mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 11:20:49 +07:00
47d71bc75d
To avoid race with vchan_complete, use the race free way to terminate running transfer. Implement the device_synchronize callback to make sure that the terminated descriptor is freed. Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
3098 lines
81 KiB
C
3098 lines
81 KiB
C
/*
|
|
* Copyright (c) 2006 ARM Ltd.
|
|
* Copyright (c) 2010 ST-Ericsson SA
|
|
* Copyirght (c) 2017 Linaro Ltd.
|
|
*
|
|
* Author: Peter Pearse <peter.pearse@arm.com>
|
|
* Author: Linus Walleij <linus.walleij@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* The full GNU General Public License is in this distribution in the file
|
|
* called COPYING.
|
|
*
|
|
* Documentation: ARM DDI 0196G == PL080
|
|
* Documentation: ARM DDI 0218E == PL081
|
|
* Documentation: S3C6410 User's Manual == PL080S
|
|
*
|
|
* PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
|
|
* channel.
|
|
*
|
|
* The PL080 has 8 channels available for simultaneous use, and the PL081
|
|
* has only two channels. So on these DMA controllers the number of channels
|
|
* and the number of incoming DMA signals are two totally different things.
|
|
* It is usually not possible to theoretically handle all physical signals,
|
|
* so a multiplexing scheme with possible denial of use is necessary.
|
|
*
|
|
* The PL080 has a dual bus master, PL081 has a single master.
|
|
*
|
|
* PL080S is a version modified by Samsung and used in S3C64xx SoCs.
|
|
* It differs in following aspects:
|
|
* - CH_CONFIG register at different offset,
|
|
* - separate CH_CONTROL2 register for transfer size,
|
|
* - bigger maximum transfer size,
|
|
* - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
|
|
* - no support for peripheral flow control.
|
|
*
|
|
* Memory to peripheral transfer may be visualized as
|
|
* Get data from memory to DMAC
|
|
* Until no data left
|
|
* On burst request from peripheral
|
|
* Destination burst from DMAC to peripheral
|
|
* Clear burst request
|
|
* Raise terminal count interrupt
|
|
*
|
|
* For peripherals with a FIFO:
|
|
* Source burst size == half the depth of the peripheral FIFO
|
|
* Destination burst size == the depth of the peripheral FIFO
|
|
*
|
|
* (Bursts are irrelevant for mem to mem transfers - there are no burst
|
|
* signals, the DMA controller will simply facilitate its AHB master.)
|
|
*
|
|
* ASSUMES default (little) endianness for DMA transfers
|
|
*
|
|
* The PL08x has two flow control settings:
|
|
* - DMAC flow control: the transfer size defines the number of transfers
|
|
* which occur for the current LLI entry, and the DMAC raises TC at the
|
|
* end of every LLI entry. Observed behaviour shows the DMAC listening
|
|
* to both the BREQ and SREQ signals (contrary to documented),
|
|
* transferring data if either is active. The LBREQ and LSREQ signals
|
|
* are ignored.
|
|
*
|
|
* - Peripheral flow control: the transfer size is ignored (and should be
|
|
* zero). The data is transferred from the current LLI entry, until
|
|
* after the final transfer signalled by LBREQ or LSREQ. The DMAC
|
|
* will then move to the next LLI entry. Unsupported by PL080S.
|
|
*/
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/amba/pl08x.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/amba/pl080.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
#define DRIVER_NAME "pl08xdmac"
|
|
|
|
#define PL80X_DMA_BUSWIDTHS \
|
|
BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
|
|
|
|
static struct amba_driver pl08x_amba_driver;
|
|
struct pl08x_driver_data;
|
|
|
|
/**
|
|
* struct vendor_data - vendor-specific config parameters for PL08x derivatives
|
|
* @config_offset: offset to the configuration register
|
|
* @channels: the number of channels available in this variant
|
|
* @signals: the number of request signals available from the hardware
|
|
* @dualmaster: whether this version supports dual AHB masters or not.
|
|
* @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
|
|
* channels have Nomadik security extension bits that need to be checked
|
|
* for permission before use and some registers are missing
|
|
* @pl080s: whether this variant is a Samsung PL080S, which has separate
|
|
* register and LLI word for transfer size.
|
|
* @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
|
|
* @max_transfer_size: the maximum single element transfer size for this
|
|
* PL08x variant.
|
|
*/
|
|
struct vendor_data {
|
|
u8 config_offset;
|
|
u8 channels;
|
|
u8 signals;
|
|
bool dualmaster;
|
|
bool nomadik;
|
|
bool pl080s;
|
|
bool ftdmac020;
|
|
u32 max_transfer_size;
|
|
};
|
|
|
|
/**
|
|
* struct pl08x_bus_data - information of source or destination
|
|
* busses for a transfer
|
|
* @addr: current address
|
|
* @maxwidth: the maximum width of a transfer on this bus
|
|
* @buswidth: the width of this bus in bytes: 1, 2 or 4
|
|
*/
|
|
struct pl08x_bus_data {
|
|
dma_addr_t addr;
|
|
u8 maxwidth;
|
|
u8 buswidth;
|
|
};
|
|
|
|
#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
|
|
|
|
/**
|
|
* struct pl08x_phy_chan - holder for the physical channels
|
|
* @id: physical index to this channel
|
|
* @base: memory base address for this physical channel
|
|
* @reg_config: configuration address for this physical channel
|
|
* @reg_control: control address for this physical channel
|
|
* @reg_src: transfer source address register
|
|
* @reg_dst: transfer destination address register
|
|
* @reg_lli: transfer LLI address register
|
|
* @reg_busy: if the variant has a special per-channel busy register,
|
|
* this contains a pointer to it
|
|
* @lock: a lock to use when altering an instance of this struct
|
|
* @serving: the virtual channel currently being served by this physical
|
|
* channel
|
|
* @locked: channel unavailable for the system, e.g. dedicated to secure
|
|
* world
|
|
* @ftdmac020: channel is on a FTDMAC020
|
|
* @pl080s: channel is on a PL08s
|
|
*/
|
|
struct pl08x_phy_chan {
|
|
unsigned int id;
|
|
void __iomem *base;
|
|
void __iomem *reg_config;
|
|
void __iomem *reg_control;
|
|
void __iomem *reg_src;
|
|
void __iomem *reg_dst;
|
|
void __iomem *reg_lli;
|
|
void __iomem *reg_busy;
|
|
spinlock_t lock;
|
|
struct pl08x_dma_chan *serving;
|
|
bool locked;
|
|
bool ftdmac020;
|
|
bool pl080s;
|
|
};
|
|
|
|
/**
|
|
* struct pl08x_sg - structure containing data per sg
|
|
* @src_addr: src address of sg
|
|
* @dst_addr: dst address of sg
|
|
* @len: transfer len in bytes
|
|
* @node: node for txd's dsg_list
|
|
*/
|
|
struct pl08x_sg {
|
|
dma_addr_t src_addr;
|
|
dma_addr_t dst_addr;
|
|
size_t len;
|
|
struct list_head node;
|
|
};
|
|
|
|
/**
|
|
* struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
|
|
* @vd: virtual DMA descriptor
|
|
* @dsg_list: list of children sg's
|
|
* @llis_bus: DMA memory address (physical) start for the LLIs
|
|
* @llis_va: virtual memory address start for the LLIs
|
|
* @cctl: control reg values for current txd
|
|
* @ccfg: config reg values for current txd
|
|
* @done: this marks completed descriptors, which should not have their
|
|
* mux released.
|
|
* @cyclic: indicate cyclic transfers
|
|
*/
|
|
struct pl08x_txd {
|
|
struct virt_dma_desc vd;
|
|
struct list_head dsg_list;
|
|
dma_addr_t llis_bus;
|
|
u32 *llis_va;
|
|
/* Default cctl value for LLIs */
|
|
u32 cctl;
|
|
/*
|
|
* Settings to be put into the physical channel when we
|
|
* trigger this txd. Other registers are in llis_va[0].
|
|
*/
|
|
u32 ccfg;
|
|
bool done;
|
|
bool cyclic;
|
|
};
|
|
|
|
/**
|
|
* enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
|
|
* states
|
|
* @PL08X_CHAN_IDLE: the channel is idle
|
|
* @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
|
|
* channel and is running a transfer on it
|
|
* @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
|
|
* channel, but the transfer is currently paused
|
|
* @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
|
|
* channel to become available (only pertains to memcpy channels)
|
|
*/
|
|
enum pl08x_dma_chan_state {
|
|
PL08X_CHAN_IDLE,
|
|
PL08X_CHAN_RUNNING,
|
|
PL08X_CHAN_PAUSED,
|
|
PL08X_CHAN_WAITING,
|
|
};
|
|
|
|
/**
|
|
* struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
|
|
* @vc: wrappped virtual channel
|
|
* @phychan: the physical channel utilized by this channel, if there is one
|
|
* @name: name of channel
|
|
* @cd: channel platform data
|
|
* @cfg: slave configuration
|
|
* @at: active transaction on this channel
|
|
* @host: a pointer to the host (internal use)
|
|
* @state: whether the channel is idle, paused, running etc
|
|
* @slave: whether this channel is a device (slave) or for memcpy
|
|
* @signal: the physical DMA request signal which this channel is using
|
|
* @mux_use: count of descriptors using this DMA request signal setting
|
|
*/
|
|
struct pl08x_dma_chan {
|
|
struct virt_dma_chan vc;
|
|
struct pl08x_phy_chan *phychan;
|
|
const char *name;
|
|
struct pl08x_channel_data *cd;
|
|
struct dma_slave_config cfg;
|
|
struct pl08x_txd *at;
|
|
struct pl08x_driver_data *host;
|
|
enum pl08x_dma_chan_state state;
|
|
bool slave;
|
|
int signal;
|
|
unsigned mux_use;
|
|
};
|
|
|
|
/**
|
|
* struct pl08x_driver_data - the local state holder for the PL08x
|
|
* @slave: optional slave engine for this instance
|
|
* @memcpy: memcpy engine for this instance
|
|
* @has_slave: the PL08x has a slave engine (routed signals)
|
|
* @base: virtual memory base (remapped) for the PL08x
|
|
* @adev: the corresponding AMBA (PrimeCell) bus entry
|
|
* @vd: vendor data for this PL08x variant
|
|
* @pd: platform data passed in from the platform/machine
|
|
* @phy_chans: array of data for the physical channels
|
|
* @pool: a pool for the LLI descriptors
|
|
* @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
|
|
* fetches
|
|
* @mem_buses: set to indicate memory transfers on AHB2.
|
|
* @lli_words: how many words are used in each LLI item for this variant
|
|
*/
|
|
struct pl08x_driver_data {
|
|
struct dma_device slave;
|
|
struct dma_device memcpy;
|
|
bool has_slave;
|
|
void __iomem *base;
|
|
struct amba_device *adev;
|
|
const struct vendor_data *vd;
|
|
struct pl08x_platform_data *pd;
|
|
struct pl08x_phy_chan *phy_chans;
|
|
struct dma_pool *pool;
|
|
u8 lli_buses;
|
|
u8 mem_buses;
|
|
u8 lli_words;
|
|
};
|
|
|
|
/*
|
|
* PL08X specific defines
|
|
*/
|
|
|
|
/* The order of words in an LLI. */
|
|
#define PL080_LLI_SRC 0
|
|
#define PL080_LLI_DST 1
|
|
#define PL080_LLI_LLI 2
|
|
#define PL080_LLI_CCTL 3
|
|
#define PL080S_LLI_CCTL2 4
|
|
|
|
/* Total words in an LLI. */
|
|
#define PL080_LLI_WORDS 4
|
|
#define PL080S_LLI_WORDS 8
|
|
|
|
/*
|
|
* Number of LLIs in each LLI buffer allocated for one transfer
|
|
* (maximum times we call dma_pool_alloc on this pool without freeing)
|
|
*/
|
|
#define MAX_NUM_TSFR_LLIS 512
|
|
#define PL08X_ALIGN 8
|
|
|
|
static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct pl08x_dma_chan, vc.chan);
|
|
}
|
|
|
|
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return container_of(tx, struct pl08x_txd, vd.tx);
|
|
}
|
|
|
|
/*
|
|
* Mux handling.
