linux_dsm_epyc7002/include/linux/mtd/rawnand.h
Boris Brezillon ec47636cd7 mtd: rawnand: Pass a nand_chip object to ecc->hwctl()
Let's make the raw NAND API consistent by patching all helpers and
hooks to take a nand_chip object instead of an mtd_info one.

Now is ecc->hwctl()'s turn.

Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2018-10-03 11:12:25 +02:00

1754 lines
55 KiB
C

/*
* Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
* Steven J. Hill <sjhill@realitydiluted.com>
* Thomas Gleixner <tglx@linutronix.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Info:
* Contains standard defines and IDs for NAND flash devices
*
* Changelog:
* See git changelog.
*/
#ifndef __LINUX_MTD_RAWNAND_H
#define __LINUX_MTD_RAWNAND_H
#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/flashchip.h>
#include <linux/mtd/bbm.h>
#include <linux/of.h>
#include <linux/types.h>
struct nand_chip;
struct nand_flash_dev;
/* Scan and identify a NAND device */
int nand_scan_with_ids(struct nand_chip *chip, int max_chips,
struct nand_flash_dev *ids);
static inline int nand_scan(struct nand_chip *chip, int max_chips)
{
return nand_scan_with_ids(chip, max_chips, NULL);
}
/* Internal helper for board drivers which need to override command function */
void nand_wait_ready(struct nand_chip *chip);
/* The maximum number of NAND chips in an array */
#define NAND_MAX_CHIPS 8
/*
* Constants for hardware specific CLE/ALE/NCE function
*
* These are bits which can be or'ed to set/clear multiple
* bits in one go.
*/
/* Select the chip by setting nCE to low */
#define NAND_NCE 0x01
/* Select the command latch by setting CLE to high */
#define NAND_CLE 0x02
/* Select the address latch by setting ALE to high */
#define NAND_ALE 0x04
#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
#define NAND_CTRL_CHANGE 0x80
/*
* Standard NAND flash commands
*/
#define NAND_CMD_READ0 0
#define NAND_CMD_READ1 1
#define NAND_CMD_RNDOUT 5
#define NAND_CMD_PAGEPROG 0x10
#define NAND_CMD_READOOB 0x50
#define NAND_CMD_ERASE1 0x60
#define NAND_CMD_STATUS 0x70
#define NAND_CMD_SEQIN 0x80
#define NAND_CMD_RNDIN 0x85
#define NAND_CMD_READID 0x90
#define NAND_CMD_ERASE2 0xd0
#define NAND_CMD_PARAM 0xec
#define NAND_CMD_GET_FEATURES 0xee
#define NAND_CMD_SET_FEATURES 0xef
#define NAND_CMD_RESET 0xff
/* Extended commands for large page devices */
#define NAND_CMD_READSTART 0x30
#define NAND_CMD_RNDOUTSTART 0xE0
#define NAND_CMD_CACHEDPROG 0x15
#define NAND_CMD_NONE -1
/* Status bits */
#define NAND_STATUS_FAIL 0x01
#define NAND_STATUS_FAIL_N1 0x02
#define NAND_STATUS_TRUE_READY 0x20
#define NAND_STATUS_READY 0x40
#define NAND_STATUS_WP 0x80
#define NAND_DATA_IFACE_CHECK_ONLY -1
/*
* Constants for ECC_MODES
*/
typedef enum {
NAND_ECC_NONE,
NAND_ECC_SOFT,
NAND_ECC_HW,
NAND_ECC_HW_SYNDROME,
NAND_ECC_HW_OOB_FIRST,
NAND_ECC_ON_DIE,
} nand_ecc_modes_t;
enum nand_ecc_algo {
NAND_ECC_UNKNOWN,
NAND_ECC_HAMMING,
NAND_ECC_BCH,
NAND_ECC_RS,
};
/*
* Constants for Hardware ECC
*/
/* Reset Hardware ECC for read */
#define NAND_ECC_READ 0
/* Reset Hardware ECC for write */
#define NAND_ECC_WRITE 1
/* Enable Hardware ECC before syndrome is read back from flash */
#define NAND_ECC_READSYN 2
/*
* Enable generic NAND 'page erased' check. This check is only done when
* ecc.correct() returns -EBADMSG.
