linux_dsm_epyc7002/arch/arm/mach-omap1/clock.c
Yangtao Li 08a8463385 ARM: OMAP1: clock: Change to use DEFINE_SHOW_ATTRIBUTE macro
Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code.

Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
2018-11-29 12:02:29 -08:00

1075 lines
22 KiB
C

/*
* linux/arch/arm/mach-omap1/clock.c
*
* Copyright (C) 2004 - 2005, 2009-2010 Nokia Corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* Modified to use omap shared clock framework by
* Tony Lindgren <tony@atomide.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <asm/mach-types.h>
#include <mach/hardware.h>
#include "soc.h"
#include "iomap.h"
#include "clock.h"
#include "opp.h"
#include "sram.h"
__u32 arm_idlect1_mask;
struct clk *api_ck_p, *ck_dpll1_p, *ck_ref_p;
static LIST_HEAD(clocks);
static DEFINE_MUTEX(clocks_mutex);
static DEFINE_SPINLOCK(clockfw_lock);
/*
* Omap1 specific clock functions
*/
unsigned long omap1_uart_recalc(struct clk *clk)
{
unsigned int val = __raw_readl(clk->enable_reg);
return val & clk->enable_bit ? 48000000 : 12000000;
}
unsigned long omap1_sossi_recalc(struct clk *clk)
{
u32 div = omap_readl(MOD_CONF_CTRL_1);
div = (div >> 17) & 0x7;
div++;
return clk->parent->rate / div;
}
static void omap1_clk_allow_idle(struct clk *clk)
{
struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
if (!(clk->flags & CLOCK_IDLE_CONTROL))
return;
if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
arm_idlect1_mask |= 1 << iclk->idlect_shift;
}
static void omap1_clk_deny_idle(struct clk *clk)
{
struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
if (!(clk->flags & CLOCK_IDLE_CONTROL))
return;
if (iclk->no_idle_count++ == 0)
arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
}
static __u16 verify_ckctl_value(__u16 newval)
{
/* This function checks for following limitations set
* by the hardware (all conditions must be true):
* DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
* ARM_CK >= TC_CK
* DSP_CK >= TC_CK
* DSPMMU_CK >= TC_CK
*
* In addition following rules are enforced:
* LCD_CK <= TC_CK
* ARMPER_CK <= TC_CK
*
* However, maximum frequencies are not checked for!
*/
__u8 per_exp;
__u8 lcd_exp;
__u8 arm_exp;
__u8 dsp_exp;
__u8 tc_exp;
__u8 dspmmu_exp;
per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
if (dspmmu_exp < dsp_exp)
dspmmu_exp = dsp_exp;
if (dspmmu_exp > dsp_exp+1)
dspmmu_exp = dsp_exp+1;
if (tc_exp < arm_exp)
tc_exp = arm_exp;
if (tc_exp < dspmmu_exp)
tc_exp = dspmmu_exp;
if (tc_exp > lcd_exp)
lcd_exp = tc_exp;
if (tc_exp > per_exp)
per_exp = tc_exp;
newval &= 0xf000;
newval |= per_exp << CKCTL_PERDIV_OFFSET;
newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
newval |= tc_exp << CKCTL_TCDIV_OFFSET;
newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
return newval;
}
static int calc_dsor_exp(struct clk *clk, unsigned long rate)
{
/* Note: If target frequency is too low, this function will return 4,
* which is invalid value. Caller must check for this value and act
* accordingly.
*
* Note: This function does not check for following limitations set
* by the hardware (all conditions must be true):
* DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
* ARM_CK >= TC_CK
* DSP_CK >= TC_CK
* DSPMMU_CK >= TC_CK
*/
unsigned long realrate;
struct clk * parent;
unsigned dsor_exp;
parent = clk->parent;
if (unlikely(parent == NULL))
return -EIO;
realrate = parent->rate;
for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
if (realrate <= rate)
break;
realrate /= 2;
}
return dsor_exp;
}
unsigned long omap1_ckctl_recalc(struct clk *clk)
{
/* Calculate divisor encoded as 2-bit exponent */
int dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
return clk->parent->rate / dsor;
}
unsigned long omap1_ckctl_recalc_dsp_domain(struct clk *clk)
{
int dsor;
/* Calculate divisor encoded as 2-bit exponent
*
* The clock control bits are in DSP domain,
* so api_ck is needed for access.
