linux_dsm_epyc7002/drivers/crypto/qce/common.c
Stanimir Varbanov ec8f5d8f6f crypto: qce - Qualcomm crypto engine driver
The driver is separated by functional parts. The core part
implements a platform driver probe and remove callbaks.
The probe enables clocks, checks crypto version, initialize
and request dma channels, create done tasklet and init
crypto queue and finally register the algorithms into crypto
core subsystem.

- DMA and SG helper functions
 implement dmaengine and sg-list helper functions used by
 other parts of the crypto driver.

- ablkcipher algorithms
 implementation of AES, DES and 3DES crypto API callbacks,
 the crypto register alg function, the async request handler
 and its dma done callback function.

- SHA and HMAC transforms
 implementation and registration of ahash crypto type.
 It includes sha1, sha256, hmac(sha1) and hmac(sha256).

- infrastructure to setup the crypto hw
 contains functions used to setup/prepare hardware registers for
 all algorithms supported by the crypto block. It also exports
 few helper functions needed by algorithms:
	- to check hardware status
	- to start crypto hardware
	- to translate data stream to big endian form

 Adds register addresses and bit/masks used by the driver
 as well.

Signed-off-by: Stanimir Varbanov <svarbanov@mm-sol.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-07-03 21:40:27 +08:00