* Set this flag if your implementation does not fix bitflips in erased
* pages and you want to rely on the default implementation.
*/
#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
#define NAND_ECC_MAXIMIZE BIT(1)
/* Bit mask for flags passed to do_nand_read_ecc */
#define NAND_GET_DEVICE 0x80
/*
* Option constants for bizarre disfunctionality and real
* features.
*/
/* Buswidth is 16 bit */
#define NAND_BUSWIDTH_16 0x00000002
/* Chip has cache program function */
#define NAND_CACHEPRG 0x00000008
/*
* Chip requires ready check on read (for auto-incremented sequential read).
* True only for small page devices; large page devices do not support
* autoincrement.
*/
#define NAND_NEED_READRDY 0x00000100
/* Chip does not allow subpage writes */
#define NAND_NO_SUBPAGE_WRITE 0x00000200
/* Device is one of 'new' xD cards that expose fake nand command set */
#define NAND_BROKEN_XD 0x00000400
/* Device behaves just like nand, but is readonly */
#define NAND_ROM 0x00000800
/* Device supports subpage reads */
#define NAND_SUBPAGE_READ 0x00001000
/*
* Some MLC NANDs need data scrambling to limit bitflips caused by repeated
* patterns.
*/
#define NAND_NEED_SCRAMBLING 0x00002000
/* Device needs 3rd row address cycle */
#define NAND_ROW_ADDR_3 0x00004000
/* Options valid for Samsung large page devices */
#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
/* Macros to identify the above */
#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
#define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)
/* Non chip related options */
/* This option skips the bbt scan during initialization. */
#define NAND_SKIP_BBTSCAN 0x00010000
/* Chip may not exist, so silence any errors in scan */
#define NAND_SCAN_SILENT_NODEV 0x00040000
/*
* Autodetect nand buswidth with readid/onfi.
* This suppose the driver will configure the hardware in 8 bits mode
* when calling nand_scan_ident, and update its configuration
* before calling nand_scan_tail.
*/
#define NAND_BUSWIDTH_AUTO 0x00080000
/*
* This option could be defined by controller drivers to protect against
* kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
*/
#define NAND_USE_BOUNCE_BUFFER 0x00100000
/*
* In case your controller is implementing ->cmd_ctrl() and is relying on the
* default ->cmdfunc() implementation, you may want to let the core handle the
* tCCS delay which is required when a column change (RNDIN or RNDOUT) is
* requested.
* If your controller already takes care of this delay, you don't need to set
* this flag.
*/
#define NAND_WAIT_TCCS 0x00200000
/*
* Whether the NAND chip is a boot medium. Drivers might use this information
* to select ECC algorithms supported by the boot ROM or similar restrictions.
*/
#define NAND_IS_BOOT_MEDIUM 0x00400000
/* Options set by nand scan */
/* Nand scan has allocated controller struct */
#define NAND_CONTROLLER_ALLOC 0x80000000
/* Cell info constants */
#define NAND_CI_CHIPNR_MSK 0x03
#define NAND_CI_CELLTYPE_MSK 0x0C
#define NAND_CI_CELLTYPE_SHIFT 2
/* Keep gcc happy */
struct nand_chip;
/* ONFI version bits */
#define ONFI_VERSION_1_0 BIT(1)
#define ONFI_VERSION_2_0 BIT(2)
#define ONFI_VERSION_2_1 BIT(3)
#define ONFI_VERSION_2_2 BIT(4)
