkcipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline unsigned int crypto_ablkcipher_alignmask(
|
|
struct crypto_ablkcipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
|
|
{
|
|
return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
|
|
u32 flags)
|
|
{
|
|
crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
|
|
}
|
|
|
|
static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
|
|
u32 flags)
|
|
{
|
|
crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
|
|
}
|
|
|
|
/**
|
|
* crypto_ablkcipher_setkey() - set key for cipher
|
|
* @tfm: cipher handle
|
|
* @key: buffer holding the key
|
|
* @keylen: length of the key in bytes
|
|
*
|
|
* The caller provided key is set for the ablkcipher referenced by the cipher
|
|
* handle.
|
|
*
|
|
* Note, the key length determines the cipher type. Many block ciphers implement
|
|
* different cipher modes depending on the key size, such as AES-128 vs AES-192
|
|
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
|
|
* is performed.
|
|
*
|
|
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
|
|
|
|
return crt->setkey(crt->base, key, keylen);
|
|
}
|
|
|
|
/**
|
|
* crypto_ablkcipher_reqtfm() - obtain cipher handle from request
|
|
* @req: ablkcipher_request out of which the cipher handle is to be obtained
|
|
*
|
|
* Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
|
|
* data structure.
|
|
*
|
|
* Return: crypto_ablkcipher handle
|
|
*/
|
|
static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
|
|
struct ablkcipher_request *req)
|
|
{
|
|
return __crypto_ablkcipher_cast(req->base.tfm);
|
|
}
|
|
|
|
/**
|
|
* crypto_ablkcipher_encrypt() - encrypt plaintext
|
|
* @req: reference to the ablkcipher_request handle that holds all information
|
|
* needed to perform the cipher operation
|
|
*
|
|
* Encrypt plaintext data using the ablkcipher_request handle. That data
|
|
* structure and how it is filled with data is discussed with the
|
|
* ablkcipher_request_* functions.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
struct ablkcipher_tfm *crt =
|
|
crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
|
|
return crt->encrypt(req);
|
|
}
|
|
|
|
/**
|
|
* crypto_ablkcipher_decrypt() - decrypt ciphertext
|
|
* @req: reference to the ablkcipher_request handle that holds all information
|
|
* needed to perform the cipher operation
|
|
*
|
|
* Decrypt ciphertext data using the ablkcipher_request handle. That data
|
|
* structure and how it is filled with data is discussed with the
|
|
* ablkcipher_request_* functions.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
struct ablkcipher_tfm *crt =
|
|
crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
|
|
return crt->decrypt(req);
|
|
}
|
|
|
|
/**
|
|
* DOC: Asynchronous Cipher Request Handle
|
|
*
|
|
* The ablkcipher_request data structure contains all pointers to data
|
|
* required for the asynchronous cipher operation. This includes the cipher
|
|
* handle (which can be used by multiple ablkcipher_request instances), pointer
|
|
* to plaintext and ciphertext, asynchronous callback function, etc. It acts
|
|
* as a handle to the ablkcipher_request_* API calls in a similar way as
|
|
* ablkcipher handle to the crypto_ablkcipher_* API calls.
|
|
*/
|
|
|
|
/**
|
|
* crypto_ablkcipher_reqsize() - obtain size of the request data structure
|
|
* @tfm: cipher handle
|
|
*
|
|
* Return: number of bytes
|
|
*/
|
|
static inline unsigned int crypto_ablkcipher_reqsize(
|
|
struct crypto_ablkcipher *tfm)
|
|
{
|
|
return crypto_ablkcipher_crt(tfm)->reqsize;
|
|
}
|
|
|
|
/**
|
|
* ablkcipher_request_set_tfm() - update cipher handle reference in request
|
|
* @req: request handle to be modified
|
|
* @tfm: cipher handle that shall be added to the request handle
|
|
*
|
|
* Allow the caller to replace the existing ablkcipher handle in the request
|
|
* data structure with a different one.
|
|
*/
|
|
static inline void ablkcipher_request_set_tfm(
|
|
struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
|
|
{
|
|
req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
|
|
}
|
|
|
|
static inline struct ablkcipher_request *ablkcipher_request_cast(
|
|
struct crypto_async_request *req)
|
|
{
|
|
return container_of(req, struct ablkcipher_request, base);
|
|
}
|
|
|
|
/**
|
|
* ablkcipher_request_alloc() - allocate request data structure
|
|
* @tfm: cipher handle to be registered with the request
|
|
* @gfp: memory allocation flag that is handed to kmalloc by the API call.
