linux_dsm_epyc7002/drivers/infiniband/ulp/iser/iser_memory.c
Sagi Grimberg ecc3993a2a IB/iser: Remove redundant cmd_data_len calculation
This code was added before we had protection data length
calculation (in iser_send_command), so we needed to calc
the sg data length from the sg itself. This is not needed
anymore.

This patch does not change any functionality.

Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Adir Lev <adirl@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-04-15 16:07:12 -04:00

762 lines
22 KiB
C

/*
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/scatterlist.h>
#include "iscsi_iser.h"
#define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */
/**
* iser_start_rdma_unaligned_sg
*/
static int iser_start_rdma_unaligned_sg(struct iscsi_iser_task *iser_task,
struct iser_data_buf *data,
struct iser_data_buf *data_copy,
enum iser_data_dir cmd_dir)
{
struct ib_device *dev = iser_task->iser_conn->ib_conn.device->ib_device;
struct scatterlist *sgl = (struct scatterlist *)data->buf;
struct scatterlist *sg;
char *mem = NULL;
unsigned long cmd_data_len = data->data_len;
int dma_nents, i;
if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
mem = (void *)__get_free_pages(GFP_ATOMIC,
ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
else
mem = kmalloc(cmd_data_len, GFP_ATOMIC);
if (mem == NULL) {
iser_err("Failed to allocate mem size %d %d for copying sglist\n",
data->size, (int)cmd_data_len);
return -ENOMEM;
}
if (cmd_dir == ISER_DIR_OUT) {
/* copy the unaligned sg the buffer which is used for RDMA */
char *p, *from;
sgl = (struct scatterlist *)data->buf;
p = mem;
for_each_sg(sgl, sg, data->size, i) {
from = kmap_atomic(sg_page(sg));
memcpy(p,
from + sg->offset,
sg->length);
kunmap_atomic(from);
p += sg->length;
}
}
sg_init_one(&data_copy->sg_single, mem, cmd_data_len);
data_copy->buf = &data_copy->sg_single;
data_copy->size = 1;
data_copy->copy_buf = mem;
dma_nents = ib_dma_map_sg(dev, &data_copy->sg_single, 1,
(cmd_dir == ISER_DIR_OUT) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
BUG_ON(dma_nents == 0);
data_copy->dma_nents = dma_nents;
data_copy->data_len = cmd_data_len;
return 0;
}
/**
* iser_finalize_rdma_unaligned_sg
*/
void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_task *iser_task,
struct iser_data_buf *data,
struct iser_data_buf *data_copy,
enum iser_data_dir cmd_dir)
{
struct ib_device *dev;
unsigned long cmd_data_len;
dev = iser_task->iser_conn->ib_conn.device->ib_device;
ib_dma_unmap_sg(dev, &data_copy->sg_single, 1,
(cmd_dir == ISER_DIR_OUT) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (cmd_dir == ISER_DIR_IN) {
char *mem;
struct scatterlist *sgl, *sg;
unsigned char *p, *to;
unsigned int sg_size;
int i;
/* copy back read RDMA to unaligned sg */
mem = data_copy->copy_buf;
sgl = (struct scatterlist *)data->buf;
sg_size = data->size;
p = mem;
for_each_sg(sgl, sg, sg_size, i) {
to = kmap_atomic(sg_page(sg));
memcpy(to + sg->offset,
p,
sg->length);
kunmap_atomic(to);
p += sg->length;
}
}
cmd_data_len = data->data_len;
if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
free_pages((unsigned long)data_copy->copy_buf,
ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
else
kfree(data_copy->copy_buf);
data_copy->copy_buf = NULL;
}
#define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0)
/**
* iser_sg_to_page_vec - Translates scatterlist entries to physical addresses
* and returns the length of resulting physical address array (may be less than
* the original due to possible compaction).
*
* we build a "page vec" under the assumption that the SG meets the RDMA
* alignment requirements. Other then the first and last SG elements, all
* the "internal" elements can be compacted into a list whose elements are
* dma addresses of physical pages. The code supports also the weird case
* where --few fragments of the same page-- are present in the SG as
* consecutive elements. Also, it handles one entry SG.
