linux_dsm_epyc7002/drivers/crypto/sunxi-ss/sun4i-ss-cipher.c
Mauro Carvalho Chehab dc7a12bdfc docs: arm: convert docs to ReST and rename to *.rst
Converts ARM the text files to ReST, preparing them to be an
architecture book.

The conversion is actually:
  - add blank lines and identation in order to identify paragraphs;
  - fix tables markups;
  - add some lists markups;
  - mark literal blocks;
  - adjust title markups.

At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by Corentin Labbe <clabbe.montjoie@gmail.com> # For sun4i-ss
2019-07-15 09:20:24 -03:00

594 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC
*
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits
* keysize in CBC and ECB mode.
* Add support also for DES and 3DES in CBC and ECB mode.
*
* You could find the datasheet in Documentation/arm/sunxi.rst
*/
#include "sun4i-ss.h"
static int noinline_for_stack sun4i_ss_opti_poll(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq);
u32 mode = ctx->mode;
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
u32 rx_cnt = SS_RX_DEFAULT;
u32 tx_cnt = 0;
u32 spaces;
u32 v;
int err = 0;
unsigned int i;
unsigned int ileft = areq->cryptlen;
unsigned int oleft = areq->cryptlen;
unsigned int todo;
struct sg_mapping_iter mi, mo;
unsigned int oi, oo; /* offset for in and out */
unsigned long flags;
if (!areq->cryptlen)
return 0;
if (!areq->src || !areq->dst) {
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
return -EINVAL;
}
spin_lock_irqsave(&ss->slock, flags);
for (i = 0; i < op->keylen; i += 4)
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
if (areq->iv) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = *(u32 *)(areq->iv + i * 4);
writel(v, ss->base + SS_IV0 + i * 4);
}
}
writel(mode, ss->base + SS_CTL);
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
SG_MITER_TO_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
sg_miter_next(&mo);
if (!mi.addr || !mo.addr) {
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
err = -EINVAL;
goto release_ss;
}
ileft = areq->cryptlen / 4;
oleft = areq->cryptlen / 4;
oi = 0;
oo = 0;
do {
todo = min3(rx_cnt, ileft, (mi.length - oi) / 4);
if (todo) {
ileft -= todo;
writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo);
oi += todo * 4;
}
if (oi == mi.length) {
sg_miter_next(&mi);
oi = 0;
}
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
tx_cnt = SS_TXFIFO_SPACES(spaces);
todo = min3(tx_cnt, oleft, (mo.length - oo) / 4);
if (todo) {
oleft -= todo;
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
oo += todo * 4;
}
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} while (oleft);
if (areq->iv) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = readl(ss->base + SS_IV0 + i * 4);
*(u32 *)(areq->iv + i * 4) = v;
}
}
release_ss:
sg_miter_stop(&mi);
sg_miter_stop(&mo);
writel(0, ss->base + SS_CTL);
spin_unlock_irqrestore(&ss->slock, flags);
return err;
}
static int noinline_for_stack sun4i_ss_cipher_poll_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq);
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, op->fallback_tfm);
int err;
skcipher_request_set_sync_tfm(subreq, op->fallback_tfm);
skcipher_request_set_callback(subreq, areq->base.flags, NULL,
NULL);
skcipher_request_set_crypt(subreq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (ctx->mode & SS_DECRYPTION)
err = crypto_skcipher_decrypt(subreq);
else
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
/* Generic function that support SG with size not multiple of 4 */
static int sun4i_ss_cipher_poll(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
int no_chunk = 1;
struct scatterlist *in_sg = areq->src;
struct scatterlist *out_sg = areq->dst;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun4i_ss_alg_template *algt;
u32 mode = ctx->mode;
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
u32 rx_cnt = SS_RX_DEFAULT;
u32 tx_cnt = 0;
u32 v;
u32 spaces;
int err = 0;
unsigned int i;
unsigned int ileft = areq->cryptlen;
unsigned int oleft = areq->cryptlen;
unsigned int todo;
struct sg_mapping_iter mi, mo;
unsigned int oi, oo; /* offset for in and out */
unsigned int ob = 0; /* offset in buf */
unsigned int obo = 0; /* offset in bufo*/
unsigned int obl = 0; /* length of data in bufo */
unsigned long flags;
bool need_fallback;
if (!areq->cryptlen)
return 0;
if (!areq->src || !areq->dst) {
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
return -EINVAL;
}
algt = container_of(alg, struct sun4i_ss_alg_template, alg.crypto);
if (areq->cryptlen % algt->alg.crypto.base.cra_blocksize)
need_fallback = true;
/*
* if we have only SGs with size multiple of 4,
* we can use the SS optimized function
*/
while (in_sg && no_chunk == 1) {
if (in_sg->length % 4)
no_chunk = 0;
in_sg = sg_next(in_sg);
}
while (out_sg && no_chunk == 1) {
if (out_sg->length % 4)
no_chunk = 0;
out_sg = sg_next(out_sg);
}
if (no_chunk == 1 && !need_fallback)
return sun4i_ss_opti_poll(areq);
if (need_fallback)
return sun4i_ss_cipher_poll_fallback(areq);
spin_lock_irqsave(&ss->slock, flags);
for (i = 0; i < op->keylen; i += 4)
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
if (areq->iv) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = *(u32 *)(areq->iv + i * 4);
