linux_dsm_epyc7002/drivers/usb/host/alchemy-common.c
Manuel Lauss ce6bc92285 MIPS: Alchemy: abstract USB block control register access
Alchemy chips have one or more registers which control access
to the usb blocks as well as PHY configuration.  I don't want
the OHCI/EHCI glues to know about the different registers and bits;
new code hides the gory details of USB configuration from them.

Signed-off-by: Manuel Lauss <manuel.lauss@googlemail.com>
To: Linux-MIPS <linux-mips@linux-mips.org>
Cc: linux-usb@vger.kernel.org
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Patchwork: https://patchwork.linux-mips.org/patch/2709/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>

 create mode 100644 drivers/usb/host/alchemy-common.c
2011-10-24 23:34:23 +01:00

338 lines
8.5 KiB
C

/*
* USB block power/access management abstraction.
*
* Au1000+: The OHCI block control register is at the far end of the OHCI memory
* area. Au1550 has OHCI on different base address. No need to handle
* UDC here.
* Au1200: one register to control access and clocks to O/EHCI, UDC and OTG
* as well as the PHY for EHCI and UDC.
*
*/
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/syscore_ops.h>
#include <asm/mach-au1x00/au1000.h>
/* control register offsets */
#define AU1000_OHCICFG 0x7fffc
#define AU1550_OHCICFG 0x07ffc
#define AU1200_USBCFG 0x04
/* Au1000 USB block config bits */
#define USBHEN_RD (1 << 4) /* OHCI reset-done indicator */
#define USBHEN_CE (1 << 3) /* OHCI block clock enable */
#define USBHEN_E (1 << 2) /* OHCI block enable */
#define USBHEN_C (1 << 1) /* OHCI block coherency bit */
#define USBHEN_BE (1 << 0) /* OHCI Big-Endian */
/* Au1200 USB config bits */
#define USBCFG_PFEN (1 << 31) /* prefetch enable (undoc) */
#define USBCFG_RDCOMB (1 << 30) /* read combining (undoc) */
#define USBCFG_UNKNOWN (5 << 20) /* unknown, leave this way */
#define USBCFG_SSD (1 << 23) /* serial short detect en */
#define USBCFG_PPE (1 << 19) /* HS PHY PLL */
#define USBCFG_UCE (1 << 18) /* UDC clock enable */
#define USBCFG_ECE (1 << 17) /* EHCI clock enable */
#define USBCFG_OCE (1 << 16) /* OHCI clock enable */
#define USBCFG_FLA(x) (((x) & 0x3f) << 8)
#define USBCFG_UCAM (1 << 7) /* coherent access (undoc) */
#define USBCFG_GME (1 << 6) /* OTG mem access */
#define USBCFG_DBE (1 << 5) /* UDC busmaster enable */
#define USBCFG_DME (1 << 4) /* UDC mem enable */
#define USBCFG_EBE (1 << 3) /* EHCI busmaster enable */
#define USBCFG_EME (1 << 2) /* EHCI mem enable */
#define USBCFG_OBE (1 << 1) /* OHCI busmaster enable */
#define USBCFG_OME (1 << 0) /* OHCI mem enable */
#define USBCFG_INIT_AU1200 (USBCFG_PFEN | USBCFG_RDCOMB | USBCFG_UNKNOWN |\
USBCFG_SSD | USBCFG_FLA(0x20) | USBCFG_UCAM | \
USBCFG_GME | USBCFG_DBE | USBCFG_DME | \
USBCFG_EBE | USBCFG_EME | USBCFG_OBE | \
USBCFG_OME)
static DEFINE_SPINLOCK(alchemy_usb_lock);
static inline void __au1200_ohci_control(void __iomem *base, int enable)
{
unsigned long r = __raw_readl(base + AU1200_USBCFG);
