linux_dsm_epyc7002/drivers/net/skfp/skfddi.c
Eric Dumazet 807540baae drivers/net: return operator cleanup
Change "return (EXPR);" to "return EXPR;"

return is not a function, parentheses are not required.

Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-09-26 18:34:29 -07:00

2261 lines
63 KiB
C

/*
* File Name:
* skfddi.c
*
* Copyright Information:
* Copyright SysKonnect 1998,1999.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
* Abstract:
* A Linux device driver supporting the SysKonnect FDDI PCI controller
* familie.
*
* Maintainers:
* CG Christoph Goos (cgoos@syskonnect.de)
*
* Contributors:
* DM David S. Miller
*
* Address all question to:
* linux@syskonnect.de
*
* The technical manual for the adapters is available from SysKonnect's
* web pages: www.syskonnect.com
* Goto "Support" and search Knowledge Base for "manual".
*
* Driver Architecture:
* The driver architecture is based on the DEC FDDI driver by
* Lawrence V. Stefani and several ethernet drivers.
* I also used an existing Windows NT miniport driver.
* All hardware dependent fuctions are handled by the SysKonnect
* Hardware Module.
* The only headerfiles that are directly related to this source
* are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
* The others belong to the SysKonnect FDDI Hardware Module and
* should better not be changed.
*
* Modification History:
* Date Name Description
* 02-Mar-98 CG Created.
*
* 10-Mar-99 CG Support for 2.2.x added.
* 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
* 26-Oct-99 CG Fixed compilation error on 2.2.13
* 12-Nov-99 CG Source code release
* 22-Nov-99 CG Included in kernel source.
* 07-May-00 DM 64 bit fixes, new dma interface
* 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
* Daniele Bellucci <bellucda@tiscali.it>
* 03-Dec-03 SH Convert to PCI device model
*
* Compilation options (-Dxxx):
* DRIVERDEBUG print lots of messages to log file
* DUMPPACKETS print received/transmitted packets to logfile
*
* Tested cpu architectures:
* - i386
* - sparc64
*/
/* Version information string - should be updated prior to */
/* each new release!!! */
#define VERSION "2.07"
static const char * const boot_msg =
"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
" SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
/* Include files */
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/fddidevice.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <linux/gfp.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "h/types.h"
#undef ADDR // undo Linux definition
#include "h/skfbi.h"
#include "h/fddi.h"
#include "h/smc.h"
#include "h/smtstate.h"
// Define module-wide (static) routines
static int skfp_driver_init(struct net_device *dev);
static int skfp_open(struct net_device *dev);
static int skfp_close(struct net_device *dev);
static irqreturn_t skfp_interrupt(int irq, void *dev_id);
static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
static void skfp_ctl_set_multicast_list(struct net_device *dev);
static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
struct net_device *dev);
static void send_queued_packets(struct s_smc *smc);
static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
static void ResetAdapter(struct s_smc *smc);
// Functions needed by the hardware module
void *mac_drv_get_space(struct s_smc *smc, u_int size);
void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
int flag);
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
void llc_restart_tx(struct s_smc *smc);
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
int frag_count, int len);
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
int frag_count);
void mac_drv_fill_rxd(struct s_smc *smc);
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
int frag_count);
int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
int la_len);
void dump_data(unsigned char *Data, int length);
// External functions from the hardware module
extern u_int mac_drv_check_space(void);
extern int mac_drv_init(struct s_smc *smc);
extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
int len, int frame_status);
extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
int frame_len, int frame_status);
extern void fddi_isr(struct s_smc *smc);
extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
int len, int frame_status);
extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
extern void mac_drv_clear_rx_queue(struct s_smc *smc);
extern void enable_tx_irq(struct s_smc *smc, u_short queue);
static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
// Define module-wide (static) variables
static int num_boards; /* total number of adapters configured */
static const struct net_device_ops skfp_netdev_ops = {
.ndo_open = skfp_open,
.ndo_stop = skfp_close,
.ndo_start_xmit = skfp_send_pkt,
.ndo_get_stats = skfp_ctl_get_stats,
.ndo_change_mtu = fddi_change_mtu,
.ndo_set_multicast_list = skfp_ctl_set_multicast_list,
.ndo_set_mac_address = skfp_ctl_set_mac_address,
.ndo_do_ioctl = skfp_ioctl,
};
/*
* =================
* = skfp_init_one =
* =================
*
* Overview:
* Probes for supported FDDI PCI controllers
*
* Returns:
* Condition code
*
* Arguments:
* pdev - pointer to PCI device information
*
* Functional Description:
* This is now called by PCI driver registration process
* for each board found.
*
* Return Codes:
* 0 - This device (fddi0, fddi1, etc) configured successfully
* -ENODEV - No devices present, or no SysKonnect FDDI PCI device
* present for this device name
*
*
* Side Effects:
* Device structures for FDDI adapters (fddi0, fddi1, etc) are
* initialized and the board resources are read and stored in
* the device structure.