|
|
*
|
|
* Allocate the request data structure that must be used with the ablkcipher
|
|
* encrypt and decrypt API calls. During the allocation, the provided ablkcipher
|
|
* handle is registered in the request data structure.
|
|
*
|
|
* Return: allocated request handle in case of success, or NULL if out of memory
|
|
*/
|
|
static inline struct ablkcipher_request *ablkcipher_request_alloc(
|
|
struct crypto_ablkcipher *tfm, gfp_t gfp)
|
|
{
|
|
struct ablkcipher_request *req;
|
|
|
|
req = kmalloc(sizeof(struct ablkcipher_request) +
|
|
crypto_ablkcipher_reqsize(tfm), gfp);
|
|
|
|
if (likely(req))
|
|
ablkcipher_request_set_tfm(req, tfm);
|
|
|
|
return req;
|
|
}
|
|
|
|
/**
|
|
* ablkcipher_request_free() - zeroize and free request data structure
|
|
* @req: request data structure cipher handle to be freed
|
|
*/
|
|
static inline void ablkcipher_request_free(struct ablkcipher_request *req)
|
|
{
|
|
kzfree(req);
|
|
}
|
|
|
|
/**
|
|
* ablkcipher_request_set_callback() - set asynchronous callback function
|
|
* @req: request handle
|
|
* @flags: specify zero or an ORing of the flags
|
|
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
|
|
* increase the wait queue beyond the initial maximum size;
|
|
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
|
|
* @compl: callback function pointer to be registered with the request handle
|
|
* @data: The data pointer refers to memory that is not used by the kernel
|
|
* crypto API, but provided to the callback function for it to use. Here,
|
|
* the caller can provide a reference to memory the callback function can
|
|
* operate on. As the callback function is invoked asynchronously to the
|
|
* related functionality, it may need to access data structures of the
|
|
* related functionality which can be referenced using this pointer. The
|
|
* callback function can access the memory via the "data" field in the
|
|
* crypto_async_request data structure provided to the callback function.
|
|
*
|
|
* This function allows setting the callback function that is triggered once the
|
|
* cipher operation completes.
|
|
*
|
|
* The callback function is registered with the ablkcipher_request handle and
|
|
* must comply with the following template
|
|
*
|
|
* void callback_function(struct crypto_async_request *req, int error)
|
|
*/
|
|
static inline void ablkcipher_request_set_callback(
|
|
struct ablkcipher_request *req,
|
|
u32 flags, crypto_completion_t compl, void *data)
|
|
{
|
|
req->base.complete = compl;
|
|
req->base.data = data;
|
|
req->base.flags = flags;
|
|
}
|
|
|
|
/**
|
|
* ablkcipher_request_set_crypt() - set data buffers
|
|
* @req: request handle
|
|
* @src: source scatter / gather list
|
|
* @dst: destination scatter / gather list
|
|
* @nbytes: number of bytes to process from @src
|
|
* @iv: IV for the cipher operation which must comply with the IV size defined
|
|
* by crypto_ablkcipher_ivsize
|
|
*
|
|
* This function allows setting of the source data and destination data
|
|
* scatter / gather lists.
|
|
*
|
|
* For encryption, the source is treated as the plaintext and the
|
|
* destination is the ciphertext. For a decryption operation, the use is
|
|
* reversed - the source is the ciphertext and the destination is the plaintext.
|
|
*/
|
|
static inline void ablkcipher_request_set_crypt(
|
|
struct ablkcipher_request *req,
|
|
struct scatterlist *src, struct scatterlist *dst,
|
|
unsigned int nbytes, void *iv)
|
|
{
|
|
req->src = src;
|
|
req->dst = dst;
|
|
req->nbytes = nbytes;
|
|
req->info = iv;
|
|
}
|
|
|
|
/**
|
|
* DOC: Synchronous Block Cipher API
|
|
*
|
|
* The synchronous block cipher API is used with the ciphers of type
|
|
* CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
|
|
*
|
|
* Synchronous calls, have a context in the tfm. But since a single tfm can be
|
|
* used in multiple calls and in parallel, this info should not be changeable
|
|
* (unless a lock is used). This applies, for example, to the symmetric key.
|
|
* However, the IV is changeable, so there is an iv field in blkcipher_tfm
|
|
* structure for synchronous blkcipher api. So, its the only state info that can
|
|
* be kept for synchronous calls without using a big lock across a tfm.