* Note that DSP_CKCTL virt addr = phys addr, so
* we must use __raw_readw() instead of omap_readw().
*/
omap1_clk_enable(api_ck_p);
dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
omap1_clk_disable(api_ck_p);
return clk->parent->rate / dsor;
}
/* MPU virtual clock functions */
int omap1_select_table_rate(struct clk *clk, unsigned long rate)
{
/* Find the highest supported frequency <= rate and switch to it */
struct mpu_rate * ptr;
unsigned long ref_rate;
ref_rate = ck_ref_p->rate;
for (ptr = omap1_rate_table; ptr->rate; ptr++) {
if (!(ptr->flags & cpu_mask))
continue;
if (ptr->xtal != ref_rate)
continue;
/* Can check only after xtal frequency check */
if (ptr->rate <= rate)
break;
}
if (!ptr->rate)
return -EINVAL;
/*
* In most cases we should not need to reprogram DPLL.
* Reprogramming the DPLL is tricky, it must be done from SRAM.
*/
omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
/* XXX Do we need to recalculate the tree below DPLL1 at this point? */
ck_dpll1_p->rate = ptr->pll_rate;
return 0;
}
int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
{
int dsor_exp;
u16 regval;
dsor_exp = calc_dsor_exp(clk, rate);
if (dsor_exp > 3)
dsor_exp = -EINVAL;
if (dsor_exp < 0)
return dsor_exp;
regval = __raw_readw(DSP_CKCTL);
regval &= ~(3 << clk->rate_offset);
regval |= dsor_exp << clk->rate_offset;
__raw_writew(regval, DSP_CKCTL);
clk->rate = clk->parent->rate / (1 << dsor_exp);
return 0;
}
long omap1_clk_round_rate_ckctl_arm(struct clk *clk, unsigned long rate)
{
int dsor_exp = calc_dsor_exp(clk, rate);
if (dsor_exp < 0)
return dsor_exp;
if (dsor_exp > 3)
dsor_exp = 3;
return clk->parent->rate / (1 << dsor_exp);
}
int omap1_clk_set_rate_ckctl_arm(struct clk *clk, unsigned long rate)
{
int dsor_exp;
u16 regval;
dsor_exp = calc_dsor_exp(clk, rate);
if (dsor_exp > 3)
dsor_exp = -EINVAL;
if (dsor_exp < 0)
return dsor_exp;
regval = omap_readw(ARM_CKCTL);
regval &= ~(3 << clk->rate_offset);
regval |= dsor_exp << clk->rate_offset;
regval = verify_ckctl_value(regval);
omap_writew(regval, ARM_CKCTL);
clk->rate = clk->parent->rate / (1 << dsor_exp);
return 0;
}
long omap1_round_to_table_rate(struct clk *clk, unsigned long rate)
{
/* Find the highest supported frequency <= rate */
struct mpu_rate * ptr;
long highest_rate;
unsigned long ref_rate;
ref_rate = ck_ref_p->rate;
highest_rate = -EINVAL;
for (ptr = omap1_rate_table; ptr->rate; ptr++) {
if (!(ptr->flags & cpu_mask))
continue;
if (ptr->xtal != ref_rate)
continue;
highest_rate = ptr->rate;
/* Can check only after xtal frequency check */
if (ptr->rate <= rate)
break;
}
return highest_rate;
}
static unsigned calc_ext_dsor(unsigned long rate)
{
unsigned dsor;
/* MCLK and BCLK divisor selection is not linear:
* freq = 96MHz / dsor
*
* RATIO_SEL range: dsor <-> RATIO_SEL
* 0..6: (RATIO_SEL+2) <-> (dsor-2)
* 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
* Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
* can not be used.