|
|
*
|
|
* This gives us the DMA request input to the PL08x primecell which the
|
|
* peripheral described by the channel data will be routed to, possibly
|
|
* via a board/SoC specific external MUX. One important point to note
|
|
* here is that this does not depend on the physical channel.
|
|
*/
|
|
static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
|
|
{
|
|
const struct pl08x_platform_data *pd = plchan->host->pd;
|
|
int ret;
|
|
|
|
if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
|
|
ret = pd->get_xfer_signal(plchan->cd);
|
|
if (ret < 0) {
|
|
plchan->mux_use = 0;
|
|
return ret;
|
|
}
|
|
|
|
plchan->signal = ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
|
|
{
|
|
const struct pl08x_platform_data *pd = plchan->host->pd;
|
|
|
|
if (plchan->signal >= 0) {
|
|
WARN_ON(plchan->mux_use == 0);
|
|
|
|
if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
|
|
pd->put_xfer_signal(plchan->cd, plchan->signal);
|
|
plchan->signal = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Physical channel handling
|
|
*/
|
|
|
|
/* Whether a certain channel is busy or not */
|
|
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
|
|
{
|
|
unsigned int val;
|
|
|
|
/* If we have a special busy register, take a shortcut */
|
|
if (ch->reg_busy) {
|
|
val = readl(ch->reg_busy);
|
|
return !!(val & BIT(ch->id));
|
|
}
|
|
val = readl(ch->reg_config);
|
|
return val & PL080_CONFIG_ACTIVE;
|
|
}
|
|
|
|
/*
|
|
* pl08x_write_lli() - Write an LLI into the DMA controller.
|
|
*
|
|
* The PL08x derivatives support linked lists, but the first item of the
|
|
* list containing the source, destination, control word and next LLI is
|
|
* ignored. Instead the driver has to write those values directly into the
|
|
* SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
|
|
* register need to be set up for the first transfer.
|
|
*/
|
|
static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
|
|
{
|
|
if (pl08x->vd->pl080s)
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
|
|
"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
|
|
phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
|
|
lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
|
|
lli[PL080S_LLI_CCTL2], ccfg);
|
|
else
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
|
|
"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
|
|
phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
|
|
lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
|
|
|
|
writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
|
|
writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
|
|
writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
|
|
|
|
/*
|
|
* The FTMAC020 has a different layout in the CCTL word of the LLI
|
|
* and the CCTL register which is split in CSR and SIZE registers.
|
|
* Convert the LLI item CCTL into the proper values to write into
|
|
* the CSR and SIZE registers.
|
|
*/
|
|
if (phychan->ftdmac020) {
|
|
u32 llictl = lli[PL080_LLI_CCTL];
|
|
u32 val = 0;
|
|
|
|
/* Write the transfer size (12 bits) to the size register */
|
|
writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
|
|
phychan->base + FTDMAC020_CH_SIZE);
|
|
/*
|
|
* Then write the control bits 28..16 to the control register
|
|
* by shuffleing the bits around to where they are in the
|
|
* main register. The mapping is as follows:
|
|
* Bit 28: TC_MSK - mask on all except last LLI
|
|
* Bit 27..25: SRC_WIDTH
|
|
* Bit 24..22: DST_WIDTH
|
|
* Bit 21..20: SRCAD_CTRL
|
|
* Bit 19..17: DSTAD_CTRL
|
|
* Bit 17: SRC_SEL
|
|
* Bit 16: DST_SEL
|
|
*/
|
|
if (llictl & FTDMAC020_LLI_TC_MSK)
|
|
val |= FTDMAC020_CH_CSR_TC_MSK;
|
|
val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
|
|
(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
|
|
FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
|
|
val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
|
|
(FTDMAC020_LLI_DST_WIDTH_SHIFT -
|
|
FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
|
|
val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
|
|
(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
|
|
FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
|
|
val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
|
|
(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
|
|
FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
|
|
if (llictl & FTDMAC020_LLI_SRC_SEL)
|
|
val |= FTDMAC020_CH_CSR_SRC_SEL;
|
|
if (llictl & FTDMAC020_LLI_DST_SEL)
|
|
val |= FTDMAC020_CH_CSR_DST_SEL;
|
|
|
|
/*
|
|
* Set up the bits that exist in the CSR but are not
|
|
* part the LLI, i.e. only gets written to the control
|
|
* register right here.
|
|
*
|
|
* FIXME: do not just handle memcpy, also handle slave DMA.
|
|
*/
|
|
switch (pl08x->pd->memcpy_burst_size) {
|
|
default:
|
|
case PL08X_BURST_SZ_1:
|
|
val |= PL080_BSIZE_1 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_4:
|
|
val |= PL080_BSIZE_4 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_8:
|
|
val |= PL080_BSIZE_8 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_16:
|
|
val |= PL080_BSIZE_16 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_32:
|
|
val |= PL080_BSIZE_32 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_64:
|
|
val |= PL080_BSIZE_64 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_128:
|
|
val |= PL080_BSIZE_128 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_256:
|
|
val |= PL080_BSIZE_256 <<
|
|
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
|
|
break;
|
|
}
|
|
|
|
/* Protection flags */
|
|
if (pl08x->pd->memcpy_prot_buff)
|
|
val |= FTDMAC020_CH_CSR_PROT2;
|
|
if (pl08x->pd->memcpy_prot_cache)
|
|
val |= FTDMAC020_CH_CSR_PROT3;
|
|
/* We are the kernel, so we are in privileged mode */
|
|
val |= FTDMAC020_CH_CSR_PROT1;
|
|
|
|
writel_relaxed(val, phychan->reg_control);
|
|
} else {
|
|
/* Bits are just identical */
|
|
writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
|
|
}
|
|
|
|
/* Second control word on the PL080s */
|
|
if (pl08x->vd->pl080s)
|
|
writel_relaxed(lli[PL080S_LLI_CCTL2],
|
|
phychan->base + PL080S_CH_CONTROL2);
|
|
|
|
writel(ccfg, phychan->reg_config);
|
|
}
|
|
|
|
/*
|
|
* Set the initial DMA register values i.e. those for the first LLI
|
|
* The next LLI pointer and the configuration interrupt bit have
|
|
* been set when the LLIs were constructed. Poke them into the hardware
|
|
* and start the transfer.
|
|
*/
|
|
static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_phy_chan *phychan = plchan->phychan;
|
|
struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
|
|
struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
|
|
u32 val;
|
|
|
|
list_del(&txd->vd.node);
|
|
|
|
plchan->at = txd;
|
|
|
|
/* Wait for channel inactive */
|
|
while (pl08x_phy_channel_busy(phychan))
|
|
cpu_relax();
|
|
|
|
pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
|
|
|
|
/* Enable the DMA channel */
|
|
/* Do not access config register until channel shows as disabled */
|
|
while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
|
|
cpu_relax();
|
|
|
|
/* Do not access config register until channel shows as inactive */
|
|
if (phychan->ftdmac020) {
|
|
val = readl(phychan->reg_config);
|
|
while (val & FTDMAC020_CH_CFG_BUSY)
|
|
val = readl(phychan->reg_config);
|
|
|
|
val = readl(phychan->reg_control);
|
|
while (val & FTDMAC020_CH_CSR_EN)
|
|
val = readl(phychan->reg_control);
|
|
|
|
writel(val | FTDMAC020_CH_CSR_EN,
|
|
phychan->reg_control);
|
|
} else {
|
|
val = readl(phychan->reg_config);
|
|
while ((val & PL080_CONFIG_ACTIVE) ||
|
|
(val & PL080_CONFIG_ENABLE))
|
|
val = readl(phychan->reg_config);
|
|
|
|
writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pause the channel by setting the HALT bit.
|
|
*
|
|
* For M->P transfers, pause the DMAC first and then stop the peripheral -
|
|
* the FIFO can only drain if the peripheral is still requesting data.
|
|
* (note: this can still timeout if the DMAC FIFO never drains of data.)
|
|
*
|
|
* For P->M transfers, disable the peripheral first to stop it filling
|
|
* the DMAC FIFO, and then pause the DMAC.
|
|
*/
|
|
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val;
|
|
int timeout;
|
|
|
|
if (ch->ftdmac020) {
|
|
/* Use the enable bit on the FTDMAC020 */
|
|
val = readl(ch->reg_control);
|
|
val &= ~FTDMAC020_CH_CSR_EN;
|
|
writel(val, ch->reg_control);
|
|
return;
|
|
}
|
|
|
|
/* Set the HALT bit and wait for the FIFO to drain */
|
|
val = readl(ch->reg_config);
|
|
val |= PL080_CONFIG_HALT;
|
|
writel(val, ch->reg_config);
|
|
|
|
/* Wait for channel inactive */
|
|
for (timeout = 1000; timeout; timeout--) {
|
|
if (!pl08x_phy_channel_busy(ch))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
if (pl08x_phy_channel_busy(ch))
|
|
pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
|
|
}
|
|
|
|
static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val;
|
|
|
|
/* Use the enable bit on the FTDMAC020 */
|
|
if (ch->ftdmac020) {
|
|
val = readl(ch->reg_control);
|
|
val |= FTDMAC020_CH_CSR_EN;
|
|
writel(val, ch->reg_control);
|
|
return;
|
|
}
|
|
|
|
/* Clear the HALT bit */
|
|
val = readl(ch->reg_config);
|
|
val &= ~PL080_CONFIG_HALT;
|
|
writel(val, ch->reg_config);
|
|
}
|
|
|
|
/*
|
|
* pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
|
|
* clears any pending interrupt status. This should not be used for
|
|
* an on-going transfer, but as a method of shutting down a channel
|
|
* (eg, when it's no longer used) or terminating a transfer.