436 lines
12 KiB
C

/*
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include "cipher.h"
#include "common.h"
#include "core.h"
#include "regs-v5.h"
#include "sha.h"
#define QCE_SECTOR_SIZE 512
static inline u32 qce_read(struct qce_device *qce, u32 offset)
{
return readl(qce->base + offset);
}
static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
{
writel(val, qce->base + offset);
}
static inline void qce_write_array(struct qce_device *qce, u32 offset,
const u32 *val, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
qce_write(qce, offset + i * sizeof(u32), val[i]);
}
static inline void
qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
qce_write(qce, offset + i * sizeof(u32), 0);
}
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
{
u32 cfg = 0;
if (IS_AES(flags)) {
if (aes_key_size == AES_KEYSIZE_128)
cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
else if (aes_key_size == AES_KEYSIZE_256)
cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
}
if (IS_AES(flags))
cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
else if (IS_DES(flags) || IS_3DES(flags))
cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
if (IS_DES(flags))
cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
if (IS_3DES(flags))
cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
switch (flags & QCE_MODE_MASK) {
case QCE_MODE_ECB:
cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CBC:
cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CTR:
cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
break;
case QCE_MODE_XTS:
cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CCM:
cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
break;
default:
return ~0;
}
return cfg;
}
static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
{
u32 cfg = 0;
if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
else
cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
if (IS_CCM(flags) || IS_CMAC(flags)) {
if (key_size == AES_KEYSIZE_128)
cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
else if (key_size == AES_KEYSIZE_256)
cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
}
if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
else if (IS_CMAC(flags))
cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
if (IS_SHA1(flags) || IS_SHA256(flags))
cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
IS_CBC(flags) || IS_CTR(flags))
cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
else if (IS_AES(flags) && IS_CCM(flags))
cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
else if (IS_AES(flags) && IS_CMAC(flags))
cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
if (IS_SHA(flags) || IS_SHA_HMAC(flags))
cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
if (IS_CCM(flags))
cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
IS_CMAC(flags))
cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
return cfg;
}
static u32 qce_config_reg(struct qce_device *qce, int little)
{
u32 beats = (qce->burst_size >> 3) - 1;
u32 pipe_pair = qce->pipe_pair_id;
u32 config;
config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
config &= ~HIGH_SPD_EN_N_SHIFT;
if (little)
config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
return config;
}
void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
{
__be32 *d = dst;
const u8 *s = src;
unsigned int n;
n = len / sizeof(u32);
for (; n > 0; n--) {
*d = cpu_to_be32p((const __u32 *) s);
s += sizeof(__u32);
d++;
}
}
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
{
u8 swap[QCE_AES_IV_LENGTH];
u32 i, j;
if (ivsize > QCE_AES_IV_LENGTH)
return;
memset(swap, 0, QCE_AES_IV_LENGTH);
for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
i < QCE_AES_IV_LENGTH; i++, j--)
swap[i] = src[j];
qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
}
static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
unsigned int enckeylen, unsigned int cryptlen)
{
u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
unsigned int xtsdusize;
qce_cpu_to_be32p_array(xtskey, enckey + enckeylen / 2, enckeylen / 2);
qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
/* xts du size 512B */
xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
}
static void qce_setup_config(struct qce_device *qce)
{
u32 config;
/* get big endianness */
config = qce_config_reg(qce, 0);
/* clear status */
qce_write(qce, REG_STATUS, 0);
qce_write(qce, REG_CONFIG, config);
}
static inline void qce_crypto_go(struct qce_device *qce)
{
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
}
static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
u32 totallen, u32 offset)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
unsigned int digestsize = crypto_ahash_digestsize(ahash);
unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
u32 auth_cfg = 0, config;
unsigned int iv_words;
/* if not the last, the size has to be on the block boundary */
if (!rctx->last_blk && req->nbytes % blocksize)
return -EINVAL;
qce_setup_config(qce);
if (IS_CMAC(rctx->flags)) {
qce_write(qce, REG_AUTH_SEG_CFG, 0);
qce_write(qce, REG_ENCR_SEG_CFG, 0);
qce_write(qce, REG_ENCR_SEG_SIZE, 0);
qce_clear_array(qce, REG_AUTH_IV0, 16);
qce_clear_array(qce, REG_AUTH_KEY0, 16);
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
}
if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
u32 authkey_words = rctx->authklen / sizeof(u32);
qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
qce_write_array(qce, REG_AUTH_KEY0, mackey, authkey_words);
}
if (IS_CMAC(rctx->flags))
goto go_proc;
if (rctx->first_blk)
memcpy(auth, rctx->digest, digestsize);
else
qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
qce_write_array(qce, REG_AUTH_IV0, auth, iv_words);
if (rctx->first_blk)
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
else
qce_write_array(qce, REG_AUTH_BYTECNT0, rctx->byte_count, 2);
auth_cfg = qce_auth_cfg(rctx->flags, 0);
if (rctx->last_blk)
auth_cfg |= BIT(AUTH_LAST_SHIFT);
else
auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
if (rctx->first_blk)
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
else
auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
go_proc:
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
qce_write(qce, REG_AUTH_SEG_START, 0);
qce_write(qce, REG_ENCR_SEG_CFG, 0);
qce_write(qce, REG_SEG_SIZE, req->nbytes);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
qce_crypto_go(qce);
return 0;
}
static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req,
u32 totallen, u32 offset)
{
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
unsigned int enckey_words, enciv_words;
unsigned int keylen;
u32 encr_cfg = 0, auth_cfg = 0, config;
unsigned int ivsize = rctx->ivsize;
unsigned long flags = rctx->flags;
qce_setup_config(qce);
if (IS_XTS(flags))
keylen = ctx->enc_keylen / 2;
else
keylen = ctx->enc_keylen;
qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
enckey_words = keylen / sizeof(u32);
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
encr_cfg = qce_encr_cfg(flags, keylen);
if (IS_DES(flags)) {
enciv_words = 2;
enckey_words = 2;
} else if (IS_3DES(flags)) {
enciv_words = 2;
enckey_words = 6;
} else if (IS_AES(flags)) {
if (IS_XTS(flags))
qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
rctx->cryptlen);
enciv_words = 4;
} else {
return -EINVAL;
}
qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
if (!IS_ECB(flags)) {
if (IS_XTS(flags))
qce_xts_swapiv(enciv, rctx->iv, ivsize);
else
qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
}
if (IS_ENCRYPT(flags))
encr_cfg |= BIT(ENCODE_SHIFT);
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
if (IS_CTR(flags)) {
qce_write(qce, REG_CNTR_MASK, ~0);
qce_write(qce, REG_CNTR_MASK0, ~0);
qce_write(qce, REG_CNTR_MASK1, ~0);
qce_write(qce, REG_CNTR_MASK2, ~0);
}
qce_write(qce, REG_SEG_SIZE, totallen);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
qce_crypto_go(qce);
return 0;
}
int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
u32 offset)
{
switch (type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
return qce_setup_regs_ablkcipher(async_req, totallen, offset);
case CRYPTO_ALG_TYPE_AHASH:
return qce_setup_regs_ahash(async_req, totallen, offset);
default:
return -EINVAL;
}
}
#define STATUS_ERRORS \
(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
int qce_check_status(struct qce_device *qce, u32 *status)
{
int ret = 0;
*status = qce_read(qce, REG_STATUS);
/*
* Don't use result dump status. The operation may not be complete.
* Instead, use the status we just read from device. In case, we need to
* use result_status from result dump the result_status needs to be byte
* swapped, since we set the device to little endian.
*/
if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
ret = -ENXIO;
return ret;
}
void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
{
u32 val;
val = qce_read(qce, REG_VERSION);
*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
}