if (enable) {
__raw_writel(r | USBCFG_OCE, base + AU1200_USBCFG);
wmb();
udelay(2000);
} else {
__raw_writel(r & ~USBCFG_OCE, base + AU1200_USBCFG);
wmb();
udelay(1000);
}
}
static inline void __au1200_ehci_control(void __iomem *base, int enable)
{
unsigned long r = __raw_readl(base + AU1200_USBCFG);
if (enable) {
__raw_writel(r | USBCFG_ECE | USBCFG_PPE, base + AU1200_USBCFG);
wmb();
udelay(1000);
} else {
if (!(r & USBCFG_UCE)) /* UDC also off? */
r &= ~USBCFG_PPE; /* yes: disable HS PHY PLL */
__raw_writel(r & ~USBCFG_ECE, base + AU1200_USBCFG);
wmb();
udelay(1000);
}
}
static inline void __au1200_udc_control(void __iomem *base, int enable)
{
unsigned long r = __raw_readl(base + AU1200_USBCFG);
if (enable) {
__raw_writel(r | USBCFG_UCE | USBCFG_PPE, base + AU1200_USBCFG);
wmb();
} else {
if (!(r & USBCFG_ECE)) /* EHCI also off? */
r &= ~USBCFG_PPE; /* yes: disable HS PHY PLL */
__raw_writel(r & ~USBCFG_UCE, base + AU1200_USBCFG);
wmb();
}
}
static inline int au1200_coherency_bug(void)
{
#if defined(CONFIG_DMA_COHERENT)
/* Au1200 AB USB does not support coherent memory */
if (!(read_c0_prid() & 0xff)) {
printk(KERN_INFO "Au1200 USB: this is chip revision AB !!\n");
printk(KERN_INFO "Au1200 USB: update your board or re-configure"
" the kernel\n");
return -ENODEV;
}
#endif
return 0;
}
static inline int au1200_usb_control(int block, int enable)
{
void __iomem *base =
(void __iomem *)KSEG1ADDR(AU1200_USB_CTL_PHYS_ADDR);
int ret = 0;
switch (block) {
case ALCHEMY_USB_OHCI0:
ret = au1200_coherency_bug();
if (ret && enable)
goto out;
__au1200_ohci_control(base, enable);
break;
case ALCHEMY_USB_UDC0:
__au1200_udc_control(base, enable);
break;
case ALCHEMY_USB_EHCI0:
ret = au1200_coherency_bug();
if (ret && enable)
goto out;
__au1200_ehci_control(base, enable);
break;
default:
ret = -ENODEV;
}
out:
return ret;
}
/* initialize USB block(s) to a known working state */
static inline void au1200_usb_init(void)
{
void __iomem *base =
(void __iomem *)KSEG1ADDR(AU1200_USB_CTL_PHYS_ADDR);
__raw_writel(USBCFG_INIT_AU1200, base + AU1200_USBCFG);
wmb();
udelay(1000);
}
static inline void au1000_usb_init(unsigned long rb, int reg)
{
void __iomem *base = (void __iomem *)KSEG1ADDR(rb + reg);
unsigned long r = __raw_readl(base);
#if defined(__BIG_ENDIAN)
r |= USBHEN_BE;
#endif
r |= USBHEN_C;
__raw_writel(r, base);
wmb();
udelay(1000);
}
static inline void __au1xx0_ohci_control(int enable, unsigned long rb, int creg)
{
void __iomem *base = (void __iomem *)KSEG1ADDR(rb);
unsigned long r = __raw_readl(base + creg);
if (enable) {
__raw_writel(r | USBHEN_CE, base + creg);
wmb();
udelay(1000);
__raw_writel(r | USBHEN_CE | USBHEN_E, base + creg);
wmb();
udelay(1000);
/* wait for reset complete (read reg twice: au1500 erratum) */
while (__raw_readl(base + creg),
!(__raw_readl(base + creg) & USBHEN_RD))
udelay(1000);
} else {
__raw_writel(r & ~(USBHEN_CE | USBHEN_E), base + creg);
wmb();
}
}
static inline int au1000_usb_control(int block, int enable, unsigned long rb,