|
|
*/
|
|
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val;
|
|
|
|
/* The layout for the FTDMAC020 is different */
|
|
if (ch->ftdmac020) {
|
|
/* Disable all interrupts */
|
|
val = readl(ch->reg_config);
|
|
val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
|
|
FTDMAC020_CH_CFG_INT_ERR_MASK |
|
|
FTDMAC020_CH_CFG_INT_TC_MASK);
|
|
writel(val, ch->reg_config);
|
|
|
|
/* Abort and disable channel */
|
|
val = readl(ch->reg_control);
|
|
val &= ~FTDMAC020_CH_CSR_EN;
|
|
val |= FTDMAC020_CH_CSR_ABT;
|
|
writel(val, ch->reg_control);
|
|
|
|
/* Clear ABT and ERR interrupt flags */
|
|
writel(BIT(ch->id) | BIT(ch->id + 16),
|
|
pl08x->base + PL080_ERR_CLEAR);
|
|
writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
|
|
|
|
return;
|
|
}
|
|
|
|
val = readl(ch->reg_config);
|
|
val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
|
|
PL080_CONFIG_TC_IRQ_MASK);
|
|
writel(val, ch->reg_config);
|
|
|
|
writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
|
|
writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
|
|
}
|
|
|
|
static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
|
|
{
|
|
u32 val;
|
|
u32 bytes;
|
|
|
|
if (ch->ftdmac020) {
|
|
bytes = readl(ch->base + FTDMAC020_CH_SIZE);
|
|
|
|
val = readl(ch->reg_control);
|
|
val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
|
|
val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
|
|
} else if (ch->pl080s) {
|
|
val = readl(ch->base + PL080S_CH_CONTROL2);
|
|
bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
val = readl(ch->reg_control);
|
|
val &= PL080_CONTROL_SWIDTH_MASK;
|
|
val >>= PL080_CONTROL_SWIDTH_SHIFT;
|
|
} else {
|
|
/* Plain PL08x */
|
|
val = readl(ch->reg_control);
|
|
bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
val &= PL080_CONTROL_SWIDTH_MASK;
|
|
val >>= PL080_CONTROL_SWIDTH_SHIFT;
|
|
}
|
|
|
|
switch (val) {
|
|
case PL080_WIDTH_8BIT:
|
|
break;
|
|
case PL080_WIDTH_16BIT:
|
|
bytes *= 2;
|
|
break;
|
|
case PL080_WIDTH_32BIT:
|
|
bytes *= 4;
|
|
break;
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
|
|
{
|
|
u32 val;
|
|
u32 bytes;
|
|
|
|
if (ch->ftdmac020) {
|
|
val = llis_va[PL080_LLI_CCTL];
|
|
bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
|
|
|
|
val = llis_va[PL080_LLI_CCTL];
|
|
val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
|
|
val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
|
|
} else if (ch->pl080s) {
|
|
val = llis_va[PL080S_LLI_CCTL2];
|
|
bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
val = llis_va[PL080_LLI_CCTL];
|
|
val &= PL080_CONTROL_SWIDTH_MASK;
|
|
val >>= PL080_CONTROL_SWIDTH_SHIFT;
|
|
} else {
|
|
/* Plain PL08x */
|
|
val = llis_va[PL080_LLI_CCTL];
|
|
bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
val &= PL080_CONTROL_SWIDTH_MASK;
|
|
val >>= PL080_CONTROL_SWIDTH_SHIFT;
|
|
}
|
|
|
|
switch (val) {
|
|
case PL080_WIDTH_8BIT:
|
|
break;
|
|
case PL080_WIDTH_16BIT:
|
|
bytes *= 2;
|
|
break;
|
|
case PL080_WIDTH_32BIT:
|
|
bytes *= 4;
|
|
break;
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
/* The channel should be paused when calling this */
|
|
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
const u32 *llis_va, *llis_va_limit;
|
|
struct pl08x_phy_chan *ch;
|
|
dma_addr_t llis_bus;
|
|
struct pl08x_txd *txd;
|
|
u32 llis_max_words;
|
|
size_t bytes;
|
|
u32 clli;
|
|
|
|
ch = plchan->phychan;
|
|
txd = plchan->at;
|
|
|
|
if (!ch || !txd)
|
|
return 0;
|
|
|
|
/*
|
|
* Follow the LLIs to get the number of remaining
|
|
* bytes in the currently active transaction.
|
|
*/
|
|
clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
|
|
|
|
/* First get the remaining bytes in the active transfer */
|
|
bytes = get_bytes_in_phy_channel(ch);
|
|
|
|
if (!clli)
|
|
return bytes;
|
|
|
|
llis_va = txd->llis_va;
|
|
llis_bus = txd->llis_bus;
|
|
|
|
llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
|
|
BUG_ON(clli < llis_bus || clli >= llis_bus +
|
|
sizeof(u32) * llis_max_words);
|
|
|
|
/*
|
|
* Locate the next LLI - as this is an array,
|
|
* it's simple maths to find.
|
|
*/
|
|
llis_va += (clli - llis_bus) / sizeof(u32);
|
|
|
|
llis_va_limit = llis_va + llis_max_words;
|
|
|
|
for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
|
|
bytes += get_bytes_in_lli(ch, llis_va);
|
|
|
|
/*
|
|
* A LLI pointer going backward terminates the LLI list
|
|
*/
|
|
if (llis_va[PL080_LLI_LLI] <= clli)
|
|
break;
|
|
}
|
|
|
|
return bytes;
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical channel for a virtual channel
|
|
*
|
|
* Try to locate a physical channel to be used for this transfer. If all
|
|
* are taken return NULL and the requester will have to cope by using
|
|
* some fallback PIO mode or retrying later.
|
|
*/
|
|
static struct pl08x_phy_chan *
|
|
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_dma_chan *virt_chan)
|
|
{
|
|
struct pl08x_phy_chan *ch = NULL;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; i < pl08x->vd->channels; i++) {
|
|
ch = &pl08x->phy_chans[i];
|
|
|
|
spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
if (!ch->locked && !ch->serving) {
|
|
ch->serving = virt_chan;
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
if (i == pl08x->vd->channels) {
|
|
/* No physical channel available, cope with it */
|
|
return NULL;
|
|
}
|
|
|
|
return ch;
|
|
}
|
|
|
|
/* Mark the physical channel as free. Note, this write is atomic. */
|
|
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_phy_chan *ch)
|
|
{
|
|
ch->serving = NULL;
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a physical channel. When successful, assign it to
|
|
* this virtual channel, and initiate the next descriptor. The
|
|
* virtual channel lock must be held at this point.
|
|
*/
|
|
static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_phy_chan *ch;
|
|
|
|
ch = pl08x_get_phy_channel(pl08x, plchan);
|
|
if (!ch) {
|
|
dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
|
|
plchan->state = PL08X_CHAN_WAITING;
|
|
return;
|
|
}
|
|
|
|
dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
|
|
ch->id, plchan->name);
|
|
|
|
plchan->phychan = ch;
|
|
plchan->state = PL08X_CHAN_RUNNING;
|
|
pl08x_start_next_txd(plchan);
|
|
}
|
|
|
|
static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
|
|
struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
|
|
dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
|
|
ch->id, plchan->name);
|
|
|
|
/*
|
|
* We do this without taking the lock; we're really only concerned
|
|
* about whether this pointer is NULL or not, and we're guaranteed
|
|
* that this will only be called when it _already_ is non-NULL.
|
|
*/
|
|
ch->serving = plchan;
|
|
plchan->phychan = ch;
|
|
plchan->state = PL08X_CHAN_RUNNING;
|
|
pl08x_start_next_txd(plchan);
|
|
}
|
|
|
|
/*
|
|
* Free a physical DMA channel, potentially reallocating it to another
|
|
* virtual channel if we have any pending.
|
|
*/
|
|
static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_dma_chan *p, *next;
|
|
|
|
retry:
|
|
next = NULL;
|
|
|
|
/* Find a waiting virtual channel for the next transfer. */
|
|
list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
|
|
if (p->state == PL08X_CHAN_WAITING) {
|
|
next = p;
|
|
break;
|
|
}
|
|
|
|
if (!next && pl08x->has_slave) {
|
|
list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
|
|
if (p->state == PL08X_CHAN_WAITING) {
|
|
next = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Ensure that the physical channel is stopped */
|
|
pl08x_terminate_phy_chan(pl08x, plchan->phychan);
|
|
|
|
if (next) {
|
|
bool success;
|
|
|
|
/*
|
|
* Eww. We know this isn't going to deadlock
|
|
* but lockdep probably doesn't.
|
|
*/
|
|
spin_lock(&next->vc.lock);
|
|
/* Re-check the state now that we have the lock */
|
|
success = next->state == PL08X_CHAN_WAITING;
|
|
if (success)
|
|
pl08x_phy_reassign_start(plchan->phychan, next);
|
|
spin_unlock(&next->vc.lock);
|
|
|
|
/* If the state changed, try to find another channel */
|
|
if (!success)
|
|
goto retry;
|
|
} else {
|
|
/* No more jobs, so free up the physical channel */
|
|
pl08x_put_phy_channel(pl08x, plchan->phychan);
|
|
}
|
|
|
|
plchan->phychan = NULL;
|
|
plchan->state = PL08X_CHAN_IDLE;
|
|
}
|
|
|
|
/*
|
|
* LLI handling
|
|
*/
|
|
|
|
static inline unsigned int
|
|
pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
|
|
u32 cctl,
|
|
bool source)
|
|
{
|
|
u32 val;
|
|
|
|
if (pl08x->vd->ftdmac020) {
|
|
if (source)
|
|
val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
|
|
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
|
|
else
|
|
val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
|
|
FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
} else {
|
|
if (source)
|
|
val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
|
|
PL080_CONTROL_SWIDTH_SHIFT;
|
|
else
|
|
val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
|
|
PL080_CONTROL_DWIDTH_SHIFT;
|
|
}
|
|
|
|
switch (val) {
|
|
case PL080_WIDTH_8BIT:
|
|
return 1;
|
|
case PL080_WIDTH_16BIT:
|
|
return 2;
|
|
case PL080_WIDTH_32BIT:
|
|
return 4;
|
|
default:
|
|
break;
|
|
}
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
|
|
u32 cctl,
|
|
u8 srcwidth, u8 dstwidth,
|
|
size_t tsize)
|
|
{
|
|
u32 retbits = cctl;
|
|
|
|
/*
|
|
* Remove all src, dst and transfer size bits, then set the
|
|
* width and size according to the parameters. The bit offsets
|
|
* are different in the FTDMAC020 so we need to accound for this.
|
|
*/
|
|
if (pl08x->vd->ftdmac020) {
|
|
retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
|
|
retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
|
|
retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
|
|
|
|
switch (srcwidth) {
|
|
case 1:
|
|
retbits |= PL080_WIDTH_8BIT <<
|
|
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
|
|
break;
|
|
case 2:
|
|
retbits |= PL080_WIDTH_16BIT <<
|
|
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
|
|
break;
|
|
case 4:
|
|
retbits |= PL080_WIDTH_32BIT <<
|
|
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
switch (dstwidth) {
|
|
case 1:
|
|
retbits |= PL080_WIDTH_8BIT <<
|
|
FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
break;
|
|
case 2:
|
|
retbits |= PL080_WIDTH_16BIT <<
|
|
FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
break;
|
|
case 4:
|
|
retbits |= PL080_WIDTH_32BIT <<
|
|
FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
|
|
retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
|
|
} else {
|
|
retbits &= ~PL080_CONTROL_DWIDTH_MASK;
|
|
retbits &= ~PL080_CONTROL_SWIDTH_MASK;
|
|
retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
|
|
switch (srcwidth) {
|
|
case 1:
|
|
retbits |= PL080_WIDTH_8BIT <<
|
|
PL080_CONTROL_SWIDTH_SHIFT;
|
|
break;
|
|
case 2:
|
|
retbits |= PL080_WIDTH_16BIT <<
|
|
PL080_CONTROL_SWIDTH_SHIFT;
|
|
break;
|
|
case 4:
|
|
retbits |= PL080_WIDTH_32BIT <<
|
|
PL080_CONTROL_SWIDTH_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
switch (dstwidth) {
|
|
case 1:
|
|
retbits |= PL080_WIDTH_8BIT <<
|
|
PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
case 2:
|
|
retbits |= PL080_WIDTH_16BIT <<
|
|
PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
case 4:
|
|
retbits |= PL080_WIDTH_32BIT <<
|
|
PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
|
|
retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
|
|
}
|
|
|
|
return retbits;
|
|
}
|
|
|
|
struct pl08x_lli_build_data {
|
|
struct pl08x_txd *txd;
|
|
struct pl08x_bus_data srcbus;
|
|
struct pl08x_bus_data dstbus;
|
|
size_t remainder;
|
|
u32 lli_bus;
|
|
};
|
|
|
|
/*
|
|
* Autoselect a master bus to use for the transfer. Slave will be the chosen as
|
|
* victim in case src & dest are not similarly aligned. i.e. If after aligning
|
|
* masters address with width requirements of transfer (by sending few byte by
|
|
* byte data), slave is still not aligned, then its width will be reduced to
|
|
* BYTE.