*/
static int skfp_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
struct s_smc *smc; /* board pointer */
void __iomem *mem;
int err;
pr_debug("entering skfp_init_one\n");
if (num_boards == 0)
printk("%s\n", boot_msg);
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, "skfddi");
if (err)
goto err_out1;
pci_set_master(pdev);
#ifdef MEM_MAPPED_IO
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
printk(KERN_ERR "skfp: region is not an MMIO resource\n");
err = -EIO;
goto err_out2;
}
mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
#else
if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
printk(KERN_ERR "skfp: region is not PIO resource\n");
err = -EIO;
goto err_out2;
}
mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
#endif
if (!mem) {
printk(KERN_ERR "skfp: Unable to map register, "
"FDDI adapter will be disabled.\n");
err = -EIO;
goto err_out2;
}
dev = alloc_fddidev(sizeof(struct s_smc));
if (!dev) {
printk(KERN_ERR "skfp: Unable to allocate fddi device, "
"FDDI adapter will be disabled.\n");
err = -ENOMEM;
goto err_out3;
}
dev->irq = pdev->irq;
dev->netdev_ops = &skfp_netdev_ops;
SET_NETDEV_DEV(dev, &pdev->dev);
/* Initialize board structure with bus-specific info */
smc = netdev_priv(dev);
smc->os.dev = dev;
smc->os.bus_type = SK_BUS_TYPE_PCI;
smc->os.pdev = *pdev;
smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
smc->os.MaxFrameSize = MAX_FRAME_SIZE;
smc->os.dev = dev;
smc->hw.slot = -1;
smc->hw.iop = mem;
smc->os.ResetRequested = FALSE;
skb_queue_head_init(&smc->os.SendSkbQueue);
dev->base_addr = (unsigned long)mem;
err = skfp_driver_init(dev);
if (err)
goto err_out4;
err = register_netdev(dev);
if (err)
goto err_out5;
++num_boards;
pci_set_drvdata(pdev, dev);
if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
(pdev->subsystem_device & 0xff00) == 0x5800)
printk("%s: SysKonnect FDDI PCI adapter"
" found (SK-%04X)\n", dev->name,
pdev->subsystem_device);
else
printk("%s: FDDI PCI adapter found\n", dev->name);
return 0;
err_out5:
if (smc->os.SharedMemAddr)
pci_free_consistent(pdev, smc->os.SharedMemSize,
smc->os.SharedMemAddr,
smc->os.SharedMemDMA);
pci_free_consistent(pdev, MAX_FRAME_SIZE,
smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
err_out4:
free_netdev(dev);
err_out3:
#ifdef MEM_MAPPED_IO
iounmap(mem);
#else
ioport_unmap(mem);
#endif
err_out2:
pci_release_regions(pdev);
err_out1:
pci_disable_device(pdev);
return err;
}
/*
* Called for each adapter board from pci_unregister_driver
*/
static void __devexit skfp_remove_one(struct pci_dev *pdev)
{
struct net_device *p = pci_get_drvdata(pdev);
struct s_smc *lp = netdev_priv(p);
unregister_netdev(p);
if (lp->os.SharedMemAddr) {
pci_free_consistent(&lp->os.pdev,
lp->os.SharedMemSize,
lp->os.SharedMemAddr,
lp->os.SharedMemDMA);
lp->os.SharedMemAddr = NULL;
}
if (lp->os.LocalRxBuffer) {
pci_free_consistent(&lp->os.pdev,
MAX_FRAME_SIZE,
lp->os.LocalRxBuffer,
lp->os.LocalRxBufferDMA);
lp->os.LocalRxBuffer = NULL;
}
#ifdef MEM_MAPPED_IO
iounmap(lp->hw.iop);
#else
ioport_unmap(lp->hw.iop);
#endif
pci_release_regions(pdev);
free_netdev(p);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
/*
* ====================
* = skfp_driver_init =
* ====================
*
* Overview:
* Initializes remaining adapter board structure information
* and makes sure adapter is in a safe state prior to skfp_open().
*
* Returns:
* Condition code
*
* Arguments:
* dev - pointer to device information
*
* Functional Description:
* This function allocates additional resources such as the host memory
* blocks needed by the adapter.
* The adapter is also reset. The OS must call skfp_open() to open
* the adapter and bring it on-line.
*
* Return Codes:
* 0 - initialization succeeded
* -1 - initialization failed
*/
static int skfp_driver_init(struct net_device *dev)
{
struct s_smc *smc = netdev_priv(dev);
skfddi_priv *bp = &smc->os;
int err = -EIO;
pr_debug("entering skfp_driver_init\n");
// set the io address in private structures
bp->base_addr = dev->base_addr;
// Get the interrupt level from the PCI Configuration Table
smc->hw.irq = dev->irq;
spin_lock_init(&bp->DriverLock);
// Allocate invalid frame
bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
if (!bp->LocalRxBuffer) {
printk("could not allocate mem for ");
printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
goto fail;
}
// Determine the required size of the 'shared' memory area.
bp->SharedMemSize = mac_drv_check_space();
pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
if (bp->SharedMemSize > 0) {
bp->SharedMemSize += 16; // for descriptor alignment
bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
bp->SharedMemSize,
&bp->SharedMemDMA);
if (!bp->SharedMemSize) {
printk("could not allocate mem for ");
printk("hardware module: %ld byte\n",
bp->SharedMemSize);
goto fail;
}
bp->SharedMemHeap = 0; // Nothing used yet.
} else {
bp->SharedMemAddr = NULL;
bp->SharedMemHeap = 0;
} // SharedMemSize > 0
memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
card_stop(smc); // Reset adapter.
pr_debug("mac_drv_init()..\n");
if (mac_drv_init(smc) != 0) {
pr_debug("mac_drv_init() failed\n");
goto fail;
}
read_address(smc, NULL);
pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
smt_reset_defaults(smc, 0);
return 0;
fail:
if (bp->SharedMemAddr) {
pci_free_consistent(&bp->pdev,
bp->SharedMemSize,
bp->SharedMemAddr,
bp->SharedMemDMA);
bp->SharedMemAddr = NULL;
}
if (bp->LocalRxBuffer) {
pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
bp->LocalRxBuffer, bp->LocalRxBufferDMA);
bp->LocalRxBuffer = NULL;
}
return err;
} // skfp_driver_init
/*
* =============
* = skfp_open =
* =============
*
* Overview:
* Opens the adapter
*
* Returns:
* Condition code
*
* Arguments:
* dev - pointer to device information
*
* Functional Description:
* This function brings the adapter to an operational state.
*
* Return Codes:
* 0 - Adapter was successfully opened
* -EAGAIN - Could not register IRQ
*/
static int skfp_open(struct net_device *dev)
{
struct s_smc *smc = netdev_priv(dev);
int err;
pr_debug("entering skfp_open\n");
/* Register IRQ - support shared interrupts by passing device ptr */
err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
dev->name, dev);
if (err)
return err;
/*
* Set current address to factory MAC address
*
* Note: We've already done this step in skfp_driver_init.
* However, it's possible that a user has set a node
* address override, then closed and reopened the
* adapter. Unless we reset the device address field
* now, we'll continue to use the existing modified
* address.
*/
read_address(smc, NULL);
memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
init_smt(smc, NULL);
smt_online(smc, 1);
STI_FBI();
/* Clear local multicast address tables */
mac_clear_multicast(smc);
/* Disable promiscuous filter settings */
mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
netif_start_queue(dev);
return 0;
} // skfp_open
/*
* ==============
* = skfp_close =
* ==============
*
* Overview:
* Closes the device/module.
*
* Returns:
* Condition code
*
* Arguments:
* dev - pointer to device information
*
* Functional Description:
* This routine closes the adapter and brings it to a safe state.
* The interrupt service routine is deregistered with the OS.
* The adapter can be opened again with another call to skfp_open().
*
* Return Codes:
* Always return 0.
*
* Assumptions:
* No further requests for this adapter are made after this routine is
* called. skfp_open() can be called to reset and reinitialize the
* adapter.