|
|
*
|
|
* The block cipher API allows the use of a complete cipher, i.e. a cipher
|
|
* consisting of a template (a block chaining mode) and a single block cipher
|
|
* primitive (e.g. AES).
|
|
*
|
|
* The plaintext data buffer and the ciphertext data buffer are pointed to
|
|
* by using scatter/gather lists. The cipher operation is performed
|
|
* on all segments of the provided scatter/gather lists.
|
|
*
|
|
* The kernel crypto API supports a cipher operation "in-place" which means that
|
|
* the caller may provide the same scatter/gather list for the plaintext and
|
|
* cipher text. After the completion of the cipher operation, the plaintext
|
|
* data is replaced with the ciphertext data in case of an encryption and vice
|
|
* versa for a decryption. The caller must ensure that the scatter/gather lists
|
|
* for the output data point to sufficiently large buffers, i.e. multiples of
|
|
* the block size of the cipher.
|
|
*/
|
|
|
|
static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
|
|
struct crypto_tfm *tfm)
|
|
{
|
|
return (struct crypto_blkcipher *)tfm;
|
|
}
|
|
|
|
static inline struct crypto_blkcipher *crypto_blkcipher_cast(
|
|
struct crypto_tfm *tfm)
|
|
{
|
|
BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
|
|
return __crypto_blkcipher_cast(tfm);
|
|
}
|
|
|
|
/**
|
|
* crypto_alloc_blkcipher() - allocate synchronous block cipher handle
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* blkcipher cipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Allocate a cipher handle for a block cipher. The returned struct
|
|
* crypto_blkcipher is the cipher handle that is required for any subsequent
|
|
* API invocation for that block cipher.
|
|
*
|
|
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
|
|
* of an error, PTR_ERR() returns the error code.
|
|
*/
|
|
static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
|
|
const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
type &= ~CRYPTO_ALG_TYPE_MASK;
|
|
type |= CRYPTO_ALG_TYPE_BLKCIPHER;
|
|
mask |= CRYPTO_ALG_TYPE_MASK;
|
|
|
|
return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
|
|
}
|
|
|
|
static inline struct crypto_tfm *crypto_blkcipher_tfm(
|
|
struct crypto_blkcipher *tfm)
|
|
{
|
|
return &tfm->base;
|
|
}
|
|
|
|
/**
|
|
* crypto_free_blkcipher() - zeroize and free the block cipher handle
|
|
* @tfm: cipher handle to be freed
|
|
*/
|
|
static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
|
|
{
|
|
crypto_free_tfm(crypto_blkcipher_tfm(tfm));
|
|
}
|
|
|
|
/**
|
|
* crypto_has_blkcipher() - Search for the availability of a block cipher
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* block cipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Return: true when the block cipher is known to the kernel crypto API; false
|
|
* otherwise
|
|
*/
|
|
static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
type &= ~CRYPTO_ALG_TYPE_MASK;
|
|
type |= CRYPTO_ALG_TYPE_BLKCIPHER;
|
|
mask |= CRYPTO_ALG_TYPE_MASK;
|
|
|
|
return crypto_has_alg(alg_name, type, mask);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_name() - return the name / cra_name from the cipher handle
|
|
* @tfm: cipher handle
|
|
*
|
|
* Return: The character string holding the name of the cipher
|
|
*/
|
|
static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline struct blkcipher_tfm *crypto_blkcipher_crt(
|
|
struct crypto_blkcipher *tfm)
|
|
{
|
|
return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
|
|
}
|
|
|
|
static inline struct blkcipher_alg *crypto_blkcipher_alg(
|
|
struct crypto_blkcipher *tfm)
|
|
{
|
|
return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_ivsize() - obtain IV size
|
|
* @tfm: cipher handle
|
|
*
|
|
* The size of the IV for the block cipher referenced by the cipher handle is
|
|
* returned. This IV size may be zero if the cipher does not need an IV.
|
|
*
|
|
* Return: IV size in bytes
|
|
*/
|
|
static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
|
|
{
|
|
return crypto_blkcipher_alg(tfm)->ivsize;
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_blocksize() - obtain block size of cipher
|
|
* @tfm: cipher handle
|
|
*
|
|
* The block size for the block cipher referenced with the cipher handle is
|
|
* returned. The caller may use that information to allocate appropriate
|
|
* memory for the data returned by the encryption or decryption operation.