*/
static int iser_sg_to_page_vec(struct iser_data_buf *data,
struct ib_device *ibdev, u64 *pages,
int *offset, int *data_size)
{
struct scatterlist *sg, *sgl = (struct scatterlist *)data->buf;
u64 start_addr, end_addr, page, chunk_start = 0;
unsigned long total_sz = 0;
unsigned int dma_len;
int i, new_chunk, cur_page, last_ent = data->dma_nents - 1;
/* compute the offset of first element */
*offset = (u64) sgl[0].offset & ~MASK_4K;
new_chunk = 1;
cur_page = 0;
for_each_sg(sgl, sg, data->dma_nents, i) {
start_addr = ib_sg_dma_address(ibdev, sg);
if (new_chunk)
chunk_start = start_addr;
dma_len = ib_sg_dma_len(ibdev, sg);
end_addr = start_addr + dma_len;
total_sz += dma_len;
/* collect page fragments until aligned or end of SG list */
if (!IS_4K_ALIGNED(end_addr) && i < last_ent) {
new_chunk = 0;
continue;
}
new_chunk = 1;
/* address of the first page in the contiguous chunk;
masking relevant for the very first SG entry,
which might be unaligned */
page = chunk_start & MASK_4K;
do {
pages[cur_page++] = page;
page += SIZE_4K;
} while (page < end_addr);
}
*data_size = total_sz;
iser_dbg("page_vec->data_size:%d cur_page %d\n",
*data_size, cur_page);
return cur_page;
}
/**
* iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned
* for RDMA sub-list of a scatter-gather list of memory buffers, and returns
* the number of entries which are aligned correctly. Supports the case where
* consecutive SG elements are actually fragments of the same physcial page.
*/
static int iser_data_buf_aligned_len(struct iser_data_buf *data,
struct ib_device *ibdev)
{
struct scatterlist *sgl, *sg, *next_sg = NULL;
u64 start_addr, end_addr;
int i, ret_len, start_check = 0;
if (data->dma_nents == 1)
return 1;
sgl = (struct scatterlist *)data->buf;
start_addr = ib_sg_dma_address(ibdev, sgl);
for_each_sg(sgl, sg, data->dma_nents, i) {
if (start_check && !IS_4K_ALIGNED(start_addr))
break;
next_sg = sg_next(sg);
if (!next_sg)
break;
end_addr = start_addr + ib_sg_dma_len(ibdev, sg);
start_addr = ib_sg_dma_address(ibdev, next_sg);
if (end_addr == start_addr) {
start_check = 0;
continue;
} else
start_check = 1;
if (!IS_4K_ALIGNED(end_addr))
break;
}
ret_len = (next_sg) ? i : i+1;
iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n",
ret_len, data->dma_nents, data);
return ret_len;
}
static void iser_data_buf_dump(struct iser_data_buf *data,
struct ib_device *ibdev)
{
struct scatterlist *sgl = (struct scatterlist *)data->buf;
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, data->dma_nents, i)
iser_dbg("sg[%d] dma_addr:0x%lX page:0x%p "
"off:0x%x sz:0x%x dma_len:0x%x\n",
i, (unsigned long)ib_sg_dma_address(ibdev, sg),
sg_page(sg), sg->offset,
sg->length, ib_sg_dma_len(ibdev, sg));
}
static void iser_dump_page_vec(struct iser_page_vec *page_vec)
{
int i;
iser_err("page vec length %d data size %d\n",
page_vec->length, page_vec->data_size);
for (i = 0; i < page_vec->length; i++)
iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]);
}
static void iser_page_vec_build(struct iser_data_buf *data,
struct iser_page_vec *page_vec,
struct ib_device *ibdev)
{
int page_vec_len = 0;
page_vec->length = 0;
page_vec->offset = 0;
iser_dbg("Translating sg sz: %d\n", data->dma_nents);
page_vec_len = iser_sg_to_page_vec(data, ibdev, page_vec->pages,
&page_vec->offset,
&page_vec->data_size);
iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents, page_vec_len);
page_vec->length = page_vec_len;
if (page_vec_len * SIZE_4K < page_vec->data_size) {
iser_err("page_vec too short to hold this SG\n");
iser_data_buf_dump(data, ibdev);
iser_dump_page_vec(page_vec);
BUG();
}
}
int iser_dma_map_task_data(struct iscsi_iser_task *iser_task,
struct iser_data_buf *data,
enum iser_data_dir iser_dir,
enum dma_data_direction dma_dir)
{