*/
static int skfp_close(struct net_device *dev)
{
struct s_smc *smc = netdev_priv(dev);
skfddi_priv *bp = &smc->os;
CLI_FBI();
smt_reset_defaults(smc, 1);
card_stop(smc);
mac_drv_clear_tx_queue(smc);
mac_drv_clear_rx_queue(smc);
netif_stop_queue(dev);
/* Deregister (free) IRQ */
free_irq(dev->irq, dev);
skb_queue_purge(&bp->SendSkbQueue);
bp->QueueSkb = MAX_TX_QUEUE_LEN;
return 0;
} // skfp_close
/*
* ==================
* = skfp_interrupt =
* ==================
*
* Overview:
* Interrupt processing routine
*
* Returns:
* None
*
* Arguments:
* irq - interrupt vector
* dev_id - pointer to device information
*
* Functional Description:
* This routine calls the interrupt processing routine for this adapter. It
* disables and reenables adapter interrupts, as appropriate. We can support
* shared interrupts since the incoming dev_id pointer provides our device
* structure context. All the real work is done in the hardware module.
*
* Return Codes:
* None
*
* Assumptions:
* The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
* on Intel-based systems) is done by the operating system outside this
* routine.
*
* System interrupts are enabled through this call.
*
* Side Effects:
* Interrupts are disabled, then reenabled at the adapter.
*/
static irqreturn_t skfp_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct s_smc *smc; /* private board structure pointer */
skfddi_priv *bp;
smc = netdev_priv(dev);
bp = &smc->os;
// IRQs enabled or disabled ?
if (inpd(ADDR(B0_IMSK)) == 0) {
// IRQs are disabled: must be shared interrupt
return IRQ_NONE;
}
// Note: At this point, IRQs are enabled.
if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
// Adapter did not issue an IRQ: must be shared interrupt
return IRQ_NONE;
}
CLI_FBI(); // Disable IRQs from our adapter.
spin_lock(&bp->DriverLock);
// Call interrupt handler in hardware module (HWM).
fddi_isr(smc);
if (smc->os.ResetRequested) {
ResetAdapter(smc);
smc->os.ResetRequested = FALSE;
}
spin_unlock(&bp->DriverLock);
STI_FBI(); // Enable IRQs from our adapter.
return IRQ_HANDLED;
} // skfp_interrupt
/*
* ======================
* = skfp_ctl_get_stats =
* ======================
*
* Overview:
* Get statistics for FDDI adapter
*
* Returns:
* Pointer to FDDI statistics structure
*
* Arguments:
* dev - pointer to device information
*
* Functional Description:
* Gets current MIB objects from adapter, then
* returns FDDI statistics structure as defined
* in if_fddi.h.
*
* Note: Since the FDDI statistics structure is
* still new and the device structure doesn't
* have an FDDI-specific get statistics handler,
* we'll return the FDDI statistics structure as
* a pointer to an Ethernet statistics structure.
* That way, at least the first part of the statistics
* structure can be decoded properly.
* We'll have to pay attention to this routine as the
* device structure becomes more mature and LAN media
* independent.
*
*/
static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
{
struct s_smc *bp = netdev_priv(dev);
/* Fill the bp->stats structure with driver-maintained counters */
bp->os.MacStat.port_bs_flag[0] = 0x1234;
bp->os.MacStat.port_bs_flag[1] = 0x5678;
// goos: need to fill out fddi statistic
#if 0
/* Get FDDI SMT MIB objects */
/* Fill the bp->stats structure with the SMT MIB object values */
memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
/* Fill the bp->stats structure with the FDDI counter values */
bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
#endif
return (struct net_device_stats *)&bp->os.MacStat;
} // ctl_get_stat
/*
* ==============================
* = skfp_ctl_set_multicast_list =
* ==============================
*
* Overview:
* Enable/Disable LLC frame promiscuous mode reception
* on the adapter and/or update multicast address table.
*
* Returns:
* None
*
* Arguments:
* dev - pointer to device information
*
* Functional Description:
* This function acquires the driver lock and only calls
* skfp_ctl_set_multicast_list_wo_lock then.
* This routine follows a fairly simple algorithm for setting the
* adapter filters and CAM:
*
* if IFF_PROMISC flag is set
* enable promiscuous mode
* else
* disable promiscuous mode
* if number of multicast addresses <= max. multicast number
* add mc addresses to adapter table
* else
* enable promiscuous mode
* update adapter filters
*
* Assumptions:
* Multicast addresses are presented in canonical (LSB) format.
*
* Side Effects:
* On-board adapter filters are updated.
*/
static void skfp_ctl_set_multicast_list(struct net_device *dev)
{
struct s_smc *smc = netdev_priv(dev);
skfddi_priv *bp = &smc->os;
unsigned long Flags;
spin_lock_irqsave(&bp->DriverLock, Flags);
skfp_ctl_set_multicast_list_wo_lock(dev);
spin_unlock_irqrestore(&bp->DriverLock, Flags);
} // skfp_ctl_set_multicast_list
static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
{
struct s_smc *smc = netdev_priv(dev);
struct netdev_hw_addr *ha;
/* Enable promiscuous mode, if necessary */
if (dev->flags & IFF_PROMISC) {
mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
pr_debug("PROMISCUOUS MODE ENABLED\n");
}
/* Else, update multicast address table */
else {
mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
pr_debug("PROMISCUOUS MODE DISABLED\n");
// Reset all MC addresses
mac_clear_multicast(smc);
mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
if (dev->flags & IFF_ALLMULTI) {
mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
pr_debug("ENABLE ALL MC ADDRESSES\n");
} else if (!netdev_mc_empty(dev)) {
if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
/* use exact filtering */
// point to first multicast addr
netdev_for_each_mc_addr(ha, dev) {
mac_add_multicast(smc,
(struct fddi_addr *)ha->addr,
1);
pr_debug("ENABLE MC ADDRESS: %pMF\n",
ha->addr);
}
} else { // more MC addresses than HW supports
mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
pr_debug("ENABLE ALL MC ADDRESSES\n");
}
} else { // no MC addresses
pr_debug("DISABLE ALL MC ADDRESSES\n");
}
/* Update adapter filters */
mac_update_multicast(smc);
}
} // skfp_ctl_set_multicast_list_wo_lock
/*
* ===========================
* = skfp_ctl_set_mac_address =
* ===========================
*
* Overview:
* set new mac address on adapter and update dev_addr field in device table.
*
* Returns:
* None
*
* Arguments:
* dev - pointer to device information
* addr - pointer to sockaddr structure containing unicast address to set
*
* Assumptions:
* The address pointed to by addr->sa_data is a valid unicast
* address and is presented in canonical (LSB) format.