#define ONFI_VERSION_2_3 BIT(5)
#define ONFI_VERSION_3_0 BIT(6)
#define ONFI_VERSION_3_1 BIT(7)
#define ONFI_VERSION_3_2 BIT(8)
#define ONFI_VERSION_4_0 BIT(9)
/* ONFI features */
#define ONFI_FEATURE_16_BIT_BUS (1 << 0)
#define ONFI_FEATURE_EXT_PARAM_PAGE (1 << 7)
/* ONFI timing mode, used in both asynchronous and synchronous mode */
#define ONFI_TIMING_MODE_0 (1 << 0)
#define ONFI_TIMING_MODE_1 (1 << 1)
#define ONFI_TIMING_MODE_2 (1 << 2)
#define ONFI_TIMING_MODE_3 (1 << 3)
#define ONFI_TIMING_MODE_4 (1 << 4)
#define ONFI_TIMING_MODE_5 (1 << 5)
#define ONFI_TIMING_MODE_UNKNOWN (1 << 6)
/* ONFI feature number/address */
#define ONFI_FEATURE_NUMBER 256
#define ONFI_FEATURE_ADDR_TIMING_MODE 0x1
/* Vendor-specific feature address (Micron) */
#define ONFI_FEATURE_ADDR_READ_RETRY 0x89
#define ONFI_FEATURE_ON_DIE_ECC 0x90
#define ONFI_FEATURE_ON_DIE_ECC_EN BIT(3)
/* ONFI subfeature parameters length */
#define ONFI_SUBFEATURE_PARAM_LEN 4
/* ONFI optional commands SET/GET FEATURES supported? */
#define ONFI_OPT_CMD_SET_GET_FEATURES (1 << 2)
struct nand_onfi_params {
/* rev info and features block */
/* 'O' 'N' 'F' 'I' */
u8 sig[4];
__le16 revision;
__le16 features;
__le16 opt_cmd;
u8 reserved0[2];
__le16 ext_param_page_length; /* since ONFI 2.1 */
u8 num_of_param_pages; /* since ONFI 2.1 */
u8 reserved1[17];
/* manufacturer information block */
char manufacturer[12];
char model[20];
u8 jedec_id;
__le16 date_code;
u8 reserved2[13];
/* memory organization block */
__le32 byte_per_page;
__le16 spare_bytes_per_page;
__le32 data_bytes_per_ppage;
__le16 spare_bytes_per_ppage;
__le32 pages_per_block;
__le32 blocks_per_lun;
u8 lun_count;
u8 addr_cycles;
u8 bits_per_cell;
__le16 bb_per_lun;
__le16 block_endurance;
u8 guaranteed_good_blocks;
__le16 guaranteed_block_endurance;
u8 programs_per_page;
u8 ppage_attr;
u8 ecc_bits;
u8 interleaved_bits;
u8 interleaved_ops;
u8 reserved3[13];
/* electrical parameter block */
u8 io_pin_capacitance_max;
__le16 async_timing_mode;
__le16 program_cache_timing_mode;
__le16 t_prog;
__le16 t_bers;
__le16 t_r;
__le16 t_ccs;
__le16 src_sync_timing_mode;
u8 src_ssync_features;
__le16 clk_pin_capacitance_typ;
__le16 io_pin_capacitance_typ;
__le16 input_pin_capacitance_typ;
u8 input_pin_capacitance_max;
u8 driver_strength_support;
__le16 t_int_r;
__le16 t_adl;
u8 reserved4[8];
/* vendor */
__le16 vendor_revision;
u8 vendor[88];
__le16 crc;
} __packed;
#define ONFI_CRC_BASE 0x4F4E
/* Extended ECC information Block Definition (since ONFI 2.1) */
struct onfi_ext_ecc_info {
u8 ecc_bits;
u8 codeword_size;
__le16 bb_per_lun;
__le16 block_endurance;
u8 reserved[2];
} __packed;
#define ONFI_SECTION_TYPE_0 0 /* Unused section. */
#define ONFI_SECTION_TYPE_1 1 /* for additional sections. */
#define ONFI_SECTION_TYPE_2 2 /* for ECC information. */
struct onfi_ext_section {
u8 type;
u8 length;
} __packed;
#define ONFI_EXT_SECTION_MAX 8
/* Extended Parameter Page Definition (since ONFI 2.1) */
struct onfi_ext_param_page {
__le16 crc;
u8 sig[4]; /* 'E' 'P' 'P' 'S' */
u8 reserved0[10];
struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX];
/*
* The actual size of the Extended Parameter Page is in
* @ext_param_page_length of nand_onfi_params{}.