|
|
*
|
|
* Return: block size of cipher
|
|
*/
|
|
static inline unsigned int crypto_blkcipher_blocksize(
|
|
struct crypto_blkcipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline unsigned int crypto_blkcipher_alignmask(
|
|
struct crypto_blkcipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
|
|
{
|
|
return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
|
|
}
|
|
|
|
static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
|
|
u32 flags)
|
|
{
|
|
crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
|
|
}
|
|
|
|
static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
|
|
u32 flags)
|
|
{
|
|
crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_setkey() - set key for cipher
|
|
* @tfm: cipher handle
|
|
* @key: buffer holding the key
|
|
* @keylen: length of the key in bytes
|
|
*
|
|
* The caller provided key is set for the block cipher referenced by the cipher
|
|
* handle.
|
|
*
|
|
* Note, the key length determines the cipher type. Many block ciphers implement
|
|
* different cipher modes depending on the key size, such as AES-128 vs AES-192
|
|
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
|
|
* is performed.
|
|
*
|
|
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
|
|
key, keylen);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_encrypt() - encrypt plaintext
|
|
* @desc: reference to the block cipher handle with meta data
|
|
* @dst: scatter/gather list that is filled by the cipher operation with the
|
|
* ciphertext
|
|
* @src: scatter/gather list that holds the plaintext
|
|
* @nbytes: number of bytes of the plaintext to encrypt.
|
|
*
|
|
* Encrypt plaintext data using the IV set by the caller with a preceding
|
|
* call of crypto_blkcipher_set_iv.
|
|
*
|
|
* The blkcipher_desc data structure must be filled by the caller and can
|
|
* reside on the stack. The caller must fill desc as follows: desc.tfm is filled
|
|
* with the block cipher handle; desc.flags is filled with either
|
|
* CRYPTO_TFM_REQ_MAY_SLEEP or 0.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
|
|
struct scatterlist *dst,
|
|
struct scatterlist *src,
|
|
unsigned int nbytes)
|
|
{
|
|
desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
|
|
return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
|
|
* @desc: reference to the block cipher handle with meta data
|
|
* @dst: scatter/gather list that is filled by the cipher operation with the
|
|
* ciphertext
|
|
* @src: scatter/gather list that holds the plaintext
|
|
* @nbytes: number of bytes of the plaintext to encrypt.
|
|
*
|
|
* Encrypt plaintext data with the use of an IV that is solely used for this
|
|
* cipher operation. Any previously set IV is not used.
|
|
*
|
|
* The blkcipher_desc data structure must be filled by the caller and can
|
|
* reside on the stack. The caller must fill desc as follows: desc.tfm is filled
|
|
* with the block cipher handle; desc.info is filled with the IV to be used for
|
|
* the current operation; desc.flags is filled with either
|
|
* CRYPTO_TFM_REQ_MAY_SLEEP or 0.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
|
|
struct scatterlist *dst,
|
|
struct scatterlist *src,
|
|
unsigned int nbytes)
|
|
{
|
|
return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_decrypt() - decrypt ciphertext
|
|
* @desc: reference to the block cipher handle with meta data
|
|
* @dst: scatter/gather list that is filled by the cipher operation with the
|
|
* plaintext
|
|
* @src: scatter/gather list that holds the ciphertext
|
|
* @nbytes: number of bytes of the ciphertext to decrypt.
|
|
*
|
|
* Decrypt ciphertext data using the IV set by the caller with a preceding
|
|
* call of crypto_blkcipher_set_iv.
|
|
*
|
|
* The blkcipher_desc data structure must be filled by the caller as documented
|
|
* for the crypto_blkcipher_encrypt call above.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*
|
|
*/
|
|
static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
|
|
struct scatterlist *dst,
|
|
struct scatterlist *src,
|
|
unsigned int nbytes)
|
|
{
|
|
desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
|
|
return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
|
|
* @desc: reference to the block cipher handle with meta data
|
|
* @dst: scatter/gather list that is filled by the cipher operation with the
|
|
* plaintext
|
|
* @src: scatter/gather list that holds the ciphertext
|
|
* @nbytes: number of bytes of the ciphertext to decrypt.
|
|
*
|
|
* Decrypt ciphertext data with the use of an IV that is solely used for this
|
|
* cipher operation. Any previously set IV is not used.