*/
for (dsor = 2; dsor < 96; ++dsor) {
if ((dsor & 1) && dsor > 8)
continue;
if (rate >= 96000000 / dsor)
break;
}
return dsor;
}
/* XXX Only needed on 1510 */
int omap1_set_uart_rate(struct clk *clk, unsigned long rate)
{
unsigned int val;
val = __raw_readl(clk->enable_reg);
if (rate == 12000000)
val &= ~(1 << clk->enable_bit);
else if (rate == 48000000)
val |= (1 << clk->enable_bit);
else
return -EINVAL;
__raw_writel(val, clk->enable_reg);
clk->rate = rate;
return 0;
}
/* External clock (MCLK & BCLK) functions */
int omap1_set_ext_clk_rate(struct clk *clk, unsigned long rate)
{
unsigned dsor;
__u16 ratio_bits;
dsor = calc_ext_dsor(rate);
clk->rate = 96000000 / dsor;
if (dsor > 8)
ratio_bits = ((dsor - 8) / 2 + 6) << 2;
else
ratio_bits = (dsor - 2) << 2;
ratio_bits |= __raw_readw(clk->enable_reg) & ~0xfd;
__raw_writew(ratio_bits, clk->enable_reg);
return 0;
}
int omap1_set_sossi_rate(struct clk *clk, unsigned long rate)
{
u32 l;
int div;
unsigned long p_rate;
p_rate = clk->parent->rate;
/* Round towards slower frequency */
div = (p_rate + rate - 1) / rate;
div--;
if (div < 0 || div > 7)
return -EINVAL;
l = omap_readl(MOD_CONF_CTRL_1);
l &= ~(7 << 17);
l |= div << 17;
omap_writel(l, MOD_CONF_CTRL_1);
clk->rate = p_rate / (div + 1);
return 0;
}
long omap1_round_ext_clk_rate(struct clk *clk, unsigned long rate)
{
return 96000000 / calc_ext_dsor(rate);
}
void omap1_init_ext_clk(struct clk *clk)
{
unsigned dsor;
__u16 ratio_bits;
/* Determine current rate and ensure clock is based on 96MHz APLL */
ratio_bits = __raw_readw(clk->enable_reg) & ~1;
__raw_writew(ratio_bits, clk->enable_reg);
ratio_bits = (ratio_bits & 0xfc) >> 2;
if (ratio_bits > 6)
dsor = (ratio_bits - 6) * 2 + 8;
else
dsor = ratio_bits + 2;
clk-> rate = 96000000 / dsor;
}
int omap1_clk_enable(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (clk->parent) {
ret = omap1_clk_enable(clk->parent);
if (ret)
goto err;
if (clk->flags & CLOCK_NO_IDLE_PARENT)
omap1_clk_deny_idle(clk->parent);
}
ret = clk->ops->enable(clk);
if (ret) {
if (clk->parent)
omap1_clk_disable(clk->parent);
goto err;
}
}
return ret;
err:
clk->usecount--;
return ret;
}
void omap1_clk_disable(struct clk *clk)
{
if (clk->usecount > 0 && !(--clk->usecount)) {
clk->ops->disable(clk);
if (likely(clk->parent)) {
omap1_clk_disable(clk->parent);
if (clk->flags & CLOCK_NO_IDLE_PARENT)
omap1_clk_allow_idle(clk->parent);
}
}
}
static int omap1_clk_enable_generic(struct clk *clk)
{
__u16 regval16;
__u32 regval32;
if (unlikely(clk->enable_reg == NULL)) {
printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
clk->name);
return -EINVAL;
}
if (clk->flags & ENABLE_REG_32BIT) {
regval32 = __raw_readl(clk->enable_reg);
regval32 |= (1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
} else {
regval16 = __raw_readw(clk->enable_reg);
regval16 |= (1 << clk->enable_bit);
__raw_writew(regval16, clk->enable_reg);
}
return 0;
}
static void omap1_clk_disable_generic(struct clk *clk)
{
__u16 regval16;
__u32 regval32;
if (clk->enable_reg == NULL)
return;
if (clk->flags & ENABLE_REG_32BIT) {
regval32 = __raw_readl(clk->enable_reg);
regval32 &= ~(1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
} else {
regval16 = __raw_readw(clk->enable_reg);
regval16 &= ~(1 << clk->enable_bit);
__raw_writew(regval16, clk->enable_reg);
}
}
const struct clkops clkops_generic = {
.enable = omap1_clk_enable_generic,
.disable = omap1_clk_disable_generic,
};
static int omap1_clk_enable_dsp_domain(struct clk *clk)
{