* The following are the variable length sections.
* So we do not add any fields below. Please see the ONFI spec.
*/
} __packed;
struct jedec_ecc_info {
u8 ecc_bits;
u8 codeword_size;
__le16 bb_per_lun;
__le16 block_endurance;
u8 reserved[2];
} __packed;
/* JEDEC features */
#define JEDEC_FEATURE_16_BIT_BUS (1 << 0)
struct nand_jedec_params {
/* rev info and features block */
/* 'J' 'E' 'S' 'D' */
u8 sig[4];
__le16 revision;
__le16 features;
u8 opt_cmd[3];
__le16 sec_cmd;
u8 num_of_param_pages;
u8 reserved0[18];
/* manufacturer information block */
char manufacturer[12];
char model[20];
u8 jedec_id[6];
u8 reserved1[10];
/* memory organization block */
__le32 byte_per_page;
__le16 spare_bytes_per_page;
u8 reserved2[6];
__le32 pages_per_block;
__le32 blocks_per_lun;
u8 lun_count;
u8 addr_cycles;
u8 bits_per_cell;
u8 programs_per_page;
u8 multi_plane_addr;
u8 multi_plane_op_attr;
u8 reserved3[38];
/* electrical parameter block */
__le16 async_sdr_speed_grade;
__le16 toggle_ddr_speed_grade;
__le16 sync_ddr_speed_grade;
u8 async_sdr_features;
u8 toggle_ddr_features;
u8 sync_ddr_features;
__le16 t_prog;
__le16 t_bers;
__le16 t_r;
__le16 t_r_multi_plane;
__le16 t_ccs;
__le16 io_pin_capacitance_typ;
__le16 input_pin_capacitance_typ;
__le16 clk_pin_capacitance_typ;
u8 driver_strength_support;
__le16 t_adl;
u8 reserved4[36];
/* ECC and endurance block */
u8 guaranteed_good_blocks;
__le16 guaranteed_block_endurance;
struct jedec_ecc_info ecc_info[4];
u8 reserved5[29];
/* reserved */
u8 reserved6[148];
/* vendor */
__le16 vendor_rev_num;
u8 reserved7[88];
/* CRC for Parameter Page */
__le16 crc;
} __packed;
/**
* struct onfi_params - ONFI specific parameters that will be reused
* @version: ONFI version (BCD encoded), 0 if ONFI is not supported
* @tPROG: Page program time
* @tBERS: Block erase time
* @tR: Page read time
* @tCCS: Change column setup time
* @async_timing_mode: Supported asynchronous timing mode
* @vendor_revision: Vendor specific revision number
* @vendor: Vendor specific data
*/
struct onfi_params {
int version;
u16 tPROG;
u16 tBERS;
u16 tR;
u16 tCCS;
u16 async_timing_mode;
u16 vendor_revision;
u8 vendor[88];
};
/**
* struct nand_parameters - NAND generic parameters from the parameter page
* @model: Model name
* @supports_set_get_features: The NAND chip supports setting/getting features
* @set_feature_list: Bitmap of features that can be set
* @get_feature_list: Bitmap of features that can be get
* @onfi: ONFI specific parameters
*/
struct nand_parameters {
/* Generic parameters */
const char *model;
bool supports_set_get_features;
DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
/* ONFI parameters */
struct onfi_params *onfi;
};
/* The maximum expected count of bytes in the NAND ID sequence */
#define NAND_MAX_ID_LEN 8
/**
* struct nand_id - NAND id structure
* @data: buffer containing the id bytes.
* @len: ID length.
*/
struct nand_id {
u8 data[NAND_MAX_ID_LEN];
int len;
};
/**
* struct nand_controller_ops - Controller operations
*
* @attach_chip: this method is called after the NAND detection phase after
* flash ID and MTD fields such as erase size, page size and OOB
* size have been set up. ECC requirements are available if
* provided by the NAND chip or device tree. Typically used to
* choose the appropriate ECC configuration and allocate
* associated resources.
* This hook is optional.
* @detach_chip: free all resources allocated/claimed in
* nand_controller_ops->attach_chip().