struct ib_device *dev;
iser_task->dir[iser_dir] = 1;
dev = iser_task->iser_conn->ib_conn.device->ib_device;
data->dma_nents = ib_dma_map_sg(dev, data->buf, data->size, dma_dir);
if (data->dma_nents == 0) {
iser_err("dma_map_sg failed!!!\n");
return -EINVAL;
}
return 0;
}
void iser_dma_unmap_task_data(struct iscsi_iser_task *iser_task,
struct iser_data_buf *data,
enum dma_data_direction dir)
{
struct ib_device *dev;
dev = iser_task->iser_conn->ib_conn.device->ib_device;
ib_dma_unmap_sg(dev, data->buf, data->size, dir);
}
static int fall_to_bounce_buf(struct iscsi_iser_task *iser_task,
struct ib_device *ibdev,
struct iser_data_buf *mem,
struct iser_data_buf *mem_copy,
enum iser_data_dir cmd_dir,
int aligned_len)
{
struct iscsi_conn *iscsi_conn = iser_task->iser_conn->iscsi_conn;
iscsi_conn->fmr_unalign_cnt++;
iser_warn("rdma alignment violation (%d/%d aligned) or FMR not supported\n",
aligned_len, mem->size);
if (iser_debug_level > 0)
iser_data_buf_dump(mem, ibdev);
/* unmap the command data before accessing it */
iser_dma_unmap_task_data(iser_task, mem,
(cmd_dir == ISER_DIR_OUT) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
/* allocate copy buf, if we are writing, copy the */
/* unaligned scatterlist, dma map the copy */
if (iser_start_rdma_unaligned_sg(iser_task, mem, mem_copy, cmd_dir) != 0)
return -ENOMEM;
return 0;
}
/**
* iser_reg_rdma_mem_fmr - Registers memory intended for RDMA,
* using FMR (if possible) obtaining rkey and va
*
* returns 0 on success, errno code on failure
*/
int iser_reg_rdma_mem_fmr(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir)
{
struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
struct ib_device *ibdev = device->ib_device;
struct iser_data_buf *mem = &iser_task->data[cmd_dir];
struct iser_regd_buf *regd_buf;
int aligned_len;
int err;
int i;
struct scatterlist *sg;
regd_buf = &iser_task->rdma_regd[cmd_dir];
aligned_len = iser_data_buf_aligned_len(mem, ibdev);
if (aligned_len != mem->dma_nents) {
err = fall_to_bounce_buf(iser_task, ibdev, mem,
&iser_task->data_copy[cmd_dir],
cmd_dir, aligned_len);
if (err) {
iser_err("failed to allocate bounce buffer\n");
return err;
}
mem = &iser_task->data_copy[cmd_dir];
}
/* if there a single dma entry, FMR is not needed */
if (mem->dma_nents == 1) {
sg = (struct scatterlist *)mem->buf;
regd_buf->reg.lkey = device->mr->lkey;
regd_buf->reg.rkey = device->mr->rkey;
regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]);
regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]);
iser_dbg("PHYSICAL Mem.register: lkey: 0x%08X rkey: 0x%08X "
"va: 0x%08lX sz: %ld]\n",
(unsigned int)regd_buf->reg.lkey,
(unsigned int)regd_buf->reg.rkey,
(unsigned long)regd_buf->reg.va,
(unsigned long)regd_buf->reg.len);
} else { /* use FMR for multiple dma entries */
iser_page_vec_build(mem, ib_conn->fmr.page_vec, ibdev);
err = iser_reg_page_vec(ib_conn, ib_conn->fmr.page_vec,
&regd_buf->reg);
if (err && err != -EAGAIN) {
iser_data_buf_dump(mem, ibdev);
iser_err("mem->dma_nents = %d (dlength = 0x%x)\n",
mem->dma_nents,
ntoh24(iser_task->desc.iscsi_header.dlength));
iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n",
ib_conn->fmr.page_vec->data_size,
ib_conn->fmr.page_vec->length,
ib_conn->fmr.page_vec->offset);
for (i = 0; i < ib_conn->fmr.page_vec->length; i++)
iser_err("page_vec[%d] = 0x%llx\n", i,
(unsigned long long)ib_conn->fmr.page_vec->pages[i]);
}
if (err)
return err;
}
return 0;
}
static void
iser_set_dif_domain(struct scsi_cmnd *sc, struct ib_sig_attrs *sig_attrs,
struct ib_sig_domain *domain)
{
domain->sig_type = IB_SIG_TYPE_T10_DIF;
domain->sig.dif.pi_interval = scsi_prot_interval(sc);
domain->sig.dif.ref_tag = scsi_prot_ref_tag(sc);
/*
* At the moment we hard code those, but in the future
* we will take them from sc.