*/
static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
{
struct s_smc *smc = netdev_priv(dev);
struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
skfddi_priv *bp = &smc->os;
unsigned long Flags;
memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
spin_lock_irqsave(&bp->DriverLock, Flags);
ResetAdapter(smc);
spin_unlock_irqrestore(&bp->DriverLock, Flags);
return 0; /* always return zero */
} // skfp_ctl_set_mac_address
/*
* ==============
* = skfp_ioctl =
* ==============
*
* Overview:
*
* Perform IOCTL call functions here. Some are privileged operations and the
* effective uid is checked in those cases.
*
* Returns:
* status value
* 0 - success
* other - failure
*
* Arguments:
* dev - pointer to device information
* rq - pointer to ioctl request structure
* cmd - ?
*
*/
static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct s_smc *smc = netdev_priv(dev);
skfddi_priv *lp = &smc->os;
struct s_skfp_ioctl ioc;
int status = 0;
if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
return -EFAULT;
switch (ioc.cmd) {
case SKFP_GET_STATS: /* Get the driver statistics */
ioc.len = sizeof(lp->MacStat);
status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
? -EFAULT : 0;
break;
case SKFP_CLR_STATS: /* Zero out the driver statistics */
if (!capable(CAP_NET_ADMIN)) {
status = -EPERM;
} else {
memset(&lp->MacStat, 0, sizeof(lp->MacStat));
}
break;
default:
printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
status = -EOPNOTSUPP;
} // switch
return status;
} // skfp_ioctl
/*
* =====================
* = skfp_send_pkt =
* =====================
*
* Overview:
* Queues a packet for transmission and try to transmit it.
*
* Returns:
* Condition code
*
* Arguments:
* skb - pointer to sk_buff to queue for transmission
* dev - pointer to device information
*
* Functional Description:
* Here we assume that an incoming skb transmit request
* is contained in a single physically contiguous buffer
* in which the virtual address of the start of packet
* (skb->data) can be converted to a physical address
* by using pci_map_single().
*
* We have an internal queue for packets we can not send
* immediately. Packets in this queue can be given to the
* adapter if transmit buffers are freed.
*
* We can't free the skb until after it's been DMA'd
* out by the adapter, so we'll keep it in the driver and
* return it in mac_drv_tx_complete.
*
* Return Codes:
* 0 - driver has queued and/or sent packet
* 1 - caller should requeue the sk_buff for later transmission
*
* Assumptions:
* The entire packet is stored in one physically
* contiguous buffer which is not cached and whose
* 32-bit physical address can be determined.
*
* It's vital that this routine is NOT reentered for the
* same board and that the OS is not in another section of
* code (eg. skfp_interrupt) for the same board on a
* different thread.
*
* Side Effects:
* None
*/
static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
struct net_device *dev)
{
struct s_smc *smc = netdev_priv(dev);
skfddi_priv *bp = &smc->os;
pr_debug("skfp_send_pkt\n");
/*
* Verify that incoming transmit request is OK
*
* Note: The packet size check is consistent with other
* Linux device drivers, although the correct packet
* size should be verified before calling the
* transmit routine.
*/
if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
bp->MacStat.gen.tx_errors++; /* bump error counter */
// dequeue packets from xmt queue and send them
netif_start_queue(dev);
dev_kfree_skb(skb);
return NETDEV_TX_OK; /* return "success" */
}
if (bp->QueueSkb == 0) { // return with tbusy set: queue full
netif_stop_queue(dev);
return NETDEV_TX_BUSY;
}
bp->QueueSkb--;
skb_queue_tail(&bp->SendSkbQueue, skb);
send_queued_packets(netdev_priv(dev));
if (bp->QueueSkb == 0) {
netif_stop_queue(dev);
}
return NETDEV_TX_OK;
} // skfp_send_pkt
/*
* =======================
* = send_queued_packets =
* =======================
*
* Overview:
* Send packets from the driver queue as long as there are some and
* transmit resources are available.
*
* Returns:
* None
*
* Arguments:
* smc - pointer to smc (adapter) structure
*
* Functional Description:
* Take a packet from queue if there is any. If not, then we are done.
* Check if there are resources to send the packet. If not, requeue it
* and exit.
* Set packet descriptor flags and give packet to adapter.
* Check if any send resources can be freed (we do not use the
* transmit complete interrupt).
*/
static void send_queued_packets(struct s_smc *smc)
{
skfddi_priv *bp = &smc->os;
struct sk_buff *skb;
unsigned char fc;
int queue;
struct s_smt_fp_txd *txd; // Current TxD.
dma_addr_t dma_address;
unsigned long Flags;
int frame_status; // HWM tx frame status.
pr_debug("send queued packets\n");
for (;;) {
// send first buffer from queue
skb = skb_dequeue(&bp->SendSkbQueue);
if (!skb) {
pr_debug("queue empty\n");
return;
} // queue empty !
spin_lock_irqsave(&bp->DriverLock, Flags);
fc = skb->data[0];
queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
#ifdef ESS
// Check if the frame may/must be sent as a synchronous frame.
if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
// It's an LLC frame.
if (!smc->ess.sync_bw_available)
fc &= ~FC_SYNC_BIT; // No bandwidth available.
else { // Bandwidth is available.
if (smc->mib.fddiESSSynchTxMode) {
// Send as sync. frame.
fc |= FC_SYNC_BIT;
}
}
}
#endif // ESS
frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
// Unable to send the frame.
if ((frame_status & RING_DOWN) != 0) {
// Ring is down.
pr_debug("Tx attempt while ring down.\n");
} else if ((frame_status & OUT_OF_TXD) != 0) {
pr_debug("%s: out of TXDs.\n", bp->dev->name);
} else {
pr_debug("%s: out of transmit resources",
bp->dev->name);
}
// Note: We will retry the operation as soon as
// transmit resources become available.
skb_queue_head(&bp->SendSkbQueue, skb);
spin_unlock_irqrestore(&bp->DriverLock, Flags);
return; // Packet has been queued.
} // if (unable to send frame)
bp->QueueSkb++; // one packet less in local queue
// source address in packet ?
CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
dma_address = pci_map_single(&bp->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (frame_status & LAN_TX) {
txd->txd_os.skb = skb; // save skb
txd->txd_os.dma_addr = dma_address; // save dma mapping
}
hwm_tx_frag(smc, skb->data, dma_address, skb->len,
frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
if (!(frame_status & LAN_TX)) { // local only frame
pci_unmap_single(&bp->pdev, dma_address,
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb_irq(skb);
}
spin_unlock_irqrestore(&bp->DriverLock, Flags);
} // for
return; // never reached
} // send_queued_packets
/************************
*
* CheckSourceAddress
*
* Verify if the source address is set. Insert it if necessary.