* This hook is optional.
*/
struct nand_controller_ops {
int (*attach_chip)(struct nand_chip *chip);
void (*detach_chip)(struct nand_chip *chip);
};
/**
* struct nand_controller - Structure used to describe a NAND controller
*
* @lock: protection lock
* @active: the mtd device which holds the controller currently
* @wq: wait queue to sleep on if a NAND operation is in
* progress used instead of the per chip wait queue
* when a hw controller is available.
* @ops: NAND controller operations.
*/
struct nand_controller {
spinlock_t lock;
struct nand_chip *active;
wait_queue_head_t wq;
const struct nand_controller_ops *ops;
};
static inline void nand_controller_init(struct nand_controller *nfc)
{
nfc->active = NULL;
spin_lock_init(&nfc->lock);
init_waitqueue_head(&nfc->wq);
}
/**
* struct nand_ecc_step_info - ECC step information of ECC engine
* @stepsize: data bytes per ECC step
* @strengths: array of supported strengths
* @nstrengths: number of supported strengths
*/
struct nand_ecc_step_info {
int stepsize;
const int *strengths;
int nstrengths;
};
/**
* struct nand_ecc_caps - capability of ECC engine
* @stepinfos: array of ECC step information
* @nstepinfos: number of ECC step information
* @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
*/
struct nand_ecc_caps {
const struct nand_ecc_step_info *stepinfos;
int nstepinfos;
int (*calc_ecc_bytes)(int step_size, int strength);
};
/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
static const int __name##_strengths[] = { __VA_ARGS__ }; \
static const struct nand_ecc_step_info __name##_stepinfo = { \
.stepsize = __step, \
.strengths = __name##_strengths, \
.nstrengths = ARRAY_SIZE(__name##_strengths), \
}; \
static const struct nand_ecc_caps __name = { \
.stepinfos = &__name##_stepinfo, \
.nstepinfos = 1, \
.calc_ecc_bytes = __calc, \
}
/**
* struct nand_ecc_ctrl - Control structure for ECC
* @mode: ECC mode
* @algo: ECC algorithm
* @steps: number of ECC steps per page
* @size: data bytes per ECC step
* @bytes: ECC bytes per step
* @strength: max number of correctible bits per ECC step
* @total: total number of ECC bytes per page
* @prepad: padding information for syndrome based ECC generators
* @postpad: padding information for syndrome based ECC generators
* @options: ECC specific options (see NAND_ECC_XXX flags defined above)
* @priv: pointer to private ECC control data
* @calc_buf: buffer for calculated ECC, size is oobsize.
* @code_buf: buffer for ECC read from flash, size is oobsize.
* @hwctl: function to control hardware ECC generator. Must only
* be provided if an hardware ECC is available
* @calculate: function for ECC calculation or readback from ECC hardware
* @correct: function for ECC correction, matching to ECC generator (sw/hw).
* Should return a positive number representing the number of
* corrected bitflips, -EBADMSG if the number of bitflips exceed
* ECC strength, or any other error code if the error is not
* directly related to correction.
* If -EBADMSG is returned the input buffers should be left
* untouched.
* @read_page_raw: function to read a raw page without ECC. This function
* should hide the specific layout used by the ECC
* controller and always return contiguous in-band and
* out-of-band data even if they're not stored
* contiguously on the NAND chip (e.g.
* NAND_ECC_HW_SYNDROME interleaves in-band and
* out-of-band data).
* @write_page_raw: function to write a raw page without ECC. This function
* should hide the specific layout used by the ECC
* controller and consider the passed data as contiguous
* in-band and out-of-band data. ECC controller is
* responsible for doing the appropriate transformations
* to adapt to its specific layout (e.g.
* NAND_ECC_HW_SYNDROME interleaves in-band and
* out-of-band data).
* @read_page: function to read a page according to the ECC generator
* requirements; returns maximum number of bitflips corrected in
* any single ECC step, -EIO hw error
* @read_subpage: function to read parts of the page covered by ECC;
* returns same as read_page()
* @write_subpage: function to write parts of the page covered by ECC.
* @write_page: function to write a page according to the ECC generator
* requirements.