int retval;
retval = omap1_clk_enable(api_ck_p);
if (!retval) {
retval = omap1_clk_enable_generic(clk);
omap1_clk_disable(api_ck_p);
}
return retval;
}
static void omap1_clk_disable_dsp_domain(struct clk *clk)
{
if (omap1_clk_enable(api_ck_p) == 0) {
omap1_clk_disable_generic(clk);
omap1_clk_disable(api_ck_p);
}
}
const struct clkops clkops_dspck = {
.enable = omap1_clk_enable_dsp_domain,
.disable = omap1_clk_disable_dsp_domain,
};
/* XXX SYSC register handling does not belong in the clock framework */
static int omap1_clk_enable_uart_functional_16xx(struct clk *clk)
{
int ret;
struct uart_clk *uclk;
ret = omap1_clk_enable_generic(clk);
if (ret == 0) {
/* Set smart idle acknowledgement mode */
uclk = (struct uart_clk *)clk;
omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
uclk->sysc_addr);
}
return ret;
}
/* XXX SYSC register handling does not belong in the clock framework */
static void omap1_clk_disable_uart_functional_16xx(struct clk *clk)
{
struct uart_clk *uclk;
/* Set force idle acknowledgement mode */
uclk = (struct uart_clk *)clk;
omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
omap1_clk_disable_generic(clk);
}
/* XXX SYSC register handling does not belong in the clock framework */
const struct clkops clkops_uart_16xx = {
.enable = omap1_clk_enable_uart_functional_16xx,
.disable = omap1_clk_disable_uart_functional_16xx,
};
long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
{
if (clk->round_rate != NULL)
return clk->round_rate(clk, rate);
return clk->rate;
}
int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
{
int ret = -EINVAL;
if (clk->set_rate)
ret = clk->set_rate(clk, rate);
return ret;
}
/*
* Omap1 clock reset and init functions
*/
#ifdef CONFIG_OMAP_RESET_CLOCKS
void omap1_clk_disable_unused(struct clk *clk)
{
__u32 regval32;
/* Clocks in the DSP domain need api_ck. Just assume bootloader
* has not enabled any DSP clocks */
if (clk->enable_reg == DSP_IDLECT2) {
pr_info("Skipping reset check for DSP domain clock \"%s\"\n",
clk->name);
return;
}
/* Is the clock already disabled? */
if (clk->flags & ENABLE_REG_32BIT)
regval32 = __raw_readl(clk->enable_reg);
else
regval32 = __raw_readw(clk->enable_reg);
if ((regval32 & (1 << clk->enable_bit)) == 0)
return;
printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name);
clk->ops->disable(clk);
printk(" done\n");
}
#endif
int clk_enable(struct clk *clk)
{
unsigned long flags;
int ret;
if (clk == NULL || IS_ERR(clk))
return -EINVAL;
spin_lock_irqsave(&clockfw_lock, flags);
ret = omap1_clk_enable(clk);
spin_unlock_irqrestore(&clockfw_lock, flags);
return ret;
}
EXPORT_SYMBOL(clk_enable);
void clk_disable(struct clk *clk)
{
unsigned long flags;
if (clk == NULL || IS_ERR(clk))
return;
spin_lock_irqsave(&clockfw_lock, flags);
if (clk->usecount == 0) {
pr_err("Trying disable clock %s with 0 usecount\n",
clk->name);
WARN_ON(1);
goto out;
}
omap1_clk_disable(clk);
out:
spin_unlock_irqrestore(&clockfw_lock, flags);
}
EXPORT_SYMBOL(clk_disable);
unsigned long clk_get_rate(struct clk *clk)
{
unsigned long flags;
unsigned long ret;
if (clk == NULL || IS_ERR(clk))
return 0;
spin_lock_irqsave(&clockfw_lock, flags);
ret = clk->rate;
spin_unlock_irqrestore(&clockfw_lock, flags);
return ret;
}
EXPORT_SYMBOL(clk_get_rate);
/*
* Optional clock functions defined in include/linux/clk.h
*/
long clk_round_rate(struct clk *clk, unsigned long rate)
{
unsigned long flags;
long ret;
if (clk == NULL || IS_ERR(clk))
return 0;
spin_lock_irqsave(&clockfw_lock, flags);