*/
domain->sig.dif.apptag_check_mask = 0xffff;
domain->sig.dif.app_escape = true;
domain->sig.dif.ref_escape = true;
if (sc->prot_flags & SCSI_PROT_REF_INCREMENT)
domain->sig.dif.ref_remap = true;
};
static int
iser_set_sig_attrs(struct scsi_cmnd *sc, struct ib_sig_attrs *sig_attrs)
{
switch (scsi_get_prot_op(sc)) {
case SCSI_PROT_WRITE_INSERT:
case SCSI_PROT_READ_STRIP:
sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
iser_set_dif_domain(sc, sig_attrs, &sig_attrs->wire);
sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC;
break;
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
iser_set_dif_domain(sc, sig_attrs, &sig_attrs->mem);
sig_attrs->mem.sig.dif.bg_type = sc->prot_flags & SCSI_PROT_IP_CHECKSUM ?
IB_T10DIF_CSUM : IB_T10DIF_CRC;
break;
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
iser_set_dif_domain(sc, sig_attrs, &sig_attrs->wire);
sig_attrs->wire.sig.dif.bg_type = IB_T10DIF_CRC;
iser_set_dif_domain(sc, sig_attrs, &sig_attrs->mem);
sig_attrs->mem.sig.dif.bg_type = sc->prot_flags & SCSI_PROT_IP_CHECKSUM ?
IB_T10DIF_CSUM : IB_T10DIF_CRC;
break;
default:
iser_err("Unsupported PI operation %d\n",
scsi_get_prot_op(sc));
return -EINVAL;
}
return 0;
}
static inline void
iser_set_prot_checks(struct scsi_cmnd *sc, u8 *mask)
{
*mask = 0;
if (sc->prot_flags & SCSI_PROT_REF_CHECK)
*mask |= ISER_CHECK_REFTAG;
if (sc->prot_flags & SCSI_PROT_GUARD_CHECK)
*mask |= ISER_CHECK_GUARD;
}
static void
iser_inv_rkey(struct ib_send_wr *inv_wr, struct ib_mr *mr)
{
u32 rkey;
memset(inv_wr, 0, sizeof(*inv_wr));
inv_wr->opcode = IB_WR_LOCAL_INV;
inv_wr->wr_id = ISER_FASTREG_LI_WRID;
inv_wr->ex.invalidate_rkey = mr->rkey;
rkey = ib_inc_rkey(mr->rkey);
ib_update_fast_reg_key(mr, rkey);
}
static int
iser_reg_sig_mr(struct iscsi_iser_task *iser_task,
struct fast_reg_descriptor *desc, struct ib_sge *data_sge,
struct ib_sge *prot_sge, struct ib_sge *sig_sge)
{
struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn;
struct iser_pi_context *pi_ctx = desc->pi_ctx;
struct ib_send_wr sig_wr, inv_wr;
struct ib_send_wr *bad_wr, *wr = NULL;
struct ib_sig_attrs sig_attrs;
int ret;
memset(&sig_attrs, 0, sizeof(sig_attrs));
ret = iser_set_sig_attrs(iser_task->sc, &sig_attrs);
if (ret)
goto err;
iser_set_prot_checks(iser_task->sc, &sig_attrs.check_mask);
if (!(desc->reg_indicators & ISER_SIG_KEY_VALID)) {
iser_inv_rkey(&inv_wr, pi_ctx->sig_mr);
wr = &inv_wr;
}
memset(&sig_wr, 0, sizeof(sig_wr));
sig_wr.opcode = IB_WR_REG_SIG_MR;
sig_wr.wr_id = ISER_FASTREG_LI_WRID;
sig_wr.sg_list = data_sge;
sig_wr.num_sge = 1;
sig_wr.wr.sig_handover.sig_attrs = &sig_attrs;
sig_wr.wr.sig_handover.sig_mr = pi_ctx->sig_mr;
if (scsi_prot_sg_count(iser_task->sc))