* @write_oob_raw: function to write chip OOB data without ECC
* @read_oob_raw: function to read chip OOB data without ECC
* @read_oob: function to read chip OOB data
* @write_oob: function to write chip OOB data
*/
struct nand_ecc_ctrl {
nand_ecc_modes_t mode;
enum nand_ecc_algo algo;
int steps;
int size;
int bytes;
int total;
int strength;
int prepad;
int postpad;
unsigned int options;
void *priv;
u8 *calc_buf;
u8 *code_buf;
void (*hwctl)(struct nand_chip *chip, int mode);
int (*calculate)(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code);
int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc,
uint8_t *calc_ecc);
int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page);
int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page);
int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page);
int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offs, uint32_t len, uint8_t *buf, int page);
int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, uint32_t data_len,
const uint8_t *data_buf, int oob_required, int page);
int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page);
int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
int page);
int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip,
int page);
int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page);
int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip,
int page);
};
/**
* struct nand_sdr_timings - SDR NAND chip timings
*
* This struct defines the timing requirements of a SDR NAND chip.
* These information can be found in every NAND datasheets and the timings
* meaning are described in the ONFI specifications:
* www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
* Parameters)
*
* All these timings are expressed in picoseconds.
*
* @tBERS_max: Block erase time
* @tCCS_min: Change column setup time
* @tPROG_max: Page program time
* @tR_max: Page read time
* @tALH_min: ALE hold time
* @tADL_min: ALE to data loading time
* @tALS_min: ALE setup time
* @tAR_min: ALE to RE# delay
* @tCEA_max: CE# access time
* @tCEH_min: CE# high hold time
* @tCH_min: CE# hold time
* @tCHZ_max: CE# high to output hi-Z
* @tCLH_min: CLE hold time
* @tCLR_min: CLE to RE# delay
* @tCLS_min: CLE setup time
* @tCOH_min: CE# high to output hold
* @tCS_min: CE# setup time
* @tDH_min: Data hold time
* @tDS_min: Data setup time
* @tFEAT_max: Busy time for Set Features and Get Features
* @tIR_min: Output hi-Z to RE# low
* @tITC_max: Interface and Timing Mode Change time
* @tRC_min: RE# cycle time
* @tREA_max: RE# access time
* @tREH_min: RE# high hold time
* @tRHOH_min: RE# high to output hold
* @tRHW_min: RE# high to WE# low
* @tRHZ_max: RE# high to output hi-Z
* @tRLOH_min: RE# low to output hold
* @tRP_min: RE# pulse width
* @tRR_min: Ready to RE# low (data only)
* @tRST_max: Device reset time, measured from the falling edge of R/B# to the
* rising edge of R/B#.
* @tWB_max: WE# high to SR[6] low
* @tWC_min: WE# cycle time
* @tWH_min: WE# high hold time
* @tWHR_min: WE# high to RE# low
* @tWP_min: WE# pulse width
* @tWW_min: WP# transition to WE# low
*/
struct nand_sdr_timings {
u64 tBERS_max;
u32 tCCS_min;
u64 tPROG_max;
u64 tR_max;
u32 tALH_min;
u32 tADL_min;
u32 tALS_min;
u32 tAR_min;
u32 tCEA_max;
u32 tCEH_min;
u32 tCH_min;
u32 tCHZ_max;
u32 tCLH_min;
u32 tCLR_min;
u32 tCLS_min;
u32 tCOH_min;
u32 tCS_min;
u32 tDH_min;
u32 tDS_min;
u32 tFEAT_max;
u32 tIR_min;
u32 tITC_max;
u32 tRC_min;
u32 tREA_max;
u32 tREH_min;
u32 tRHOH_min;
u32 tRHW_min;
u32 tRHZ_max;
u32 tRLOH_min;
u32 tRP_min;
u32 tRR_min;
u64 tRST_max;
u32 tWB_max;
u32 tWC_min;
u32 tWH_min;
u32 tWHR_min;
u32 tWP_min;
u32 tWW_min;
};
/**
* enum nand_data_interface_type - NAND interface timing type
* @NAND_SDR_IFACE: Single Data Rate interface
*/
enum nand_data_interface_type {
NAND_SDR_IFACE,
};
/**
* struct nand_data_interface - NAND interface timing
* @type: type of the timing
* @timings: The timing, type according to @type
* @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
*/
struct nand_data_interface {
enum nand_data_interface_type type;
union {
struct nand_sdr_timings sdr;
} timings;
};
/**
* nand_get_sdr_timings - get SDR timing from data interface
* @conf: The data interface
*/
static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_data_interface *conf)
{
if (conf->type != NAND_SDR_IFACE)
return ERR_PTR(-EINVAL);
return &conf->timings.sdr;
}
/**
* struct nand_manufacturer_ops - NAND Manufacturer operations
* @detect: detect the NAND memory organization and capabilities
* @init: initialize all vendor specific fields (like the ->read_retry()
* implementation) if any.