ret = omap1_clk_round_rate(clk, rate);
spin_unlock_irqrestore(&clockfw_lock, flags);
return ret;
}
EXPORT_SYMBOL(clk_round_rate);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
unsigned long flags;
int ret = -EINVAL;
if (clk == NULL || IS_ERR(clk))
return ret;
spin_lock_irqsave(&clockfw_lock, flags);
ret = omap1_clk_set_rate(clk, rate);
if (ret == 0)
propagate_rate(clk);
spin_unlock_irqrestore(&clockfw_lock, flags);
return ret;
}
EXPORT_SYMBOL(clk_set_rate);
int clk_set_parent(struct clk *clk, struct clk *parent)
{
WARN_ONCE(1, "clk_set_parent() not implemented for OMAP1\n");
return -EINVAL;
}
EXPORT_SYMBOL(clk_set_parent);
struct clk *clk_get_parent(struct clk *clk)
{
return clk->parent;
}
EXPORT_SYMBOL(clk_get_parent);
/*
* OMAP specific clock functions shared between omap1 and omap2
*/
/* Used for clocks that always have same value as the parent clock */
unsigned long followparent_recalc(struct clk *clk)
{
return clk->parent->rate;
}
/*
* Used for clocks that have the same value as the parent clock,
* divided by some factor
*/
unsigned long omap_fixed_divisor_recalc(struct clk *clk)
{
WARN_ON(!clk->fixed_div);
return clk->parent->rate / clk->fixed_div;
}
void clk_reparent(struct clk *child, struct clk *parent)
{
list_del_init(&child->sibling);
if (parent)
list_add(&child->sibling, &parent->children);
child->parent = parent;
/* now do the debugfs renaming to reattach the child
to the proper parent */
}
/* Propagate rate to children */
void propagate_rate(struct clk *tclk)
{
struct clk *clkp;
list_for_each_entry(clkp, &tclk->children, sibling) {
if (clkp->recalc)
clkp->rate = clkp->recalc(clkp);
propagate_rate(clkp);
}
}
static LIST_HEAD(root_clks);
/**
* recalculate_root_clocks - recalculate and propagate all root clocks
*
* Recalculates all root clocks (clocks with no parent), which if the
* clock's .recalc is set correctly, should also propagate their rates.
* Called at init.
*/
void recalculate_root_clocks(void)
{
struct clk *clkp;
list_for_each_entry(clkp, &root_clks, sibling) {
if (clkp->recalc)
clkp->rate = clkp->recalc(clkp);
propagate_rate(clkp);
}
}
/**
* clk_preinit - initialize any fields in the struct clk before clk init
* @clk: struct clk * to initialize
*
* Initialize any struct clk fields needed before normal clk initialization
* can run. No return value.
*/
void clk_preinit(struct clk *clk)
{
INIT_LIST_HEAD(&clk->children);
}
int clk_register(struct clk *clk)
{
if (clk == NULL || IS_ERR(clk))
return -EINVAL;
/*
* trap out already registered clocks
*/
if (clk->node.next || clk->node.prev)
return 0;
mutex_lock(&clocks_mutex);
if (clk->parent)
list_add(&clk->sibling, &clk->parent->children);
else
list_add(&clk->sibling, &root_clks);
list_add(&clk->node, &clocks);
if (clk->init)
clk->init(clk);
mutex_unlock(&clocks_mutex);
return 0;
}
EXPORT_SYMBOL(clk_register);
void clk_unregister(struct clk *clk)
{
if (clk == NULL || IS_ERR(clk))
return;
mutex_lock(&clocks_mutex);
list_del(&clk->sibling);
list_del(&clk->node);
mutex_unlock(&clocks_mutex);
}
EXPORT_SYMBOL(clk_unregister);
void clk_enable_init_clocks(void)
{
struct clk *clkp;
list_for_each_entry(clkp, &clocks, node)
if (clkp->flags & ENABLE_ON_INIT)
clk_enable(clkp);
}
/**
* omap_clk_get_by_name - locate OMAP struct clk by its name
* @name: name of the struct clk to locate
*
* Locate an OMAP struct clk by its name. Assumes that struct clk
* names are unique. Returns NULL if not found or a pointer to the
* struct clk if found.