|
|
* - prefers the destination bus if both available
|
|
* - prefers bus with fixed address (i.e. peripheral)
|
|
*/
|
|
static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_lli_build_data *bd,
|
|
struct pl08x_bus_data **mbus,
|
|
struct pl08x_bus_data **sbus,
|
|
u32 cctl)
|
|
{
|
|
bool dst_incr;
|
|
bool src_incr;
|
|
|
|
/*
|
|
* The FTDMAC020 only supports memory-to-memory transfer, so
|
|
* source and destination always increase.
|
|
*/
|
|
if (pl08x->vd->ftdmac020) {
|
|
dst_incr = true;
|
|
src_incr = true;
|
|
} else {
|
|
dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
|
|
src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
|
|
}
|
|
|
|
/*
|
|
* If either bus is not advancing, i.e. it is a peripheral, that
|
|
* one becomes master
|
|
*/
|
|
if (!dst_incr) {
|
|
*mbus = &bd->dstbus;
|
|
*sbus = &bd->srcbus;
|
|
} else if (!src_incr) {
|
|
*mbus = &bd->srcbus;
|
|
*sbus = &bd->dstbus;
|
|
} else {
|
|
if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
|
|
*mbus = &bd->dstbus;
|
|
*sbus = &bd->srcbus;
|
|
} else {
|
|
*mbus = &bd->srcbus;
|
|
*sbus = &bd->dstbus;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fills in one LLI for a certain transfer descriptor and advance the counter
|
|
*/
|
|
static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_lli_build_data *bd,
|
|
int num_llis, int len, u32 cctl, u32 cctl2)
|
|
{
|
|
u32 offset = num_llis * pl08x->lli_words;
|
|
u32 *llis_va = bd->txd->llis_va + offset;
|
|
dma_addr_t llis_bus = bd->txd->llis_bus;
|
|
|
|
BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
|
|
|
|
/* Advance the offset to next LLI. */
|
|
offset += pl08x->lli_words;
|
|
|
|
llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
|
|
llis_va[PL080_LLI_DST] = bd->dstbus.addr;
|
|
llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
|
|
llis_va[PL080_LLI_LLI] |= bd->lli_bus;
|
|
llis_va[PL080_LLI_CCTL] = cctl;
|
|
if (pl08x->vd->pl080s)
|
|
llis_va[PL080S_LLI_CCTL2] = cctl2;
|
|
|
|
if (pl08x->vd->ftdmac020) {
|
|
/* FIXME: only memcpy so far so both increase */
|
|
bd->srcbus.addr += len;
|
|
bd->dstbus.addr += len;
|
|
} else {
|
|
if (cctl & PL080_CONTROL_SRC_INCR)
|
|
bd->srcbus.addr += len;
|
|
if (cctl & PL080_CONTROL_DST_INCR)
|
|
bd->dstbus.addr += len;
|
|
}
|
|
|
|
BUG_ON(bd->remainder < len);
|
|
|
|
bd->remainder -= len;
|
|
}
|
|
|
|
static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
|
|
int num_llis, size_t *total_bytes)
|
|
{
|
|
*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
|
|
pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
|
|
(*total_bytes) += len;
|
|
}
|
|
|
|
#if 1
|
|
static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
|
|
const u32 *llis_va, int num_llis)
|
|
{
|
|
int i;
|
|
|
|
if (pl08x->vd->pl080s) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
|
|
"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
|
|
for (i = 0; i < num_llis; i++) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
|
|
i, llis_va, llis_va[PL080_LLI_SRC],
|
|
llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
|
|
llis_va[PL080_LLI_CCTL],
|
|
llis_va[PL080S_LLI_CCTL2]);
|
|
llis_va += pl08x->lli_words;
|
|
}
|
|
} else {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%-3s %-9s %-10s %-10s %-10s %s\n",
|
|
"lli", "", "csrc", "cdst", "clli", "cctl");
|
|
for (i = 0; i < num_llis; i++) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
|
|
i, llis_va, llis_va[PL080_LLI_SRC],
|
|
llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
|
|
llis_va[PL080_LLI_CCTL]);
|
|
llis_va += pl08x->lli_words;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
|
|
const u32 *llis_va, int num_llis) {}
|
|
#endif
|
|
|
|
/*
|
|
* This fills in the table of LLIs for the transfer descriptor
|
|
* Note that we assume we never have to change the burst sizes
|
|
* Return 0 for error
|
|
*/
|
|
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
struct pl08x_bus_data *mbus, *sbus;
|
|
struct pl08x_lli_build_data bd;
|
|
int num_llis = 0;
|
|
u32 cctl, early_bytes = 0;
|
|
size_t max_bytes_per_lli, total_bytes;
|
|
u32 *llis_va, *last_lli;
|
|
struct pl08x_sg *dsg;
|
|
|
|
txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
|
|
if (!txd->llis_va) {
|
|
dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
bd.txd = txd;
|
|
bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
|
|
cctl = txd->cctl;
|
|
|
|
/* Find maximum width of the source bus */
|
|
bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
|
|
|
|
/* Find maximum width of the destination bus */
|
|
bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
|
|
|
|
list_for_each_entry(dsg, &txd->dsg_list, node) {
|
|
total_bytes = 0;
|
|
cctl = txd->cctl;
|
|
|
|
bd.srcbus.addr = dsg->src_addr;
|
|
bd.dstbus.addr = dsg->dst_addr;
|
|
bd.remainder = dsg->len;
|
|
bd.srcbus.buswidth = bd.srcbus.maxwidth;
|
|
bd.dstbus.buswidth = bd.dstbus.maxwidth;
|
|
|
|
pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
|
|
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
|
|
(u64)bd.srcbus.addr,
|
|
cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
|
|
bd.srcbus.buswidth,
|
|
(u64)bd.dstbus.addr,
|
|
cctl & PL080_CONTROL_DST_INCR ? "+" : "",
|
|
bd.dstbus.buswidth,
|
|
bd.remainder);
|
|
dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
|
|
mbus == &bd.srcbus ? "src" : "dst",
|
|
sbus == &bd.srcbus ? "src" : "dst");
|
|
|
|
/*
|
|
* Zero length is only allowed if all these requirements are
|
|
* met:
|
|
* - flow controller is peripheral.
|
|
* - src.addr is aligned to src.width
|
|
* - dst.addr is aligned to dst.width
|
|
*
|
|
* sg_len == 1 should be true, as there can be two cases here:
|
|
*
|
|
* - Memory addresses are contiguous and are not scattered.
|
|
* Here, Only one sg will be passed by user driver, with
|
|
* memory address and zero length. We pass this to controller
|
|
* and after the transfer it will receive the last burst
|
|
* request from peripheral and so transfer finishes.
|
|
*
|
|
* - Memory addresses are scattered and are not contiguous.
|
|
* Here, Obviously as DMA controller doesn't know when a lli's
|
|
* transfer gets over, it can't load next lli. So in this
|
|
* case, there has to be an assumption that only one lli is
|
|
* supported. Thus, we can't have scattered addresses.
|
|
*/
|
|
if (!bd.remainder) {
|
|
u32 fc;
|
|
|
|
/* FTDMAC020 only does memory-to-memory */
|
|
if (pl08x->vd->ftdmac020)
|
|
fc = PL080_FLOW_MEM2MEM;
|
|
else
|
|
fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
|
|
PL080_CONFIG_FLOW_CONTROL_SHIFT;
|
|
if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
|
|
(fc <= PL080_FLOW_SRC2DST_SRC))) {
|
|
dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
if (!IS_BUS_ALIGNED(&bd.srcbus) ||
|
|
!IS_BUS_ALIGNED(&bd.dstbus)) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s src & dst address must be aligned to src"
|
|
" & dst width if peripheral is flow controller",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
|
|
cctl = pl08x_lli_control_bits(pl08x, cctl,
|
|
bd.srcbus.buswidth, bd.dstbus.buswidth,
|
|
0);
|
|
pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
|
|
0, cctl, 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Send byte by byte for following cases
|
|
* - Less than a bus width available
|
|
* - until master bus is aligned
|
|
*/
|
|
if (bd.remainder < mbus->buswidth)
|
|
early_bytes = bd.remainder;
|
|
else if (!IS_BUS_ALIGNED(mbus)) {
|
|
early_bytes = mbus->buswidth -
|
|
(mbus->addr & (mbus->buswidth - 1));
|
|
if ((bd.remainder - early_bytes) < mbus->buswidth)
|
|
early_bytes = bd.remainder;
|
|
}
|
|
|
|
if (early_bytes) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s byte width LLIs (remain 0x%08zx)\n",
|
|
__func__, bd.remainder);
|
|
prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
|
|
num_llis++, &total_bytes);
|
|
}
|
|
|
|
if (bd.remainder) {
|
|
/*
|
|
* Master now aligned
|
|
* - if slave is not then we must set its width down
|
|
*/
|
|
if (!IS_BUS_ALIGNED(sbus)) {
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"%s set down bus width to one byte\n",
|
|
__func__);
|
|
|
|
sbus->buswidth = 1;
|
|
}
|
|
|
|
/*
|
|
* Bytes transferred = tsize * src width, not
|
|
* MIN(buswidths)
|
|
*/
|
|
max_bytes_per_lli = bd.srcbus.buswidth *
|
|
pl08x->vd->max_transfer_size;
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s max bytes per lli = %zu\n",
|
|
__func__, max_bytes_per_lli);
|
|
|
|
/*
|
|
* Make largest possible LLIs until less than one bus
|
|
* width left
|
|
*/
|
|
while (bd.remainder > (mbus->buswidth - 1)) {
|
|
size_t lli_len, tsize, width;
|
|
|
|
/*
|
|
* If enough left try to send max possible,
|
|
* otherwise try to send the remainder
|
|
*/
|
|
lli_len = min(bd.remainder, max_bytes_per_lli);
|
|
|
|
/*
|
|
* Check against maximum bus alignment:
|
|
* Calculate actual transfer size in relation to
|
|
* bus width an get a maximum remainder of the
|
|
* highest bus width - 1
|
|
*/
|
|
width = max(mbus->buswidth, sbus->buswidth);
|
|
lli_len = (lli_len / width) * width;
|
|
tsize = lli_len / bd.srcbus.buswidth;
|
|
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s fill lli with single lli chunk of "
|
|
"size 0x%08zx (remainder 0x%08zx)\n",
|
|
__func__, lli_len, bd.remainder);
|
|
|
|
cctl = pl08x_lli_control_bits(pl08x, cctl,
|
|
bd.srcbus.buswidth, bd.dstbus.buswidth,
|
|
tsize);
|
|
pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
|
|
lli_len, cctl, tsize);
|
|
total_bytes += lli_len;
|
|
}
|
|
|
|
/*
|
|
* Send any odd bytes
|
|
*/
|
|
if (bd.remainder) {
|
|
dev_vdbg(&pl08x->adev->dev,
|
|
"%s align with boundary, send odd bytes (remain %zu)\n",
|
|
__func__, bd.remainder);
|
|
prep_byte_width_lli(pl08x, &bd, &cctl,
|
|
bd.remainder, num_llis++, &total_bytes);
|
|
}
|
|
}
|
|
|
|
if (total_bytes != dsg->len) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
|
|
__func__, total_bytes, dsg->len);
|
|
return 0;
|
|
}
|
|
|
|
if (num_llis >= MAX_NUM_TSFR_LLIS) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
|
|
__func__, MAX_NUM_TSFR_LLIS);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
llis_va = txd->llis_va;
|
|
last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
|
|
|
|
if (txd->cyclic) {
|
|
/* Link back to the first LLI. */
|
|
last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
|
|
} else {
|
|
/* The final LLI terminates the LLI. */
|
|
last_lli[PL080_LLI_LLI] = 0;
|
|
/* The final LLI element shall also fire an interrupt. */
|
|
if (pl08x->vd->ftdmac020)
|
|
last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
|
|
else
|
|
last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
|
|
}
|
|
|
|
pl08x_dump_lli(pl08x, llis_va, num_llis);
|
|
|
|
return num_llis;
|
|
}
|
|
|
|
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_txd *txd)
|
|
{
|
|
struct pl08x_sg *dsg, *_dsg;
|
|
|
|
if (txd->llis_va)
|
|
dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
|
|
|
|
list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
|
|
list_del(&dsg->node);
|
|
kfree(dsg);
|
|
}
|
|
|
|
kfree(txd);
|
|
}
|
|
|
|
static void pl08x_desc_free(struct virt_dma_desc *vd)
|
|
{
|
|
struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
|
|
|
|
dma_descriptor_unmap(&vd->tx);
|
|
if (!txd->done)
|
|
pl08x_release_mux(plchan);
|
|
|
|
pl08x_free_txd(plchan->host, txd);
|
|
}
|
|
|
|
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
|
|
struct pl08x_dma_chan *plchan)
|
|
{
|
|
LIST_HEAD(head);
|
|
|
|
vchan_get_all_descriptors(&plchan->vc, &head);
|
|
vchan_dma_desc_free_list(&plchan->vc, &head);
|
|
}
|
|
|
|
/*
|
|
* The DMA ENGINE API
|
|
*/
|
|
static void pl08x_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
/* Ensure all queued descriptors are freed */
|
|
vchan_free_chan_resources(to_virt_chan(chan));
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
|
|
struct dma_chan *chan, unsigned long flags)
|
|
{
|
|
struct dma_async_tx_descriptor *retval = NULL;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Code accessing dma_async_is_complete() in a tight loop may give problems.