int creg)
{
int ret = 0;
switch (block) {
case ALCHEMY_USB_OHCI0:
__au1xx0_ohci_control(enable, rb, creg);
break;
default:
ret = -ENODEV;
}
return ret;
}
/*
* alchemy_usb_control - control Alchemy on-chip USB blocks
* @block: USB block to target
* @enable: set 1 to enable a block, 0 to disable
*/
int alchemy_usb_control(int block, int enable)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&alchemy_usb_lock, flags);
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1000:
case ALCHEMY_CPU_AU1500:
case ALCHEMY_CPU_AU1100:
ret = au1000_usb_control(block, enable,
AU1000_USB_OHCI_PHYS_ADDR, AU1000_OHCICFG);
break;
case ALCHEMY_CPU_AU1550:
ret = au1000_usb_control(block, enable,
AU1550_USB_OHCI_PHYS_ADDR, AU1550_OHCICFG);
break;
case ALCHEMY_CPU_AU1200:
ret = au1200_usb_control(block, enable);
break;
default:
ret = -ENODEV;
}
spin_unlock_irqrestore(&alchemy_usb_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(alchemy_usb_control);
static unsigned long alchemy_usb_pmdata[2];
static void au1000_usb_pm(unsigned long br, int creg, int susp)
{
void __iomem *base = (void __iomem *)KSEG1ADDR(br);
if (susp) {
alchemy_usb_pmdata[0] = __raw_readl(base + creg);
/* There appears to be some undocumented reset register.... */
__raw_writel(0, base + 0x04);
wmb();
__raw_writel(0, base + creg);
wmb();
} else {
__raw_writel(alchemy_usb_pmdata[0], base + creg);
wmb();
}
}
static void au1200_usb_pm(int susp)
{
void __iomem *base =
(void __iomem *)KSEG1ADDR(AU1200_USB_OTG_PHYS_ADDR);
if (susp) {
/* save OTG_CAP/MUX registers which indicate port routing */
/* FIXME: write an OTG driver to do that */
alchemy_usb_pmdata[0] = __raw_readl(base + 0x00);
alchemy_usb_pmdata[1] = __raw_readl(base + 0x04);
} else {
/* restore access to all MMIO areas */
au1200_usb_init();
/* restore OTG_CAP/MUX registers */
__raw_writel(alchemy_usb_pmdata[0], base + 0x00);
__raw_writel(alchemy_usb_pmdata[1], base + 0x04);
wmb();
}
}
static void alchemy_usb_pm(int susp)
{
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1000:
case ALCHEMY_CPU_AU1500:
case ALCHEMY_CPU_AU1100:
au1000_usb_pm(AU1000_USB_OHCI_PHYS_ADDR, AU1000_OHCICFG, susp);
break;
case ALCHEMY_CPU_AU1550:
au1000_usb_pm(AU1550_USB_OHCI_PHYS_ADDR, AU1550_OHCICFG, susp);
break;
case ALCHEMY_CPU_AU1200:
au1200_usb_pm(susp);
break;
}
}
static int alchemy_usb_suspend(void)
{
alchemy_usb_pm(1);
return 0;
}
static void alchemy_usb_resume(void)
{
alchemy_usb_pm(0);
}
static struct syscore_ops alchemy_usb_pm_ops = {
.suspend = alchemy_usb_suspend,
.resume = alchemy_usb_resume,
};
static int __init alchemy_usb_init(void)
{
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1000:
case ALCHEMY_CPU_AU1500:
case ALCHEMY_CPU_AU1100:
au1000_usb_init(AU1000_USB_OHCI_PHYS_ADDR, AU1000_OHCICFG);
break;
case ALCHEMY_CPU_AU1550:
au1000_usb_init(AU1550_USB_OHCI_PHYS_ADDR, AU1550_OHCICFG);
break;
case ALCHEMY_CPU_AU1200:
au1200_usb_init();
break;
}
register_syscore_ops(&alchemy_usb_pm_ops);
return 0;
}
arch_initcall(alchemy_usb_init);