*/
struct clk *omap_clk_get_by_name(const char *name)
{
struct clk *c;
struct clk *ret = NULL;
mutex_lock(&clocks_mutex);
list_for_each_entry(c, &clocks, node) {
if (!strcmp(c->name, name)) {
ret = c;
break;
}
}
mutex_unlock(&clocks_mutex);
return ret;
}
int omap_clk_enable_autoidle_all(void)
{
struct clk *c;
unsigned long flags;
spin_lock_irqsave(&clockfw_lock, flags);
list_for_each_entry(c, &clocks, node)
if (c->ops->allow_idle)
c->ops->allow_idle(c);
spin_unlock_irqrestore(&clockfw_lock, flags);
return 0;
}
int omap_clk_disable_autoidle_all(void)
{
struct clk *c;
unsigned long flags;
spin_lock_irqsave(&clockfw_lock, flags);
list_for_each_entry(c, &clocks, node)
if (c->ops->deny_idle)
c->ops->deny_idle(c);
spin_unlock_irqrestore(&clockfw_lock, flags);
return 0;
}
/*
* Low level helpers
*/
static int clkll_enable_null(struct clk *clk)
{
return 0;
}
static void clkll_disable_null(struct clk *clk)
{
}
const struct clkops clkops_null = {
.enable = clkll_enable_null,
.disable = clkll_disable_null,
};
/*
* Dummy clock
*
* Used for clock aliases that are needed on some OMAPs, but not others
*/
struct clk dummy_ck = {
.name = "dummy",
.ops = &clkops_null,
};
/*
*
*/
#ifdef CONFIG_OMAP_RESET_CLOCKS
/*
* Disable any unused clocks left on by the bootloader
*/
static int __init clk_disable_unused(void)
{
struct clk *ck;
unsigned long flags;
pr_info("clock: disabling unused clocks to save power\n");
spin_lock_irqsave(&clockfw_lock, flags);
list_for_each_entry(ck, &clocks, node) {
if (ck->ops == &clkops_null)
continue;
if (ck->usecount > 0 || !ck->enable_reg)
continue;
omap1_clk_disable_unused(ck);
}
spin_unlock_irqrestore(&clockfw_lock, flags);
return 0;
}
late_initcall(clk_disable_unused);
late_initcall(omap_clk_enable_autoidle_all);
#endif
#if defined(CONFIG_PM_DEBUG) && defined(CONFIG_DEBUG_FS)
/*
* debugfs support to trace clock tree hierarchy and attributes
*/
#include <linux/debugfs.h>
#include <linux/seq_file.h>
static struct dentry *clk_debugfs_root;
static int debug_clock_show(struct seq_file *s, void *unused)
{
struct clk *c;
struct clk *pa;
mutex_lock(&clocks_mutex);
seq_printf(s, "%-30s %-30s %-10s %s\n",
"clock-name", "parent-name", "rate", "use-count");
list_for_each_entry(c, &clocks, node) {
pa = c->parent;
seq_printf(s, "%-30s %-30s %-10lu %d\n",
c->name, pa ? pa->name : "none", c->rate,
c->usecount);
}
mutex_unlock(&clocks_mutex);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(debug_clock);
static int clk_debugfs_register_one(struct clk *c)
{
int err;
struct dentry *d;
struct clk *pa = c->parent;
d = debugfs_create_dir(c->name, pa ? pa->dent : clk_debugfs_root);
if (!d)
return -ENOMEM;
c->dent = d;
d = debugfs_create_u8("usecount", S_IRUGO, c->dent, &c->usecount);
if (!d) {
err = -ENOMEM;
goto err_out;
}
d = debugfs_create_ulong("rate", S_IRUGO, c->dent, &c->rate);
if (!d) {
err = -ENOMEM;
goto err_out;
}
d = debugfs_create_x8("flags", S_IRUGO, c->dent, &c->flags);
if (!d) {
err = -ENOMEM;
goto err_out;
}
return 0;
err_out:
debugfs_remove_recursive(c->dent);
return err;
}
static int clk_debugfs_register(struct clk *c)
{
int err;
struct clk *pa = c->parent;
if (pa && !pa->dent) {
err = clk_debugfs_register(pa);
if (err)
return err;
}
if (!c->dent) {
err = clk_debugfs_register_one(c);
if (err)
return err;
}
return 0;
}
static int __init clk_debugfs_init(void)
{
struct clk *c;
struct dentry *d;
int err;
d = debugfs_create_dir("clock", NULL);
if (!d)
return -ENOMEM;
clk_debugfs_root = d;
list_for_each_entry(c, &clocks, node) {
err = clk_debugfs_register(c);
if (err)
goto err_out;
}
d = debugfs_create_file("summary", S_IRUGO,
d, NULL, &debug_clock_fops);
if (!d)
return -ENOMEM;
return 0;
err_out:
debugfs_remove_recursive(clk_debugfs_root);
return err;
}
late_initcall(clk_debugfs_init);
#endif /* defined(CONFIG_PM_DEBUG) && defined(CONFIG_DEBUG_FS) */