sig_wr.wr.sig_handover.prot = prot_sge;
sig_wr.wr.sig_handover.access_flags = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
if (!wr)
wr = &sig_wr;
else
wr->next = &sig_wr;
ret = ib_post_send(ib_conn->qp, wr, &bad_wr);
if (ret) {
iser_err("reg_sig_mr failed, ret:%d\n", ret);
goto err;
}
desc->reg_indicators &= ~ISER_SIG_KEY_VALID;
sig_sge->lkey = pi_ctx->sig_mr->lkey;
sig_sge->addr = 0;
sig_sge->length = scsi_transfer_length(iser_task->sc);
iser_dbg("sig_sge: addr: 0x%llx length: %u lkey: 0x%x\n",
sig_sge->addr, sig_sge->length,
sig_sge->lkey);
err:
return ret;
}
static int iser_fast_reg_mr(struct iscsi_iser_task *iser_task,
struct iser_regd_buf *regd_buf,
struct iser_data_buf *mem,
enum iser_reg_indicator ind,
struct ib_sge *sge)
{
struct fast_reg_descriptor *desc = regd_buf->reg.mem_h;
struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
struct ib_device *ibdev = device->ib_device;
struct ib_mr *mr;
struct ib_fast_reg_page_list *frpl;
struct ib_send_wr fastreg_wr, inv_wr;
struct ib_send_wr *bad_wr, *wr = NULL;
int ret, offset, size, plen;
/* if there a single dma entry, dma mr suffices */
if (mem->dma_nents == 1) {
struct scatterlist *sg = (struct scatterlist *)mem->buf;
sge->lkey = device->mr->lkey;
sge->addr = ib_sg_dma_address(ibdev, &sg[0]);
sge->length = ib_sg_dma_len(ibdev, &sg[0]);
iser_dbg("Single DMA entry: lkey=0x%x, addr=0x%llx, length=0x%x\n",
sge->lkey, sge->addr, sge->length);
return 0;
}
if (ind == ISER_DATA_KEY_VALID) {
mr = desc->data_mr;
frpl = desc->data_frpl;
} else {
mr = desc->pi_ctx->prot_mr;
frpl = desc->pi_ctx->prot_frpl;
}
plen = iser_sg_to_page_vec(mem, device->ib_device, frpl->page_list,
&offset, &size);
if (plen * SIZE_4K < size) {
iser_err("fast reg page_list too short to hold this SG\n");
return -EINVAL;
}
if (!(desc->reg_indicators & ind)) {
iser_inv_rkey(&inv_wr, mr);
wr = &inv_wr;
}
/* Prepare FASTREG WR */
memset(&fastreg_wr, 0, sizeof(fastreg_wr));
fastreg_wr.wr_id = ISER_FASTREG_LI_WRID;
fastreg_wr.opcode = IB_WR_FAST_REG_MR;
fastreg_wr.wr.fast_reg.iova_start = frpl->page_list[0] + offset;
fastreg_wr.wr.fast_reg.page_list = frpl;
fastreg_wr.wr.fast_reg.page_list_len = plen;
fastreg_wr.wr.fast_reg.page_shift = SHIFT_4K;
fastreg_wr.wr.fast_reg.length = size;
fastreg_wr.wr.fast_reg.rkey = mr->rkey;
fastreg_wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
if (!wr)
wr = &fastreg_wr;
else
wr->next = &fastreg_wr;
ret = ib_post_send(ib_conn->qp, wr, &bad_wr);
if (ret) {
iser_err("fast registration failed, ret:%d\n", ret);
return ret;
}
desc->reg_indicators &= ~ind;
sge->lkey = mr->lkey;
sge->addr = frpl->page_list[0] + offset;
sge->length = size;
return ret;
}
/**
* iser_reg_rdma_mem_fastreg - Registers memory intended for RDMA,