writel(v, ss->base + SS_IV0 + i * 4);
}
}
writel(mode, ss->base + SS_CTL);
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
SG_MITER_TO_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
sg_miter_next(&mo);
if (!mi.addr || !mo.addr) {
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
err = -EINVAL;
goto release_ss;
}
ileft = areq->cryptlen;
oleft = areq->cryptlen;
oi = 0;
oo = 0;
while (oleft) {
if (ileft) {
char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */
/*
* todo is the number of consecutive 4byte word that we
* can read from current SG
*/
todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4);
if (todo && !ob) {
writesl(ss->base + SS_RXFIFO, mi.addr + oi,
todo);
ileft -= todo * 4;
oi += todo * 4;
} else {
/*
* not enough consecutive bytes, so we need to
* linearize in buf. todo is in bytes
* After that copy, if we have a multiple of 4
* we need to be able to write all buf in one
* pass, so it is why we min() with rx_cnt
*/
todo = min3(rx_cnt * 4 - ob, ileft,
mi.length - oi);
memcpy(buf + ob, mi.addr + oi, todo);
ileft -= todo;
oi += todo;
ob += todo;
if (!(ob % 4)) {
writesl(ss->base + SS_RXFIFO, buf,
ob / 4);
ob = 0;
}
}
if (oi == mi.length) {
sg_miter_next(&mi);
oi = 0;
}
}
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
tx_cnt = SS_TXFIFO_SPACES(spaces);
dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u\n",
mode,
oi, mi.length, ileft, areq->cryptlen, rx_cnt,
oo, mo.length, oleft, areq->cryptlen, tx_cnt, ob);
if (!tx_cnt)
continue;
/* todo in 4bytes word */
todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4);
if (todo) {
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
oleft -= todo * 4;
oo += todo * 4;
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} else {
char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */
/*
* read obl bytes in bufo, we read at maximum for
* emptying the device
*/
readsl(ss->base + SS_TXFIFO, bufo, tx_cnt);
obl = tx_cnt * 4;
obo = 0;
do {
/*
* how many bytes we can copy ?
* no more than remaining SG size
* no more than remaining buffer
* no need to test against oleft
*/
todo = min(mo.length - oo, obl - obo);
memcpy(mo.addr + oo, bufo + obo, todo);
oleft -= todo;
obo += todo;
oo += todo;
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} while (obo < obl);
/* bufo must be fully used here */
}
}
if (areq->iv) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = readl(ss->base + SS_IV0 + i * 4);
*(u32 *)(areq->iv + i * 4) = v;
}
}
release_ss:
sg_miter_stop(&mi);
sg_miter_stop(&mo);
writel(0, ss->base + SS_CTL);
spin_unlock_irqrestore(&ss->slock, flags);
return err;
}
/* CBC AES */
int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_aes_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB AES */
int sun4i_ss_ecb_aes_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_aes_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* CBC DES */
int sun4i_ss_cbc_des_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_des_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB DES */
int sun4i_ss_ecb_des_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_des_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* CBC 3DES */
int sun4i_ss_cbc_des3_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_des3_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB 3DES */
int sun4i_ss_ecb_des3_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cipher_init(struct crypto_tfm *tfm)
{
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct sun4i_ss_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
algt = container_of(tfm->__crt_alg, struct sun4i_ss_alg_template,
alg.crypto.base);
op->ss = algt->ss;
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct sun4i_cipher_req_ctx));
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->ss->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
return 0;
}
void sun4i_ss_cipher_exit(struct crypto_tfm *tfm)
{
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
crypto_free_sync_skcipher(op->fallback_tfm);
}
/* check and set the AES key, prepare the mode to be used */
int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
switch (keylen) {
case 128 / 8:
op->keymode = SS_AES_128BITS;
break;
case 192 / 8:
op->keymode = SS_AES_192BITS;
break;
case 256 / 8:
op->keymode = SS_AES_256BITS;
break;
default:
dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
/* check and set the DES key, prepare the mode to be used */
int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
u32 flags;
u32 tmp[DES_EXPKEY_WORDS];
int ret;
if (unlikely(keylen != DES_KEY_SIZE)) {
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
flags = crypto_skcipher_get_flags(tfm);
ret = des_ekey(tmp, key);
if (unlikely(!ret) && (flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY);
dev_dbg(ss->dev, "Weak key %u\n", keylen);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
/* check and set the 3DES key, prepare the mode to be used */
int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm);
int err;
err = des3_verify_key(tfm, key);
if (unlikely(err))
return err;
op->keylen = keylen;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}