|
|
*
|
|
* The blkcipher_desc data structure must be filled by the caller as documented
|
|
* for the crypto_blkcipher_encrypt_iv call above.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
|
|
struct scatterlist *dst,
|
|
struct scatterlist *src,
|
|
unsigned int nbytes)
|
|
{
|
|
return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_set_iv() - set IV for cipher
|
|
* @tfm: cipher handle
|
|
* @src: buffer holding the IV
|
|
* @len: length of the IV in bytes
|
|
*
|
|
* The caller provided IV is set for the block cipher referenced by the cipher
|
|
* handle.
|
|
*/
|
|
static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
|
|
const u8 *src, unsigned int len)
|
|
{
|
|
memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
|
|
}
|
|
|
|
/**
|
|
* crypto_blkcipher_get_iv() - obtain IV from cipher
|
|
* @tfm: cipher handle
|
|
* @dst: buffer filled with the IV
|
|
* @len: length of the buffer dst
|
|
*
|
|
* The caller can obtain the IV set for the block cipher referenced by the
|
|
* cipher handle and store it into the user-provided buffer. If the buffer
|
|
* has an insufficient space, the IV is truncated to fit the buffer.
|
|
*/
|
|
static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
|
|
u8 *dst, unsigned int len)
|
|
{
|
|
memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
|
|
}
|
|
|
|
/**
|
|
* DOC: Single Block Cipher API
|
|
*
|
|
* The single block cipher API is used with the ciphers of type
|
|
* CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
|
|
*
|
|
* Using the single block cipher API calls, operations with the basic cipher
|
|
* primitive can be implemented. These cipher primitives exclude any block
|
|
* chaining operations including IV handling.
|
|
*
|
|
* The purpose of this single block cipher API is to support the implementation
|
|
* of templates or other concepts that only need to perform the cipher operation
|
|
* on one block at a time. Templates invoke the underlying cipher primitive
|
|
* block-wise and process either the input or the output data of these cipher
|
|
* operations.
|
|
*/
|
|
|
|
static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
|
|
{
|
|
return (struct crypto_cipher *)tfm;
|
|
}
|
|
|
|
static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
|
|
{
|
|
BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
|
|
return __crypto_cipher_cast(tfm);
|
|
}
|
|
|
|
/**
|
|
* crypto_alloc_cipher() - allocate single block cipher handle
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* single block cipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Allocate a cipher handle for a single block cipher. The returned struct
|
|
* crypto_cipher is the cipher handle that is required for any subsequent API
|
|
* invocation for that single block cipher.
|
|
*
|
|
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
|
|
* of an error, PTR_ERR() returns the error code.
|
|
*/
|
|
static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
|
|
u32 type, u32 mask)
|
|
{
|
|
type &= ~CRYPTO_ALG_TYPE_MASK;
|
|
type |= CRYPTO_ALG_TYPE_CIPHER;
|
|
mask |= CRYPTO_ALG_TYPE_MASK;
|
|
|
|
return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
|
|
}
|
|
|
|
static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
|
|
{
|
|
return &tfm->base;
|
|
}
|
|
|
|
/**
|
|
* crypto_free_cipher() - zeroize and free the single block cipher handle
|
|
* @tfm: cipher handle to be freed
|
|
*/
|
|
static inline void crypto_free_cipher(struct crypto_cipher *tfm)
|
|
{
|
|
crypto_free_tfm(crypto_cipher_tfm(tfm));
|
|
}
|
|
|
|
/**
|
|
* crypto_has_cipher() - Search for the availability of a single block cipher
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* single block cipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Return: true when the single block cipher is known to the kernel crypto API;
|
|
* false otherwise
|
|
*/
|
|
static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
type &= ~CRYPTO_ALG_TYPE_MASK;
|
|
type |= CRYPTO_ALG_TYPE_CIPHER;
|
|
mask |= CRYPTO_ALG_TYPE_MASK;
|
|
|
|
return crypto_has_alg(alg_name, type, mask);
|
|
}
|
|
|
|
static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
|
|
{
|
|
return &crypto_cipher_tfm(tfm)->crt_cipher;
|
|
}
|
|
|
|
/**
|
|
* crypto_cipher_blocksize() - obtain block size for cipher
|
|
* @tfm: cipher handle
|
|
*
|
|
* The block size for the single block cipher referenced with the cipher handle
|
|
* tfm is returned. The caller may use that information to allocate appropriate
|
|
* memory for the data returned by the encryption or decryption operation
|
|
*
|
|
* Return: block size of cipher
|
|
*/
|
|
static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
|
|
}
|
|
|
|
static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
|
|
{
|
|
return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
|
|
}
|
|
|
|
static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
|
|
{
|
|
return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
|
|
}
|
|
|
|
static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
|
|
u32 flags)
|
|
{
|
|
crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
|
|
}
|
|
|
|
static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
|
|
u32 flags)
|
|
{
|
|
crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
|
|
}
|
|
|
|
/**
|
|
* crypto_cipher_setkey() - set key for cipher
|
|
* @tfm: cipher handle
|
|
* @key: buffer holding the key
|
|
* @keylen: length of the key in bytes
|
|
*
|
|
* The caller provided key is set for the single block cipher referenced by the
|
|
* cipher handle.