* using Fast Registration WR (if possible) obtaining rkey and va
*
* returns 0 on success, errno code on failure
*/
int iser_reg_rdma_mem_fastreg(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir)
{
struct ib_conn *ib_conn = &iser_task->iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
struct ib_device *ibdev = device->ib_device;
struct iser_data_buf *mem = &iser_task->data[cmd_dir];
struct iser_regd_buf *regd_buf = &iser_task->rdma_regd[cmd_dir];
struct fast_reg_descriptor *desc = NULL;
struct ib_sge data_sge;
int err, aligned_len;
unsigned long flags;
aligned_len = iser_data_buf_aligned_len(mem, ibdev);
if (aligned_len != mem->dma_nents) {
err = fall_to_bounce_buf(iser_task, ibdev, mem,
&iser_task->data_copy[cmd_dir],
cmd_dir, aligned_len);
if (err) {
iser_err("failed to allocate bounce buffer\n");
return err;
}
mem = &iser_task->data_copy[cmd_dir];
}
if (mem->dma_nents != 1 ||
scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) {
spin_lock_irqsave(&ib_conn->lock, flags);
desc = list_first_entry(&ib_conn->fastreg.pool,
struct fast_reg_descriptor, list);
list_del(&desc->list);
spin_unlock_irqrestore(&ib_conn->lock, flags);
regd_buf->reg.mem_h = desc;
}
err = iser_fast_reg_mr(iser_task, regd_buf, mem,
ISER_DATA_KEY_VALID, &data_sge);
if (err)
goto err_reg;
if (scsi_get_prot_op(iser_task->sc) != SCSI_PROT_NORMAL) {
struct ib_sge prot_sge, sig_sge;
memset(&prot_sge, 0, sizeof(prot_sge));
if (scsi_prot_sg_count(iser_task->sc)) {
mem = &iser_task->prot[cmd_dir];
aligned_len = iser_data_buf_aligned_len(mem, ibdev);
if (aligned_len != mem->dma_nents) {
err = fall_to_bounce_buf(iser_task, ibdev, mem,
&iser_task->prot_copy[cmd_dir],
cmd_dir, aligned_len);
if (err) {
iser_err("failed to allocate bounce buffer\n");
return err;
}
mem = &iser_task->prot_copy[cmd_dir];
}
err = iser_fast_reg_mr(iser_task, regd_buf, mem,
ISER_PROT_KEY_VALID, &prot_sge);
if (err)
goto err_reg;
}
err = iser_reg_sig_mr(iser_task, desc, &data_sge,
&prot_sge, &sig_sge);
if (err) {
iser_err("Failed to register signature mr\n");
return err;
}
desc->reg_indicators |= ISER_FASTREG_PROTECTED;
regd_buf->reg.lkey = sig_sge.lkey;
regd_buf->reg.rkey = desc->pi_ctx->sig_mr->rkey;
regd_buf->reg.va = sig_sge.addr;
regd_buf->reg.len = sig_sge.length;
} else {
if (desc)
regd_buf->reg.rkey = desc->data_mr->rkey;
else
regd_buf->reg.rkey = device->mr->rkey;
regd_buf->reg.lkey = data_sge.lkey;
regd_buf->reg.va = data_sge.addr;
regd_buf->reg.len = data_sge.length;
}
return 0;
err_reg:
if (desc) {
spin_lock_irqsave(&ib_conn->lock, flags);
list_add_tail(&desc->list, &ib_conn->fastreg.pool);
spin_unlock_irqrestore(&ib_conn->lock, flags);
}
return err;
}