|
|
* If slaves are relying on interrupts to signal completion this function
|
|
* must not be called with interrupts disabled.
|
|
*/
|
|
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie, struct dma_tx_state *txstate)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
enum dma_status ret;
|
|
size_t bytes = 0;
|
|
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
/*
|
|
* There's no point calculating the residue if there's
|
|
* no txstate to store the value.
|
|
*/
|
|
if (!txstate) {
|
|
if (plchan->state == PL08X_CHAN_PAUSED)
|
|
ret = DMA_PAUSED;
|
|
return ret;
|
|
}
|
|
|
|
spin_lock_irqsave(&plchan->vc.lock, flags);
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret != DMA_COMPLETE) {
|
|
vd = vchan_find_desc(&plchan->vc, cookie);
|
|
if (vd) {
|
|
/* On the issued list, so hasn't been processed yet */
|
|
struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
|
|
struct pl08x_sg *dsg;
|
|
|
|
list_for_each_entry(dsg, &txd->dsg_list, node)
|
|
bytes += dsg->len;
|
|
} else {
|
|
bytes = pl08x_getbytes_chan(plchan);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
|
|
/*
|
|
* This cookie not complete yet
|
|
* Get number of bytes left in the active transactions and queue
|
|
*/
|
|
dma_set_residue(txstate, bytes);
|
|
|
|
if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
|
|
ret = DMA_PAUSED;
|
|
|
|
/* Whether waiting or running, we're in progress */
|
|
return ret;
|
|
}
|
|
|
|
/* PrimeCell DMA extension */
|
|
struct burst_table {
|
|
u32 burstwords;
|
|
u32 reg;
|
|
};
|
|
|
|
static const struct burst_table burst_sizes[] = {
|
|
{
|
|
.burstwords = 256,
|
|
.reg = PL080_BSIZE_256,
|
|
},
|
|
{
|
|
.burstwords = 128,
|
|
.reg = PL080_BSIZE_128,
|
|
},
|
|
{
|
|
.burstwords = 64,
|
|
.reg = PL080_BSIZE_64,
|
|
},
|
|
{
|
|
.burstwords = 32,
|
|
.reg = PL080_BSIZE_32,
|
|
},
|
|
{
|
|
.burstwords = 16,
|
|
.reg = PL080_BSIZE_16,
|
|
},
|
|
{
|
|
.burstwords = 8,
|
|
.reg = PL080_BSIZE_8,
|
|
},
|
|
{
|
|
.burstwords = 4,
|
|
.reg = PL080_BSIZE_4,
|
|
},
|
|
{
|
|
.burstwords = 0,
|
|
.reg = PL080_BSIZE_1,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Given the source and destination available bus masks, select which
|
|
* will be routed to each port. We try to have source and destination
|
|
* on separate ports, but always respect the allowable settings.
|
|
*/
|
|
static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
|
|
{
|
|
u32 cctl = 0;
|
|
u32 dst_ahb2;
|
|
u32 src_ahb2;
|
|
|
|
/* The FTDMAC020 use different bits to indicate src/dst bus */
|
|
if (ftdmac020) {
|
|
dst_ahb2 = FTDMAC020_LLI_DST_SEL;
|
|
src_ahb2 = FTDMAC020_LLI_SRC_SEL;
|
|
} else {
|
|
dst_ahb2 = PL080_CONTROL_DST_AHB2;
|
|
src_ahb2 = PL080_CONTROL_SRC_AHB2;
|
|
}
|
|
|
|
if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
|
|
cctl |= dst_ahb2;
|
|
if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
|
|
cctl |= src_ahb2;
|
|
|
|
return cctl;
|
|
}
|
|
|
|
static u32 pl08x_cctl(u32 cctl)
|
|
{
|
|
cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
|
|
PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
|
|
PL080_CONTROL_PROT_MASK);
|
|
|
|
/* Access the cell in privileged mode, non-bufferable, non-cacheable */
|
|
return cctl | PL080_CONTROL_PROT_SYS;
|
|
}
|
|
|
|
static u32 pl08x_width(enum dma_slave_buswidth width)
|
|
{
|
|
switch (width) {
|
|
case DMA_SLAVE_BUSWIDTH_1_BYTE:
|
|
return PL080_WIDTH_8BIT;
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
return PL080_WIDTH_16BIT;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
return PL080_WIDTH_32BIT;
|
|
default:
|
|
return ~0;
|
|
}
|
|
}
|
|
|
|
static u32 pl08x_burst(u32 maxburst)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
|
|
if (burst_sizes[i].burstwords <= maxburst)
|
|
break;
|
|
|
|
return burst_sizes[i].reg;
|
|
}
|
|
|
|
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
|
|
enum dma_slave_buswidth addr_width, u32 maxburst)
|
|
{
|
|
u32 width, burst, cctl = 0;
|
|
|
|
width = pl08x_width(addr_width);
|
|
if (width == ~0)
|
|
return ~0;
|
|
|
|
cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
|
|
cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
|
|
|
|
/*
|
|
* If this channel will only request single transfers, set this
|
|
* down to ONE element. Also select one element if no maxburst
|
|
* is specified.
|
|
*/
|
|
if (plchan->cd->single)
|
|
maxburst = 1;
|
|
|
|
burst = pl08x_burst(maxburst);
|
|
cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
|
|
cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
|
|
return pl08x_cctl(cctl);
|
|
}
|
|
|
|
/*
|
|
* Slave transactions callback to the slave device to allow
|
|
* synchronization of slave DMA signals with the DMAC enable
|
|
*/
|
|
static void pl08x_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&plchan->vc.lock, flags);
|
|
if (vchan_issue_pending(&plchan->vc)) {
|
|
if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
|
|
pl08x_phy_alloc_and_start(plchan);
|
|
}
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
}
|
|
|
|
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
|
|
{
|
|
struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
|
|
|
|
if (txd)
|
|
INIT_LIST_HEAD(&txd->dsg_list);
|
|
return txd;
|
|
}
|
|
|
|
static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
|
|
{
|
|
u32 cctl = 0;
|
|
|
|
/* Conjure cctl */
|
|
switch (pl08x->pd->memcpy_burst_size) {
|
|
default:
|
|
dev_err(&pl08x->adev->dev,
|
|
"illegal burst size for memcpy, set to 1\n");
|
|
/* Fall through */
|
|
case PL08X_BURST_SZ_1:
|
|
cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_4:
|
|
cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_8:
|
|
cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_16:
|
|
cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_32:
|
|
cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_64:
|
|
cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_128:
|
|
cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
case PL08X_BURST_SZ_256:
|
|
cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
|
|
PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
|
|
break;
|
|
}
|
|
|
|
switch (pl08x->pd->memcpy_bus_width) {
|
|
default:
|
|
dev_err(&pl08x->adev->dev,
|
|
"illegal bus width for memcpy, set to 8 bits\n");
|
|
/* Fall through */
|
|
case PL08X_BUS_WIDTH_8_BITS:
|
|
cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
|
|
PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
case PL08X_BUS_WIDTH_16_BITS:
|
|
cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
|
|
PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
case PL08X_BUS_WIDTH_32_BITS:
|
|
cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
|
|
PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
|
|
break;
|
|
}
|
|
|
|
/* Protection flags */
|
|
if (pl08x->pd->memcpy_prot_buff)
|
|
cctl |= PL080_CONTROL_PROT_BUFF;
|
|
if (pl08x->pd->memcpy_prot_cache)
|
|
cctl |= PL080_CONTROL_PROT_CACHE;
|
|
|
|
/* We are the kernel, so we are in privileged mode */
|
|
cctl |= PL080_CONTROL_PROT_SYS;
|
|
|
|
/* Both to be incremented or the code will break */
|
|
cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
|
|
|
|
if (pl08x->vd->dualmaster)
|
|
cctl |= pl08x_select_bus(false,
|
|
pl08x->mem_buses,
|
|
pl08x->mem_buses);
|
|
|
|
return cctl;
|
|
}
|
|
|
|
static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
|
|
{
|
|
u32 cctl = 0;
|
|
|
|
/* Conjure cctl */
|
|
switch (pl08x->pd->memcpy_bus_width) {
|
|
default:
|
|
dev_err(&pl08x->adev->dev,
|
|
"illegal bus width for memcpy, set to 8 bits\n");
|
|
/* Fall through */
|
|
case PL08X_BUS_WIDTH_8_BITS:
|
|
cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
|
|
PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
break;
|
|
case PL08X_BUS_WIDTH_16_BITS:
|
|
cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
|
|
PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
break;
|
|
case PL08X_BUS_WIDTH_32_BITS:
|
|
cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
|
|
PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* By default mask the TC IRQ on all LLIs, it will be unmasked on
|
|
* the last LLI item by other code.