*
************************/
static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
{
unsigned char SRBit;
if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
return;
if ((unsigned short) frame[1 + 10] != 0)
return;
SRBit = frame[1 + 6] & 0x01;
memcpy(&frame[1 + 6], hw_addr, 6);
frame[8] |= SRBit;
} // CheckSourceAddress
/************************
*
* ResetAdapter
*
* Reset the adapter and bring it back to operational mode.
* Args
* smc - A pointer to the SMT context struct.
* Out
* Nothing.
*
************************/
static void ResetAdapter(struct s_smc *smc)
{
pr_debug("[fddi: ResetAdapter]\n");
// Stop the adapter.
card_stop(smc); // Stop all activity.
// Clear the transmit and receive descriptor queues.
mac_drv_clear_tx_queue(smc);
mac_drv_clear_rx_queue(smc);
// Restart the adapter.
smt_reset_defaults(smc, 1); // Initialize the SMT module.
init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
smt_online(smc, 1); // Insert into the ring again.
STI_FBI();
// Restore original receive mode (multicasts, promiscuous, etc.).
skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
} // ResetAdapter
//--------------- functions called by hardware module ----------------
/************************
*
* llc_restart_tx
*
* The hardware driver calls this routine when the transmit complete
* interrupt bits (end of frame) for the synchronous or asynchronous
* queue is set.
*
* NOTE The hardware driver calls this function also if no packets are queued.
* The routine must be able to handle this case.
* Args
* smc - A pointer to the SMT context struct.
* Out
* Nothing.
*
************************/
void llc_restart_tx(struct s_smc *smc)
{
skfddi_priv *bp = &smc->os;
pr_debug("[llc_restart_tx]\n");
// Try to send queued packets
spin_unlock(&bp->DriverLock);
send_queued_packets(smc);
spin_lock(&bp->DriverLock);
netif_start_queue(bp->dev);// system may send again if it was blocked
} // llc_restart_tx
/************************
*
* mac_drv_get_space
*
* The hardware module calls this function to allocate the memory
* for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
* Args
* smc - A pointer to the SMT context struct.
*
* size - Size of memory in bytes to allocate.
* Out
* != 0 A pointer to the virtual address of the allocated memory.
* == 0 Allocation error.
*
************************/
void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
{
void *virt;
pr_debug("mac_drv_get_space (%d bytes), ", size);
virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
printk("Unexpected SMT memory size requested: %d\n", size);
return NULL;
}
smc->os.SharedMemHeap += size; // Move heap pointer.
pr_debug("mac_drv_get_space end\n");
pr_debug("virt addr: %lx\n", (ulong) virt);
pr_debug("bus addr: %lx\n", (ulong)
(smc->os.SharedMemDMA +
((char *) virt - (char *)smc->os.SharedMemAddr)));
return virt;
} // mac_drv_get_space
/************************
*
* mac_drv_get_desc_mem
*
* This function is called by the hardware dependent module.
* It allocates the memory for the RxD and TxD descriptors.
*
* This memory must be non-cached, non-movable and non-swappable.
* This memory should start at a physical page boundary.
* Args
* smc - A pointer to the SMT context struct.
*
* size - Size of memory in bytes to allocate.
* Out
* != 0 A pointer to the virtual address of the allocated memory.
* == 0 Allocation error.
*
************************/
void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
{
char *virt;
pr_debug("mac_drv_get_desc_mem\n");
// Descriptor memory must be aligned on 16-byte boundary.
virt = mac_drv_get_space(smc, size);
size = (u_int) (16 - (((unsigned long) virt) & 15UL));
size = size % 16;
pr_debug("Allocate %u bytes alignment gap ", size);
pr_debug("for descriptor memory.\n");
if (!mac_drv_get_space(smc, size)) {
printk("fddi: Unable to align descriptor memory.\n");
return NULL;
}
return virt + size;
} // mac_drv_get_desc_mem
/************************
*
* mac_drv_virt2phys
*
* Get the physical address of a given virtual address.
* Args
* smc - A pointer to the SMT context struct.
*
* virt - A (virtual) pointer into our 'shared' memory area.
* Out
* Physical address of the given virtual address.
*
************************/
unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
{
return smc->os.SharedMemDMA +
((char *) virt - (char *)smc->os.SharedMemAddr);
} // mac_drv_virt2phys
/************************
*
* dma_master
*
* The HWM calls this function, when the driver leads through a DMA
* transfer. If the OS-specific module must prepare the system hardware
* for the DMA transfer, it should do it in this function.
*
* The hardware module calls this dma_master if it wants to send an SMT
* frame. This means that the virt address passed in here is part of
* the 'shared' memory area.
* Args
* smc - A pointer to the SMT context struct.
*
* virt - The virtual address of the data.
*
* len - The length in bytes of the data.
*
* flag - Indicates the transmit direction and the buffer type:
* DMA_RD (0x01) system RAM ==> adapter buffer memory
* DMA_WR (0x02) adapter buffer memory ==> system RAM
* SMT_BUF (0x80) SMT buffer
*
* >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
* Out
* Returns the pyhsical address for the DMA transfer.
*
************************/
u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
{
return smc->os.SharedMemDMA +
((char *) virt - (char *)smc->os.SharedMemAddr);
} // dma_master
/************************
*
* dma_complete
*
* The hardware module calls this routine when it has completed a DMA
* transfer. If the operating system dependent module has set up the DMA
* channel via dma_master() (e.g. Windows NT or AIX) it should clean up
* the DMA channel.
* Args
* smc - A pointer to the SMT context struct.
*
* descr - A pointer to a TxD or RxD, respectively.
*
* flag - Indicates the DMA transfer direction / SMT buffer:
* DMA_RD (0x01) system RAM ==> adapter buffer memory
* DMA_WR (0x02) adapter buffer memory ==> system RAM
* SMT_BUF (0x80) SMT buffer (managed by HWM)
* Out
* Nothing.
*
************************/
void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
{
/* For TX buffers, there are two cases. If it is an SMT transmit
* buffer, there is nothing to do since we use consistent memory
* for the 'shared' memory area. The other case is for normal
* transmit packets given to us by the networking stack, and in
* that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
* below.
*
* For RX buffers, we have to unmap dynamic PCI DMA mappings here
* because the hardware module is about to potentially look at
* the contents of the buffer. If we did not call the PCI DMA
* unmap first, the hardware module could read inconsistent data.