|
|
*
|
|
* Note, the key length determines the cipher type. Many block ciphers implement
|
|
* different cipher modes depending on the key size, such as AES-128 vs AES-192
|
|
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
|
|
* is performed.
|
|
*
|
|
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
|
|
*/
|
|
static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
|
|
key, keylen);
|
|
}
|
|
|
|
/**
|
|
* crypto_cipher_encrypt_one() - encrypt one block of plaintext
|
|
* @tfm: cipher handle
|
|
* @dst: points to the buffer that will be filled with the ciphertext
|
|
* @src: buffer holding the plaintext to be encrypted
|
|
*
|
|
* Invoke the encryption operation of one block. The caller must ensure that
|
|
* the plaintext and ciphertext buffers are at least one block in size.
|
|
*/
|
|
static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
|
|
u8 *dst, const u8 *src)
|
|
{
|
|
crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
|
|
dst, src);
|
|
}
|
|
|
|
/**
|
|
* crypto_cipher_decrypt_one() - decrypt one block of ciphertext
|
|
* @tfm: cipher handle
|
|
* @dst: points to the buffer that will be filled with the plaintext
|
|
* @src: buffer holding the ciphertext to be decrypted
|
|
*
|
|
* Invoke the decryption operation of one block. The caller must ensure that
|
|
* the plaintext and ciphertext buffers are at least one block in size.
|
|
*/
|
|
static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
|
|
u8 *dst, const u8 *src)
|
|
{
|
|
crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
|
|
dst, src);
|
|
}
|
|
|
|
static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
|
|
{
|
|
return (struct crypto_comp *)tfm;
|
|
}
|
|
|
|
static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
|
|
{
|
|
BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
|
|
CRYPTO_ALG_TYPE_MASK);
|
|
return __crypto_comp_cast(tfm);
|
|
}
|
|
|
|
static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
|
|
u32 type, u32 mask)
|
|
{
|
|
type &= ~CRYPTO_ALG_TYPE_MASK;
|
|
type |= CRYPTO_ALG_TYPE_COMPRESS;
|
|
mask |= CRYPTO_ALG_TYPE_MASK;
|
|
|
|
return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
|
|
}
|
|
|
|
static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
|
|
{
|
|
return &tfm->base;
|
|
}
|
|
|
|
static inline void crypto_free_comp(struct crypto_comp *tfm)
|
|
{
|
|
crypto_free_tfm(crypto_comp_tfm(tfm));
|
|
}
|
|
|
|
static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
type &= ~CRYPTO_ALG_TYPE_MASK;
|
|
type |= CRYPTO_ALG_TYPE_COMPRESS;
|
|
mask |= CRYPTO_ALG_TYPE_MASK;
|
|
|
|
return crypto_has_alg(alg_name, type, mask);
|
|
}
|
|
|
|
static inline const char *crypto_comp_name(struct crypto_comp *tfm)
|
|
{
|
|
return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
|
|
}
|
|
|
|
static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
|
|
{
|
|
return &crypto_comp_tfm(tfm)->crt_compress;
|
|
}
|
|
|
|
static inline int crypto_comp_compress(struct crypto_comp *tfm,
|
|
const u8 *src, unsigned int slen,
|
|
u8 *dst, unsigned int *dlen)
|
|
{
|
|
return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
|
|
src, slen, dst, dlen);
|
|
}
|
|
|
|
static inline int crypto_comp_decompress(struct crypto_comp *tfm,
|
|
const u8 *src, unsigned int slen,
|
|
u8 *dst, unsigned int *dlen)
|
|
{
|
|
return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
|
|
src, slen, dst, dlen);
|
|
}
|
|
|
|
#endif /* _LINUX_CRYPTO_H */
|
|
|