|
|
*/
|
|
cctl |= FTDMAC020_LLI_TC_MSK;
|
|
|
|
/*
|
|
* Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
|
|
* and FTDMAC020_LLI_DSTAD_CTL as zero
|
|
*/
|
|
if (pl08x->vd->dualmaster)
|
|
cctl |= pl08x_select_bus(true,
|
|
pl08x->mem_buses,
|
|
pl08x->mem_buses);
|
|
|
|
return cctl;
|
|
}
|
|
|
|
/*
|
|
* Initialize a descriptor to be used by memcpy submit
|
|
*/
|
|
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
struct pl08x_sg *dsg;
|
|
int ret;
|
|
|
|
txd = pl08x_get_txd(plchan);
|
|
if (!txd) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s no memory for descriptor\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
|
|
if (!dsg) {
|
|
pl08x_free_txd(pl08x, txd);
|
|
return NULL;
|
|
}
|
|
list_add_tail(&dsg->node, &txd->dsg_list);
|
|
|
|
dsg->src_addr = src;
|
|
dsg->dst_addr = dest;
|
|
dsg->len = len;
|
|
if (pl08x->vd->ftdmac020) {
|
|
/* Writing CCFG zero ENABLES all interrupts */
|
|
txd->ccfg = 0;
|
|
txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
|
|
} else {
|
|
txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
|
|
PL080_CONFIG_TC_IRQ_MASK |
|
|
PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
|
|
txd->cctl = pl08x_memcpy_cctl(pl08x);
|
|
}
|
|
|
|
ret = pl08x_fill_llis_for_desc(plchan->host, txd);
|
|
if (!ret) {
|
|
pl08x_free_txd(pl08x, txd);
|
|
return NULL;
|
|
}
|
|
|
|
return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
|
|
}
|
|
|
|
static struct pl08x_txd *pl08x_init_txd(
|
|
struct dma_chan *chan,
|
|
enum dma_transfer_direction direction,
|
|
dma_addr_t *slave_addr)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
enum dma_slave_buswidth addr_width;
|
|
int ret, tmp;
|
|
u8 src_buses, dst_buses;
|
|
u32 maxburst, cctl;
|
|
|
|
txd = pl08x_get_txd(plchan);
|
|
if (!txd) {
|
|
dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Set up addresses, the PrimeCell configured address
|
|
* will take precedence since this may configure the
|
|
* channel target address dynamically at runtime.
|
|
*/
|
|
if (direction == DMA_MEM_TO_DEV) {
|
|
cctl = PL080_CONTROL_SRC_INCR;
|
|
*slave_addr = plchan->cfg.dst_addr;
|
|
addr_width = plchan->cfg.dst_addr_width;
|
|
maxburst = plchan->cfg.dst_maxburst;
|
|
src_buses = pl08x->mem_buses;
|
|
dst_buses = plchan->cd->periph_buses;
|
|
} else if (direction == DMA_DEV_TO_MEM) {
|
|
cctl = PL080_CONTROL_DST_INCR;
|
|
*slave_addr = plchan->cfg.src_addr;
|
|
addr_width = plchan->cfg.src_addr_width;
|
|
maxburst = plchan->cfg.src_maxburst;
|
|
src_buses = plchan->cd->periph_buses;
|
|
dst_buses = pl08x->mem_buses;
|
|
} else {
|
|
pl08x_free_txd(pl08x, txd);
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s direction unsupported\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
|
|
if (cctl == ~0) {
|
|
pl08x_free_txd(pl08x, txd);
|
|
dev_err(&pl08x->adev->dev,
|
|
"DMA slave configuration botched?\n");
|
|
return NULL;
|
|
}
|
|
|
|
txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
|
|
|
|
if (plchan->cfg.device_fc)
|
|
tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
|
|
PL080_FLOW_PER2MEM_PER;
|
|
else
|
|
tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
|
|
PL080_FLOW_PER2MEM;
|
|
|
|
txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
|
|
PL080_CONFIG_TC_IRQ_MASK |
|
|
tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
|
|
|
|
ret = pl08x_request_mux(plchan);
|
|
if (ret < 0) {
|
|
pl08x_free_txd(pl08x, txd);
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"unable to mux for transfer on %s due to platform restrictions\n",
|
|
plchan->name);
|
|
return NULL;
|
|
}
|
|
|
|
dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
|
|
plchan->signal, plchan->name);
|
|
|
|
/* Assign the flow control signal to this channel */
|
|
if (direction == DMA_MEM_TO_DEV)
|
|
txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
|
|
else
|
|
txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
|
|
|
|
return txd;
|
|
}
|
|
|
|
static int pl08x_tx_add_sg(struct pl08x_txd *txd,
|
|
enum dma_transfer_direction direction,
|
|
dma_addr_t slave_addr,
|
|
dma_addr_t buf_addr,
|
|
unsigned int len)
|
|
{
|
|
struct pl08x_sg *dsg;
|
|
|
|
dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
|
|
if (!dsg)
|
|
return -ENOMEM;
|
|
|
|
list_add_tail(&dsg->node, &txd->dsg_list);
|
|
|
|
dsg->len = len;
|
|
if (direction == DMA_MEM_TO_DEV) {
|
|
dsg->src_addr = buf_addr;
|
|
dsg->dst_addr = slave_addr;
|
|
} else {
|
|
dsg->src_addr = slave_addr;
|
|
dsg->dst_addr = buf_addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
struct scatterlist *sg;
|
|
int ret, tmp;
|
|
dma_addr_t slave_addr;
|
|
|
|
dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
|
|
__func__, sg_dma_len(sgl), plchan->name);
|
|
|
|
txd = pl08x_init_txd(chan, direction, &slave_addr);
|
|
if (!txd)
|
|
return NULL;
|
|
|
|
for_each_sg(sgl, sg, sg_len, tmp) {
|
|
ret = pl08x_tx_add_sg(txd, direction, slave_addr,
|
|
sg_dma_address(sg),
|
|
sg_dma_len(sg));
|
|
if (ret) {
|
|
pl08x_release_mux(plchan);
|
|
pl08x_free_txd(pl08x, txd);
|
|
dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ret = pl08x_fill_llis_for_desc(plchan->host, txd);
|
|
if (!ret) {
|
|
pl08x_release_mux(plchan);
|
|
pl08x_free_txd(pl08x, txd);
|
|
return NULL;
|
|
}
|
|
|
|
return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
|
|
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
struct pl08x_txd *txd;
|
|
int ret, tmp;
|
|
dma_addr_t slave_addr;
|
|
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
|
|
__func__, period_len, buf_len,
|
|
direction == DMA_MEM_TO_DEV ? "to" : "from",
|
|
plchan->name);
|
|
|
|
txd = pl08x_init_txd(chan, direction, &slave_addr);
|
|
if (!txd)
|
|
return NULL;
|
|
|
|
txd->cyclic = true;
|
|
txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
|
|
for (tmp = 0; tmp < buf_len; tmp += period_len) {
|
|
ret = pl08x_tx_add_sg(txd, direction, slave_addr,
|
|
buf_addr + tmp, period_len);
|
|
if (ret) {
|
|
pl08x_release_mux(plchan);
|
|
pl08x_free_txd(pl08x, txd);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ret = pl08x_fill_llis_for_desc(plchan->host, txd);
|
|
if (!ret) {
|
|
pl08x_release_mux(plchan);
|
|
pl08x_free_txd(pl08x, txd);
|
|
return NULL;
|
|
}
|
|
|
|
return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
|
|
}
|
|
|
|
static int pl08x_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
|
|
if (!plchan->slave)
|
|
return -EINVAL;
|
|
|
|
/* Reject definitely invalid configurations */
|
|
if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
|
|
config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
|
|
return -EINVAL;
|
|
|
|
if (config->device_fc && pl08x->vd->pl080s) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s: PL080S does not support peripheral flow control\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
plchan->cfg = *config;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl08x_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
struct pl08x_driver_data *pl08x = plchan->host;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&plchan->vc.lock, flags);
|
|
if (!plchan->phychan && !plchan->at) {
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
plchan->state = PL08X_CHAN_IDLE;
|
|
|
|
if (plchan->phychan) {
|
|
/*
|
|
* Mark physical channel as free and free any slave
|
|
* signal
|
|
*/
|
|
pl08x_phy_free(plchan);
|
|
}
|
|
/* Dequeue jobs and free LLIs */
|
|
if (plchan->at) {
|
|
vchan_terminate_vdesc(&plchan->at->vd);
|
|
plchan->at = NULL;
|
|
}
|
|
/* Dequeue jobs not yet fired as well */
|
|
pl08x_free_txd_list(pl08x, plchan);
|
|
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl08x_synchronize(struct dma_chan *chan)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
|
|
vchan_synchronize(&plchan->vc);
|
|
}
|
|
|
|
static int pl08x_pause(struct dma_chan *chan)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Anything succeeds on channels with no physical allocation and
|
|
* no queued transfers.
|
|
*/
|
|
spin_lock_irqsave(&plchan->vc.lock, flags);
|
|
if (!plchan->phychan && !plchan->at) {
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
pl08x_pause_phy_chan(plchan->phychan);
|
|
plchan->state = PL08X_CHAN_PAUSED;
|
|
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl08x_resume(struct dma_chan *chan)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Anything succeeds on channels with no physical allocation and
|
|
* no queued transfers.
|
|
*/
|
|
spin_lock_irqsave(&plchan->vc.lock, flags);
|
|
if (!plchan->phychan && !plchan->at) {
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
pl08x_resume_phy_chan(plchan->phychan);
|
|
plchan->state = PL08X_CHAN_RUNNING;
|
|
|
|
spin_unlock_irqrestore(&plchan->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
|
|
{
|
|
struct pl08x_dma_chan *plchan;
|
|
char *name = chan_id;
|
|
|
|
/* Reject channels for devices not bound to this driver */
|
|
if (chan->device->dev->driver != &pl08x_amba_driver.drv)
|
|
return false;
|
|
|
|
plchan = to_pl08x_chan(chan);
|
|
|
|
/* Check that the channel is not taken! */
|
|
if (!strcmp(plchan->name, name))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pl08x_filter_id);
|
|
|
|
static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
|
|
{
|
|
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
|
|
|
|
return plchan->cd == chan_id;
|
|
}
|
|
|
|
/*
|
|
* Just check that the device is there and active
|
|
* TODO: turn this bit on/off depending on the number of physical channels
|
|
* actually used, if it is zero... well shut it off. That will save some
|
|
* power. Cut the clock at the same time.
|
|
*/
|
|
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
|
|
{
|
|
/* The Nomadik variant does not have the config register */
|
|
if (pl08x->vd->nomadik)
|
|
return;
|
|
/* The FTDMAC020 variant does this in another register */
|
|
if (pl08x->vd->ftdmac020) {
|
|
writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
|
|
return;
|
|
}
|
|
writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
|
|
}
|
|
|
|
static irqreturn_t pl08x_irq(int irq, void *dev)
|
|
{
|
|
struct pl08x_driver_data *pl08x = dev;
|
|
u32 mask = 0, err, tc, i;
|
|
|
|
/* check & clear - ERR & TC interrupts */
|
|
err = readl(pl08x->base + PL080_ERR_STATUS);
|
|
if (err) {
|
|
dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
|
|
__func__, err);
|
|
writel(err, pl08x->base + PL080_ERR_CLEAR);
|
|
}
|
|
tc = readl(pl08x->base + PL080_TC_STATUS);
|
|
if (tc)
|
|
writel(tc, pl08x->base + PL080_TC_CLEAR);
|
|
|
|
if (!err && !tc)
|
|
return IRQ_NONE;
|
|
|
|
for (i = 0; i < pl08x->vd->channels; i++) {
|
|
if ((BIT(i) & err) || (BIT(i) & tc)) {
|
|
/* Locate physical channel */
|
|
struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
|
|
struct pl08x_dma_chan *plchan = phychan->serving;
|
|
struct pl08x_txd *tx;
|
|
|
|
if (!plchan) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"%s Error TC interrupt on unused channel: 0x%08x\n",
|
|
__func__, i);
|
|
continue;
|
|
}
|
|
|
|
spin_lock(&plchan->vc.lock);
|
|
tx = plchan->at;
|
|
if (tx && tx->cyclic) {
|
|
vchan_cyclic_callback(&tx->vd);
|
|
} else if (tx) {
|
|
plchan->at = NULL;
|
|
/*
|
|
* This descriptor is done, release its mux
|
|
* reservation.