*/
if (flag & DMA_WR) {
skfddi_priv *bp = &smc->os;
volatile struct s_smt_fp_rxd *r = &descr->r;
/* If SKB is NULL, we used the local buffer. */
if (r->rxd_os.skb && r->rxd_os.dma_addr) {
int MaxFrameSize = bp->MaxFrameSize;
pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
MaxFrameSize, PCI_DMA_FROMDEVICE);
r->rxd_os.dma_addr = 0;
}
}
} // dma_complete
/************************
*
* mac_drv_tx_complete
*
* Transmit of a packet is complete. Release the tx staging buffer.
*
* Args
* smc - A pointer to the SMT context struct.
*
* txd - A pointer to the last TxD which is used by the frame.
* Out
* Returns nothing.
*
************************/
void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
{
struct sk_buff *skb;
pr_debug("entering mac_drv_tx_complete\n");
// Check if this TxD points to a skb
if (!(skb = txd->txd_os.skb)) {
pr_debug("TXD with no skb assigned.\n");
return;
}
txd->txd_os.skb = NULL;
// release the DMA mapping
pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
skb->len, PCI_DMA_TODEVICE);
txd->txd_os.dma_addr = 0;
smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
// free the skb
dev_kfree_skb_irq(skb);
pr_debug("leaving mac_drv_tx_complete\n");
} // mac_drv_tx_complete
/************************
*
* dump packets to logfile
*
************************/
#ifdef DUMPPACKETS
void dump_data(unsigned char *Data, int length)
{
int i, j;
unsigned char s[255], sh[10];
if (length > 64) {
length = 64;
}
printk(KERN_INFO "---Packet start---\n");
for (i = 0, j = 0; i < length / 8; i++, j += 8)
printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
strcpy(s, "");
for (i = 0; i < length % 8; i++) {
sprintf(sh, "%02x ", Data[j + i]);
strcat(s, sh);
}
printk(KERN_INFO "%s\n", s);
printk(KERN_INFO "------------------\n");
} // dump_data
#else
#define dump_data(data,len)
#endif // DUMPPACKETS
/************************
*
* mac_drv_rx_complete
*
* The hardware module calls this function if an LLC frame is received
* in a receive buffer. Also the SMT, NSA, and directed beacon frames
* from the network will be passed to the LLC layer by this function
* if passing is enabled.
*
* mac_drv_rx_complete forwards the frame to the LLC layer if it should
* be received. It also fills the RxD ring with new receive buffers if
* some can be queued.
* Args
* smc - A pointer to the SMT context struct.
*
* rxd - A pointer to the first RxD which is used by the receive frame.
*
* frag_count - Count of RxDs used by the received frame.
*
* len - Frame length.
* Out
* Nothing.
*
************************/
void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
int frag_count, int len)
{
skfddi_priv *bp = &smc->os;
struct sk_buff *skb;
unsigned char *virt, *cp;
unsigned short ri;
u_int RifLength;
pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
if (frag_count != 1) { // This is not allowed to happen.
printk("fddi: Multi-fragment receive!\n");
goto RequeueRxd; // Re-use the given RXD(s).
}
skb = rxd->rxd_os.skb;
if (!skb) {
pr_debug("No skb in rxd\n");
smc->os.MacStat.gen.rx_errors++;
goto RequeueRxd;
}
virt = skb->data;
// The DMA mapping was released in dma_complete above.
dump_data(skb->data, len);
/*
* FDDI Frame format:
* +-------+-------+-------+------------+--------+------------+
* | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
* +-------+-------+-------+------------+--------+------------+
*
* FC = Frame Control
* DA = Destination Address
* SA = Source Address
* RIF = Routing Information Field
* LLC = Logical Link Control
*/
// Remove Routing Information Field (RIF), if present.
if ((virt[1 + 6] & FDDI_RII) == 0)
RifLength = 0;
else {
int n;
// goos: RIF removal has still to be tested
pr_debug("RIF found\n");
// Get RIF length from Routing Control (RC) field.
cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
ri = ntohs(*((__be16 *) cp));
RifLength = ri & FDDI_RCF_LEN_MASK;
if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
printk("fddi: Invalid RIF.\n");
goto RequeueRxd; // Discard the frame.
}
virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
// regions overlap
virt = cp + RifLength;
for (n = FDDI_MAC_HDR_LEN; n; n--)
*--virt = *--cp;
// adjust sbd->data pointer
skb_pull(skb, RifLength);
len -= RifLength;
RifLength = 0;
}
// Count statistics.
smc->os.MacStat.gen.rx_packets++; // Count indicated receive
// packets.
smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
// virt points to header again
if (virt[1] & 0x01) { // Check group (multicast) bit.
smc->os.MacStat.gen.multicast++;
}
// deliver frame to system
rxd->rxd_os.skb = NULL;
skb_trim(skb, len);
skb->protocol = fddi_type_trans(skb, bp->dev);
netif_rx(skb);
HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
return;
RequeueRxd:
pr_debug("Rx: re-queue RXD.\n");
mac_drv_requeue_rxd(smc, rxd, frag_count);
smc->os.MacStat.gen.rx_errors++; // Count receive packets
// not indicated.
} // mac_drv_rx_complete
/************************
*
* mac_drv_requeue_rxd
*
* The hardware module calls this function to request the OS-specific
* module to queue the receive buffer(s) represented by the pointer
* to the RxD and the frag_count into the receive queue again. This
* buffer was filled with an invalid frame or an SMT frame.
* Args
* smc - A pointer to the SMT context struct.
*
* rxd - A pointer to the first RxD which is used by the receive frame.
*
* frag_count - Count of RxDs used by the received frame.
* Out
* Nothing.
*
************************/
void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
int frag_count)
{
volatile struct s_smt_fp_rxd *next_rxd;
volatile struct s_smt_fp_rxd *src_rxd;
struct sk_buff *skb;
int MaxFrameSize;
unsigned char *v_addr;
dma_addr_t b_addr;
if (frag_count != 1) // This is not allowed to happen.