|
|
*/
|
|
pl08x_release_mux(plchan);
|
|
tx->done = true;
|
|
vchan_cookie_complete(&tx->vd);
|
|
|
|
/*
|
|
* And start the next descriptor (if any),
|
|
* otherwise free this channel.
|
|
*/
|
|
if (vchan_next_desc(&plchan->vc))
|
|
pl08x_start_next_txd(plchan);
|
|
else
|
|
pl08x_phy_free(plchan);
|
|
}
|
|
spin_unlock(&plchan->vc.lock);
|
|
|
|
mask |= BIT(i);
|
|
}
|
|
}
|
|
|
|
return mask ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
|
|
{
|
|
chan->slave = true;
|
|
chan->name = chan->cd->bus_id;
|
|
chan->cfg.src_addr = chan->cd->addr;
|
|
chan->cfg.dst_addr = chan->cd->addr;
|
|
}
|
|
|
|
/*
|
|
* Initialise the DMAC memcpy/slave channels.
|
|
* Make a local wrapper to hold required data
|
|
*/
|
|
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
|
|
struct dma_device *dmadev, unsigned int channels, bool slave)
|
|
{
|
|
struct pl08x_dma_chan *chan;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&dmadev->channels);
|
|
|
|
/*
|
|
* Register as many many memcpy as we have physical channels,
|
|
* we won't always be able to use all but the code will have
|
|
* to cope with that situation.
|
|
*/
|
|
for (i = 0; i < channels; i++) {
|
|
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
|
|
if (!chan)
|
|
return -ENOMEM;
|
|
|
|
chan->host = pl08x;
|
|
chan->state = PL08X_CHAN_IDLE;
|
|
chan->signal = -1;
|
|
|
|
if (slave) {
|
|
chan->cd = &pl08x->pd->slave_channels[i];
|
|
/*
|
|
* Some implementations have muxed signals, whereas some
|
|
* use a mux in front of the signals and need dynamic
|
|
* assignment of signals.
|
|
*/
|
|
chan->signal = i;
|
|
pl08x_dma_slave_init(chan);
|
|
} else {
|
|
chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
|
|
if (!chan->cd) {
|
|
kfree(chan);
|
|
return -ENOMEM;
|
|
}
|
|
chan->cd->bus_id = "memcpy";
|
|
chan->cd->periph_buses = pl08x->pd->mem_buses;
|
|
chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
|
|
if (!chan->name) {
|
|
kfree(chan->cd);
|
|
kfree(chan);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"initialize virtual channel \"%s\"\n",
|
|
chan->name);
|
|
|
|
chan->vc.desc_free = pl08x_desc_free;
|
|
vchan_init(&chan->vc, dmadev);
|
|
}
|
|
dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
|
|
i, slave ? "slave" : "memcpy");
|
|
return i;
|
|
}
|
|
|
|
static void pl08x_free_virtual_channels(struct dma_device *dmadev)
|
|
{
|
|
struct pl08x_dma_chan *chan = NULL;
|
|
struct pl08x_dma_chan *next;
|
|
|
|
list_for_each_entry_safe(chan,
|
|
next, &dmadev->channels, vc.chan.device_node) {
|
|
list_del(&chan->vc.chan.device_node);
|
|
kfree(chan);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
|
|
{
|
|
switch (state) {
|
|
case PL08X_CHAN_IDLE:
|
|
return "idle";
|
|
case PL08X_CHAN_RUNNING:
|
|
return "running";
|
|
case PL08X_CHAN_PAUSED:
|
|
return "paused";
|
|
case PL08X_CHAN_WAITING:
|
|
return "waiting";
|
|
default:
|
|
break;
|
|
}
|
|
return "UNKNOWN STATE";
|
|
}
|
|
|
|
static int pl08x_debugfs_show(struct seq_file *s, void *data)
|
|
{
|
|
struct pl08x_driver_data *pl08x = s->private;
|
|
struct pl08x_dma_chan *chan;
|
|
struct pl08x_phy_chan *ch;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
seq_printf(s, "PL08x physical channels:\n");
|
|
seq_printf(s, "CHANNEL:\tUSER:\n");
|
|
seq_printf(s, "--------\t-----\n");
|
|
for (i = 0; i < pl08x->vd->channels; i++) {
|
|
struct pl08x_dma_chan *virt_chan;
|
|
|
|
ch = &pl08x->phy_chans[i];
|
|
|
|
spin_lock_irqsave(&ch->lock, flags);
|
|
virt_chan = ch->serving;
|
|
|
|
seq_printf(s, "%d\t\t%s%s\n",
|
|
ch->id,
|
|
virt_chan ? virt_chan->name : "(none)",
|
|
ch->locked ? " LOCKED" : "");
|
|
|
|
spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
seq_printf(s, "\nPL08x virtual memcpy channels:\n");
|
|
seq_printf(s, "CHANNEL:\tSTATE:\n");
|
|
seq_printf(s, "--------\t------\n");
|
|
list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
|
|
seq_printf(s, "%s\t\t%s\n", chan->name,
|
|
pl08x_state_str(chan->state));
|
|
}
|
|
|
|
if (pl08x->has_slave) {
|
|
seq_printf(s, "\nPL08x virtual slave channels:\n");
|
|
seq_printf(s, "CHANNEL:\tSTATE:\n");
|
|
seq_printf(s, "--------\t------\n");
|
|
list_for_each_entry(chan, &pl08x->slave.channels,
|
|
vc.chan.device_node) {
|
|
seq_printf(s, "%s\t\t%s\n", chan->name,
|
|
pl08x_state_str(chan->state));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl08x_debugfs_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, pl08x_debugfs_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations pl08x_debugfs_operations = {
|
|
.open = pl08x_debugfs_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
|
|
{
|
|
/* Expose a simple debugfs interface to view all clocks */
|
|
(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
|
|
S_IFREG | S_IRUGO, NULL, pl08x,
|
|
&pl08x_debugfs_operations);
|
|
}
|
|
|
|
#else
|
|
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_OF
|
|
static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
|
|
u32 id)
|
|
{
|
|
struct pl08x_dma_chan *chan;
|
|
|
|
/* Trying to get a slave channel from something with no slave support */
|
|
if (!pl08x->has_slave)
|
|
return NULL;
|
|
|
|
list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
|
|
if (chan->signal == id)
|
|
return &chan->vc.chan;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
|
|
struct dma_chan *dma_chan;
|
|
struct pl08x_dma_chan *plchan;
|
|
|
|
if (!pl08x)
|
|
return NULL;
|
|
|
|
if (dma_spec->args_count != 2) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"DMA channel translation requires two cells\n");
|
|
return NULL;
|
|
}
|
|
|
|
dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
|
|
if (!dma_chan) {
|
|
dev_err(&pl08x->adev->dev,
|
|
"DMA slave channel not found\n");
|
|
return NULL;
|
|
}
|
|
|
|
plchan = to_pl08x_chan(dma_chan);
|
|
dev_dbg(&pl08x->adev->dev,
|
|
"translated channel for signal %d\n",
|
|
dma_spec->args[0]);
|
|
|
|
/* Augment channel data for applicable AHB buses */
|
|
plchan->cd->periph_buses = dma_spec->args[1];
|
|
return dma_get_slave_channel(dma_chan);
|
|
}
|
|
|
|
static int pl08x_of_probe(struct amba_device *adev,
|
|
struct pl08x_driver_data *pl08x,
|
|
struct device_node *np)
|
|
{
|
|
struct pl08x_platform_data *pd;
|
|
struct pl08x_channel_data *chanp = NULL;
|
|
u32 val;
|
|
int ret;
|
|
int i;
|
|
|
|
pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
|
|
if (!pd)
|
|
return -ENOMEM;
|
|
|
|
/* Eligible bus masters for fetching LLIs */
|
|
if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
|
|
pd->lli_buses |= PL08X_AHB1;
|
|
if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
|
|
pd->lli_buses |= PL08X_AHB2;
|
|
if (!pd->lli_buses) {
|
|
dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
|
|
pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
|
|
}
|
|
|
|
/* Eligible bus masters for memory access */
|
|
if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
|
|
pd->mem_buses |= PL08X_AHB1;
|
|
if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
|
|
pd->mem_buses |= PL08X_AHB2;
|
|
if (!pd->mem_buses) {
|
|
dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
|
|
pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
|
|
}
|
|
|
|
/* Parse the memcpy channel properties */
|
|
ret = of_property_read_u32(np, "memcpy-burst-size", &val);
|
|
if (ret) {
|
|
dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
|
|
val = 1;
|
|
}
|
|
switch (val) {
|
|
default:
|
|
dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
|
|
/* Fall through */
|
|
case 1:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_1;
|
|
break;
|
|
case 4:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_4;
|
|
break;
|
|
case 8:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_8;
|
|
break;
|
|
case 16:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_16;
|
|
break;
|
|
case 32:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_32;
|
|
break;
|
|
case 64:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_64;
|
|
break;
|
|
case 128:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_128;
|
|
break;
|
|
case 256:
|
|
pd->memcpy_burst_size = PL08X_BURST_SZ_256;
|
|
break;
|
|
}
|
|
|
|
ret = of_property_read_u32(np, "memcpy-bus-width", &val);
|
|
if (ret) {
|
|
dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
|
|
val = 8;
|
|
}
|
|
switch (val) {
|
|
default:
|
|
dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
|
|
/* Fall through */
|
|
case 8:
|
|
pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
|
|
break;
|
|
case 16:
|
|
pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
|
|
break;
|
|
case 32:
|
|
pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Allocate channel data for all possible slave channels (one
|
|
* for each possible signal), channels will then be allocated
|
|
* for a device and have it's AHB interfaces set up at
|
|
* translation time.
|
|
*/
|
|
if (pl08x->vd->signals) {
|
|
chanp = devm_kcalloc(&adev->dev,
|
|
pl08x->vd->signals,
|
|
sizeof(struct pl08x_channel_data),
|
|
GFP_KERNEL);
|
|
if (!chanp)
|
|
return -ENOMEM;
|
|
|
|
pd->slave_channels = chanp;
|
|
for (i = 0; i < pl08x->vd->signals; i++) {
|
|
/*
|
|
* chanp->periph_buses will be assigned at translation
|
|
*/
|
|
chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
|
|
chanp++;
|
|
}
|
|
pd->num_slave_channels = pl08x->vd->signals;
|
|
}
|
|
|
|
pl08x->pd = pd;
|
|
|
|
return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
|
|
pl08x);
|
|
}
|
|
#else
|
|
static inline int pl08x_of_probe(struct amba_device *adev,
|
|
struct pl08x_driver_data *pl08x,
|
|
struct device_node *np)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
|
|
{
|
|
struct pl08x_driver_data *pl08x;
|
|
struct vendor_data *vd = id->data;
|
|
struct device_node *np = adev->dev.of_node;
|
|
u32 tsfr_size;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ret = amba_request_regions(adev, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure that we can do DMA */
|
|
ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
|
|
if (ret)
|
|
goto out_no_pl08x;
|
|
|
|
/* Create the driver state holder */
|
|
pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
|
|
if (!pl08x) {
|
|
ret = -ENOMEM;
|
|
goto out_no_pl08x;
|
|
}
|
|
|
|
/* Assign useful pointers to the driver state */
|
|
pl08x->adev = adev;
|
|
pl08x->vd = vd;
|
|
|
|
pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
|
|
if (!pl08x->base) {
|
|
ret = -ENOMEM;
|
|
goto out_no_ioremap;
|
|
}
|
|
|
|
if (vd->ftdmac020) {
|
|
u32 val;
|
|
|
|
val = readl(pl08x->base + FTDMAC020_REVISION);
|
|
dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
|
|
(val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
|
|
val = readl(pl08x->base + FTDMAC020_FEATURE);
|
|
dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
|
|
"%s built-in bridge, %s, %s linked lists\n",
|
|
(val >> 12) & 0x0f,
|
|
(val & BIT(10)) ? "no" : "has",
|
|
(val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
|
|
(val & BIT(8)) ? "supports" : "does not support");
|
|
|
|
/* Vendor data from feature register */
|
|
if (!(val & BIT(8)))
|
|
dev_warn(&pl08x->adev->dev,
|
|
"linked lists not supported, required\n");
|
|
vd->channels = (val >> 12) & 0x0f;
|
|
vd->dualmaster = !!(val & BIT(9));
|
|
}
|
|
|
|
/* Initialize memcpy engine */
|
|
dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
|
|
pl08x->memcpy.dev = &adev->dev;
|
|
pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
|
|
pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
|
|
pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
|
|
pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
|
|
pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
|
|
pl08x->memcpy.device_config = pl08x_config;
|
|
pl08x->memcpy.device_pause = pl08x_pause;
|
|
pl08x->memcpy.device_resume = pl08x_resume;
|
|
pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
|
|
pl08x->memcpy.device_synchronize = pl08x_synchronize;
|
|
pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
|
|
pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
|
|
pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
|
|
pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
if (vd->ftdmac020)
|
|
pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
|
|
|
|
|
|
/*
|
|
* Initialize slave engine, if the block has no signals, that means
|
|
* we have no slave support.
|
|
*/
|
|
if (vd->signals) {
|
|
pl08x->has_slave = true;
|
|
dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
|
|
pl08x->slave.dev = &adev->dev;
|
|
pl08x->slave.device_free_chan_resources =
|
|
pl08x_free_chan_resources;
|
|
pl08x->slave.device_prep_dma_interrupt =
|
|
pl08x_prep_dma_interrupt;
|
|
pl08x->slave.device_tx_status = pl08x_dma_tx_status;
|
|
pl08x->slave.device_issue_pending = pl08x_issue_pending;
|
|
pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
|
|
pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
|
|
pl08x->slave.device_config = pl08x_config;
|
|
pl08x->slave.device_pause = pl08x_pause;
|
|
pl08x->slave.device_resume = pl08x_resume;
|
|
pl08x->slave.device_terminate_all = pl08x_terminate_all;
|
|
pl08x->slave.device_synchronize = pl08x_synchronize;
|
|
pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
|
|
pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
|
|
pl08x->slave.directions =
|
|
BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
pl08x->slave.residue_granularity =
|
|
DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
}
|
|
|
|
/* Get the platform data */
|
|
pl08x->pd = dev_get_platdata(&adev->dev);
|
|
if (!pl08x->pd) {
|
|
if (np) {
|
|
ret = pl08x_of_probe(adev, pl08x, np);
|
|
if (ret)
|
|
goto out_no_platdata;
|
|
} else {
|
|
dev_err(&adev->dev, "no platform data supplied\n");
|
|
ret = -EINVAL;
|
|
goto out_no_platdata;
|
|
}
|
|
} else {
|
|
pl08x->slave.filter.map = pl08x->pd->slave_map;
|
|
pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
|
|
pl08x->slave.filter.fn = pl08x_filter_fn;
|
|
}
|
|
|
|
/* By default, AHB1 only. If dualmaster, from platform */
|
|
pl08x->lli_buses = PL08X_AHB1;
|
|
pl08x->mem_buses = PL08X_AHB1;
|
|
if (pl08x->vd->dualmaster) {
|
|
pl08x->lli_buses = pl08x->pd->lli_buses;
|
|
pl08x->mem_buses = pl08x->pd->mem_buses;
|
|
}
|
|
|
|
if (vd->pl080s)
|
|
pl08x->lli_words = PL080S_LLI_WORDS;
|
|
else
|
|
pl08x->lli_words = PL080_LLI_WORDS;
|
|
tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
|
|
|
|
/* A DMA memory pool for LLIs, align on 1-byte boundary */
|
|
pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
|
|
tsfr_size, PL08X_ALIGN, 0);
|
|
if (!pl08x->pool) {
|
|
ret = -ENOMEM;
|
|
goto out_no_lli_pool;
|
|
}
|
|
|
|
/* Turn on the PL08x */
|
|
pl08x_ensure_on(pl08x);
|
|
|
|
/* Clear any pending interrupts */
|
|
if (vd->ftdmac020)
|
|
/* This variant has error IRQs in bits 16-19 */
|
|
writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
|
|
else
|
|
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
|
|
writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
|
|
|
|
/* Attach the interrupt handler */
|
|
ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
|
|
if (ret) {
|
|
dev_err(&adev->dev, "%s failed to request interrupt %d\n",
|
|
__func__, adev->irq[0]);
|
|
goto out_no_irq;
|
|
}
|
|
|
|
/* Initialize physical channels */
|
|
pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
|
|
GFP_KERNEL);
|
|
if (!pl08x->phy_chans) {
|
|
ret = -ENOMEM;
|
|
goto out_no_phychans;
|
|
}
|
|
|
|
for (i = 0; i < vd->channels; i++) {
|
|
struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
|
|
|
|
ch->id = i;
|
|
ch->base = pl08x->base + PL080_Cx_BASE(i);
|
|
if (vd->ftdmac020) {
|
|
/* FTDMA020 has a special channel busy register */
|
|
ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
|
|
ch->reg_config = ch->base + FTDMAC020_CH_CFG;
|
|
ch->reg_control = ch->base + FTDMAC020_CH_CSR;
|
|
ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
|
|
ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
|
|
ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
|
|
ch->ftdmac020 = true;
|
|
} else {
|
|
ch->reg_config = ch->base + vd->config_offset;
|
|
ch->reg_control = ch->base + PL080_CH_CONTROL;
|
|
ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
|
|
ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
|
|
ch->reg_lli = ch->base + PL080_CH_LLI;
|
|
}
|
|
if (vd->pl080s)
|
|
ch->pl080s = true;
|
|
|
|
spin_lock_init(&ch->lock);
|
|
|
|
/*
|
|
* Nomadik variants can have channels that are locked
|
|
* down for the secure world only. Lock up these channels
|
|
* by perpetually serving a dummy virtual channel.
|
|
*/
|
|
if (vd->nomadik) {
|
|
u32 val;
|
|
|
|
val = readl(ch->reg_config);
|
|
if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
|
|
dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
|
|
ch->locked = true;
|
|
}
|
|
}
|
|
|
|
dev_dbg(&adev->dev, "physical channel %d is %s\n",
|
|
i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
|
|
}
|
|
|
|
/* Register as many memcpy channels as there are physical channels */
|
|
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
|
|
pl08x->vd->channels, false);
|
|
if (ret <= 0) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to enumerate memcpy channels - %d\n",
|
|
__func__, ret);
|
|
goto out_no_memcpy;
|
|
}
|
|
|
|
/* Register slave channels */
|
|
if (pl08x->has_slave) {
|
|
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
|
|
pl08x->pd->num_slave_channels, true);
|
|
if (ret < 0) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to enumerate slave channels - %d\n",
|
|
__func__, ret);
|
|
goto out_no_slave;
|
|
}
|
|
}
|
|
|
|
ret = dma_async_device_register(&pl08x->memcpy);
|
|
if (ret) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to register memcpy as an async device - %d\n",
|
|
__func__, ret);
|
|
goto out_no_memcpy_reg;
|
|
}
|
|
|
|
if (pl08x->has_slave) {
|
|
ret = dma_async_device_register(&pl08x->slave);
|
|
if (ret) {
|
|
dev_warn(&pl08x->adev->dev,
|
|
"%s failed to register slave as an async device - %d\n",
|
|
__func__, ret);
|
|
goto out_no_slave_reg;
|
|
}
|
|
}
|
|
|
|
amba_set_drvdata(adev, pl08x);
|
|
init_pl08x_debugfs(pl08x);
|
|
dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
|
|
amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
|
|
(unsigned long long)adev->res.start, adev->irq[0]);
|
|
|
|
return 0;
|
|
|
|
out_no_slave_reg:
|
|
dma_async_device_unregister(&pl08x->memcpy);
|
|
out_no_memcpy_reg:
|
|
if (pl08x->has_slave)
|
|
pl08x_free_virtual_channels(&pl08x->slave);
|
|
out_no_slave:
|
|
pl08x_free_virtual_channels(&pl08x->memcpy);
|
|
out_no_memcpy:
|
|
kfree(pl08x->phy_chans);
|
|
out_no_phychans:
|
|
free_irq(adev->irq[0], pl08x);
|
|
out_no_irq:
|
|
dma_pool_destroy(pl08x->pool);
|
|
out_no_lli_pool:
|
|
out_no_platdata:
|
|
iounmap(pl08x->base);
|
|
out_no_ioremap:
|
|
kfree(pl08x);
|
|
out_no_pl08x:
|
|
amba_release_regions(adev);
|
|
return ret;
|
|
}
|
|
|
|
/* PL080 has 8 channels and the PL080 have just 2 */
|
|
static struct vendor_data vendor_pl080 = {
|
|
.config_offset = PL080_CH_CONFIG,
|
|
.channels = 8,
|
|
.signals = 16,
|
|
.dualmaster = true,
|
|
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
|
|
};
|
|
|
|
static struct vendor_data vendor_nomadik = {
|
|
.config_offset = PL080_CH_CONFIG,
|
|
.channels = 8,
|
|
.signals = 32,
|
|
.dualmaster = true,
|
|
.nomadik = true,
|
|
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
|
|
};
|
|
|
|
static struct vendor_data vendor_pl080s = {
|
|
.config_offset = PL080S_CH_CONFIG,
|
|
.channels = 8,
|
|
.signals = 32,
|
|
.pl080s = true,
|
|
.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
|
|
};
|
|
|
|
static struct vendor_data vendor_pl081 = {
|
|
.config_offset = PL080_CH_CONFIG,
|
|
.channels = 2,
|
|
.signals = 16,
|
|
.dualmaster = false,
|
|
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
|
|
};
|
|
|
|
static struct vendor_data vendor_ftdmac020 = {
|
|
.config_offset = PL080_CH_CONFIG,
|
|
.ftdmac020 = true,
|
|
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
|
|
};
|
|
|
|
static const struct amba_id pl08x_ids[] = {
|
|
/* Samsung PL080S variant */
|
|
{
|
|
.id = 0x0a141080,
|
|
.mask = 0xffffffff,
|
|
.data = &vendor_pl080s,
|
|
},
|
|
/* PL080 */
|
|
{
|
|
.id = 0x00041080,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_pl080,
|
|
},
|
|
/* PL081 */
|
|
{
|
|
.id = 0x00041081,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_pl081,
|
|
},
|
|
/* Nomadik 8815 PL080 variant */
|
|
{
|
|
.id = 0x00280080,
|
|
.mask = 0x00ffffff,
|
|
.data = &vendor_nomadik,
|
|
},
|
|
/* Faraday Technology FTDMAC020 */
|
|
{
|
|
.id = 0x0003b080,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_ftdmac020,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(amba, pl08x_ids);
|
|
|
|
static struct amba_driver pl08x_amba_driver = {
|
|
.drv.name = DRIVER_NAME,
|
|
.id_table = pl08x_ids,
|
|
.probe = pl08x_probe,
|
|
};
|
|
|
|
static int __init pl08x_init(void)
|
|
{
|
|
int retval;
|
|
retval = amba_driver_register(&pl08x_amba_driver);
|
|
if (retval)
|
|
printk(KERN_WARNING DRIVER_NAME
|
|
"failed to register as an AMBA device (%d)\n",
|
|
retval);
|
|
return retval;
|
|
}
|
|
subsys_initcall(pl08x_init);
|