printk("fddi: Multi-fragment requeue!\n");
MaxFrameSize = smc->os.MaxFrameSize;
src_rxd = rxd;
for (; frag_count > 0; frag_count--) {
next_rxd = src_rxd->rxd_next;
rxd = HWM_GET_CURR_RXD(smc);
skb = src_rxd->rxd_os.skb;
if (skb == NULL) { // this should not happen
pr_debug("Requeue with no skb in rxd!\n");
skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
if (skb) {
// we got a skb
rxd->rxd_os.skb = skb;
skb_reserve(skb, 3);
skb_put(skb, MaxFrameSize);
v_addr = skb->data;
b_addr = pci_map_single(&smc->os.pdev,
v_addr,
MaxFrameSize,
PCI_DMA_FROMDEVICE);
rxd->rxd_os.dma_addr = b_addr;
} else {
// no skb available, use local buffer
pr_debug("Queueing invalid buffer!\n");
rxd->rxd_os.skb = NULL;
v_addr = smc->os.LocalRxBuffer;
b_addr = smc->os.LocalRxBufferDMA;
}
} else {
// we use skb from old rxd
rxd->rxd_os.skb = skb;
v_addr = skb->data;
b_addr = pci_map_single(&smc->os.pdev,
v_addr,
MaxFrameSize,
PCI_DMA_FROMDEVICE);
rxd->rxd_os.dma_addr = b_addr;
}
hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
FIRST_FRAG | LAST_FRAG);
src_rxd = next_rxd;
}
} // mac_drv_requeue_rxd
/************************
*
* mac_drv_fill_rxd
*
* The hardware module calls this function at initialization time
* to fill the RxD ring with receive buffers. It is also called by
* mac_drv_rx_complete if rx_free is large enough to queue some new
* receive buffers into the RxD ring. mac_drv_fill_rxd queues new
* receive buffers as long as enough RxDs and receive buffers are
* available.
* Args
* smc - A pointer to the SMT context struct.
* Out
* Nothing.
*
************************/
void mac_drv_fill_rxd(struct s_smc *smc)
{
int MaxFrameSize;
unsigned char *v_addr;
unsigned long b_addr;
struct sk_buff *skb;
volatile struct s_smt_fp_rxd *rxd;
pr_debug("entering mac_drv_fill_rxd\n");
// Walk through the list of free receive buffers, passing receive
// buffers to the HWM as long as RXDs are available.
MaxFrameSize = smc->os.MaxFrameSize;
// Check if there is any RXD left.
while (HWM_GET_RX_FREE(smc) > 0) {
pr_debug(".\n");
rxd = HWM_GET_CURR_RXD(smc);
skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
if (skb) {
// we got a skb
skb_reserve(skb, 3);
skb_put(skb, MaxFrameSize);
v_addr = skb->data;
b_addr = pci_map_single(&smc->os.pdev,
v_addr,
MaxFrameSize,
PCI_DMA_FROMDEVICE);
rxd->rxd_os.dma_addr = b_addr;
} else {
// no skb available, use local buffer
// System has run out of buffer memory, but we want to
// keep the receiver running in hope of better times.
// Multiple descriptors may point to this local buffer,
// so data in it must be considered invalid.
pr_debug("Queueing invalid buffer!\n");
v_addr = smc->os.LocalRxBuffer;
b_addr = smc->os.LocalRxBufferDMA;
}
rxd->rxd_os.skb = skb;
// Pass receive buffer to HWM.
hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
FIRST_FRAG | LAST_FRAG);
}
pr_debug("leaving mac_drv_fill_rxd\n");
} // mac_drv_fill_rxd
/************************
*
* mac_drv_clear_rxd
*
* The hardware module calls this function to release unused
* receive buffers.
* Args
* smc - A pointer to the SMT context struct.
*
* rxd - A pointer to the first RxD which is used by the receive buffer.
*
* frag_count - Count of RxDs used by the receive buffer.
* Out
* Nothing.
*
************************/
void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
int frag_count)
{
struct sk_buff *skb;
pr_debug("entering mac_drv_clear_rxd\n");
if (frag_count != 1) // This is not allowed to happen.
printk("fddi: Multi-fragment clear!\n");
for (; frag_count > 0; frag_count--) {
skb = rxd->rxd_os.skb;
if (skb != NULL) {
skfddi_priv *bp = &smc->os;
int MaxFrameSize = bp->MaxFrameSize;
pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
MaxFrameSize, PCI_DMA_FROMDEVICE);
dev_kfree_skb(skb);
rxd->rxd_os.skb = NULL;
}
rxd = rxd->rxd_next; // Next RXD.
}
} // mac_drv_clear_rxd
/************************
*
* mac_drv_rx_init
*
* The hardware module calls this routine when an SMT or NSA frame of the
* local SMT should be delivered to the LLC layer.
*
* It is necessary to have this function, because there is no other way to
* copy the contents of SMT MBufs into receive buffers.
*
* mac_drv_rx_init allocates the required target memory for this frame,
* and receives the frame fragment by fragment by calling mac_drv_rx_frag.
* Args
* smc - A pointer to the SMT context struct.
*
* len - The length (in bytes) of the received frame (FC, DA, SA, Data).
*
* fc - The Frame Control field of the received frame.
*
* look_ahead - A pointer to the lookahead data buffer (may be NULL).
*
* la_len - The length of the lookahead data stored in the lookahead
* buffer (may be zero).
* Out
* Always returns zero (0).
*
************************/
int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
char *look_ahead, int la_len)
{
struct sk_buff *skb;
pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
// "Received" a SMT or NSA frame of the local SMT.
if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
pr_debug("fddi: Discard invalid local SMT frame\n");
pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
len, la_len, (unsigned long) look_ahead);
return 0;
}
skb = alloc_skb(len + 3, GFP_ATOMIC);
if (!skb) {
pr_debug("fddi: Local SMT: skb memory exhausted.\n");
return 0;
}
skb_reserve(skb, 3);
skb_put(skb, len);
skb_copy_to_linear_data(skb, look_ahead, len);
// deliver frame to system
skb->protocol = fddi_type_trans(skb, smc->os.dev);
netif_rx(skb);
return 0;
} // mac_drv_rx_init
/************************
*
* smt_timer_poll
*
* This routine is called periodically by the SMT module to clean up the
* driver.
*
* Return any queued frames back to the upper protocol layers if the ring
* is down.
* Args
* smc - A pointer to the SMT context struct.
* Out
* Nothing.
*
************************/
void smt_timer_poll(struct s_smc *smc)
{
} // smt_timer_poll
/************************
*
* ring_status_indication
*
* This function indicates a change of the ring state.
* Args
* smc - A pointer to the SMT context struct.
*
* status - The current ring status.
* Out
* Nothing.
*
************************/
void ring_status_indication(struct s_smc *smc, u_long status)
{
pr_debug("ring_status_indication( ");
if (status & RS_RES15)
pr_debug("RS_RES15 ");
if (status & RS_HARDERROR)
pr_debug("RS_HARDERROR ");
if (status & RS_SOFTERROR)
pr_debug("RS_SOFTERROR ");
if (status & RS_BEACON)
pr_debug("RS_BEACON ");
if (status & RS_PATHTEST)
pr_debug("RS_PATHTEST ");
if (status & RS_SELFTEST)
pr_debug("RS_SELFTEST ");
if (status & RS_RES9)
pr_debug("RS_RES9 ");
if (status & RS_DISCONNECT)
pr_debug("RS_DISCONNECT ");
if (status & RS_RES7)
pr_debug("RS_RES7 ");
if (status & RS_DUPADDR)
pr_debug("RS_DUPADDR ");
if (status & RS_NORINGOP)
pr_debug("RS_NORINGOP ");
if (status & RS_VERSION)
pr_debug("RS_VERSION ");
if (status & RS_STUCKBYPASSS)
pr_debug("RS_STUCKBYPASSS ");
if (status & RS_EVENT)
pr_debug("RS_EVENT ");
if (status & RS_RINGOPCHANGE)
pr_debug("RS_RINGOPCHANGE ");
if (status & RS_RES0)
pr_debug("RS_RES0 ");
pr_debug("]\n");
} // ring_status_indication
/************************
*
* smt_get_time
*
* Gets the current time from the system.
* Args
* None.
* Out
* The current time in TICKS_PER_SECOND.
*
* TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
* defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
* to the time returned by smt_get_time().
*
************************/
unsigned long smt_get_time(void)
{
return jiffies;
} // smt_get_time
/************************
*
* smt_stat_counter
*
* Status counter update (ring_op, fifo full).
* Args
* smc - A pointer to the SMT context struct.
*
* stat - = 0: A ring operational change occurred.
* = 1: The FORMAC FIFO buffer is full / FIFO overflow.
* Out
* Nothing.
*
************************/
void smt_stat_counter(struct s_smc *smc, int stat)
{
// BOOLEAN RingIsUp ;
pr_debug("smt_stat_counter\n");
switch (stat) {
case 0:
pr_debug("Ring operational change.\n");
break;
case 1:
pr_debug("Receive fifo overflow.\n");
smc->os.MacStat.gen.rx_errors++;
break;
default:
pr_debug("Unknown status (%d).\n", stat);
break;
}
} // smt_stat_counter
/************************
*
* cfm_state_change
*
* Sets CFM state in custom statistics.
* Args
* smc - A pointer to the SMT context struct.
*
* c_state - Possible values are:
*
* EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
* EC5_INSERT, EC6_CHECK, EC7_DEINSERT
* Out
* Nothing.
*
************************/
void cfm_state_change(struct s_smc *smc, int c_state)
{
#ifdef DRIVERDEBUG
char *s;
switch (c_state) {
case SC0_ISOLATED:
s = "SC0_ISOLATED";
break;
case SC1_WRAP_A:
s = "SC1_WRAP_A";
break;
case SC2_WRAP_B:
s = "SC2_WRAP_B";
break;
case SC4_THRU_A:
s = "SC4_THRU_A";
break;
case SC5_THRU_B:
s = "SC5_THRU_B";
break;
case SC7_WRAP_S:
s = "SC7_WRAP_S";
break;
case SC9_C_WRAP_A:
s = "SC9_C_WRAP_A";
break;
case SC10_C_WRAP_B:
s = "SC10_C_WRAP_B";
break;
case SC11_C_WRAP_S:
s = "SC11_C_WRAP_S";
break;
default:
pr_debug("cfm_state_change: unknown %d\n", c_state);
return;
}
pr_debug("cfm_state_change: %s\n", s);
#endif // DRIVERDEBUG
} // cfm_state_change
/************************
*
* ecm_state_change
*
* Sets ECM state in custom statistics.
* Args
* smc - A pointer to the SMT context struct.
*
* e_state - Possible values are:
*
* SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
* SC5_THRU_B (7), SC7_WRAP_S (8)
* Out
* Nothing.
*
************************/
void ecm_state_change(struct s_smc *smc, int e_state)
{
#ifdef DRIVERDEBUG
char *s;
switch (e_state) {
case EC0_OUT:
s = "EC0_OUT";
break;
case EC1_IN:
s = "EC1_IN";
break;
case EC2_TRACE:
s = "EC2_TRACE";
break;
case EC3_LEAVE:
s = "EC3_LEAVE";
break;
case EC4_PATH_TEST:
s = "EC4_PATH_TEST";
break;
case EC5_INSERT:
s = "EC5_INSERT";
break;
case EC6_CHECK:
s = "EC6_CHECK";
break;
case EC7_DEINSERT:
s = "EC7_DEINSERT";
break;
default:
s = "unknown";
break;
}
pr_debug("ecm_state_change: %s\n", s);
#endif //DRIVERDEBUG
} // ecm_state_change
/************************
*
* rmt_state_change
*
* Sets RMT state in custom statistics.
* Args
* smc - A pointer to the SMT context struct.
*
* r_state - Possible values are:
*
* RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
* RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
* Out
* Nothing.
*
************************/
void rmt_state_change(struct s_smc *smc, int r_state)
{
#ifdef DRIVERDEBUG
char *s;
switch (r_state) {
case RM0_ISOLATED:
s = "RM0_ISOLATED";
break;
case RM1_NON_OP:
s = "RM1_NON_OP - not operational";
break;
case RM2_RING_OP:
s = "RM2_RING_OP - ring operational";
break;
case RM3_DETECT:
s = "RM3_DETECT - detect dupl addresses";
break;
case RM4_NON_OP_DUP:
s = "RM4_NON_OP_DUP - dupl. addr detected";
break;
case RM5_RING_OP_DUP:
s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
break;
case RM6_DIRECTED:
s = "RM6_DIRECTED - sending directed beacons";
break;
case RM7_TRACE:
s = "RM7_TRACE - trace initiated";
break;
default:
s = "unknown";
break;
}
pr_debug("[rmt_state_change: %s]\n", s);
#endif // DRIVERDEBUG
} // rmt_state_change
/************************
*
* drv_reset_indication
*
* This function is called by the SMT when it has detected a severe
* hardware problem. The driver should perform a reset on the adapter
* as soon as possible, but not from within this function.
* Args
* smc - A pointer to the SMT context struct.
* Out
* Nothing.
*
************************/
void drv_reset_indication(struct s_smc *smc)
{
pr_debug("entering drv_reset_indication\n");
smc->os.ResetRequested = TRUE; // Set flag.
} // drv_reset_indication
static struct pci_driver skfddi_pci_driver = {
.name = "skfddi",
.id_table = skfddi_pci_tbl,
.probe = skfp_init_one,
.remove = __devexit_p(skfp_remove_one),
};
static int __init skfd_init(void)
{
return pci_register_driver(&skfddi_pci_driver);
}
static void __exit skfd_exit(void)
{
pci_unregister_driver(&skfddi_pci_driver);
}
module_init(skfd_init);
module_exit(skfd_exit);