* @cleanup: the ->init() function may have allocated resources, ->cleanup()
* is here to let vendor specific code release those resources.
* @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter
* page. This is called after the checksum is verified.
*/
struct nand_manufacturer_ops {
void (*detect)(struct nand_chip *chip);
int (*init)(struct nand_chip *chip);
void (*cleanup)(struct nand_chip *chip);
void (*fixup_onfi_param_page)(struct nand_chip *chip,
struct nand_onfi_params *p);
};
/**
* struct nand_op_cmd_instr - Definition of a command instruction
* @opcode: the command to issue in one cycle
*/
struct nand_op_cmd_instr {
u8 opcode;
};
/**
* struct nand_op_addr_instr - Definition of an address instruction
* @naddrs: length of the @addrs array
* @addrs: array containing the address cycles to issue
*/
struct nand_op_addr_instr {
unsigned int naddrs;
const u8 *addrs;
};
/**
* struct nand_op_data_instr - Definition of a data instruction
* @len: number of data bytes to move
* @buf: buffer to fill
* @buf.in: buffer to fill when reading from the NAND chip
* @buf.out: buffer to read from when writing to the NAND chip
* @force_8bit: force 8-bit access
*
* Please note that "in" and "out" are inverted from the ONFI specification
* and are from the controller perspective, so a "in" is a read from the NAND
* chip while a "out" is a write to the NAND chip.
*/
struct nand_op_data_instr {
unsigned int len;
union {
void *in;
const void *out;
} buf;
bool force_8bit;
};
/**
* struct nand_op_waitrdy_instr - Definition of a wait ready instruction
* @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
*/
struct nand_op_waitrdy_instr {
unsigned int timeout_ms;
};
/**
* enum nand_op_instr_type - Definition of all instruction types
* @NAND_OP_CMD_INSTR: command instruction
* @NAND_OP_ADDR_INSTR: address instruction
* @NAND_OP_DATA_IN_INSTR: data in instruction
* @NAND_OP_DATA_OUT_INSTR: data out instruction
* @NAND_OP_WAITRDY_INSTR: wait ready instruction
*/
enum nand_op_instr_type {
NAND_OP_CMD_INSTR,
NAND_OP_ADDR_INSTR,
NAND_OP_DATA_IN_INSTR,
NAND_OP_DATA_OUT_INSTR,
NAND_OP_WAITRDY_INSTR,
};
/**
* struct nand_op_instr - Instruction object
* @type: the instruction type
* @ctx: extra data associated to the instruction. You'll have to use the
* appropriate element depending on @type
* @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
* @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
* @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
* or %NAND_OP_DATA_OUT_INSTR
* @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
* @delay_ns: delay the controller should apply after the instruction has been
* issued on the bus. Most modern controllers have internal timings
* control logic, and in this case, the controller driver can ignore
* this field.
*/
struct nand_op_instr {
enum nand_op_instr_type type;
union {
struct nand_op_cmd_instr cmd;
struct nand_op_addr_instr addr;
struct nand_op_data_instr data;
struct nand_op_waitrdy_instr waitrdy;
} ctx;
unsigned int delay_ns;
};
/*
* Special handling must be done for the WAITRDY timeout parameter as it usually
* is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
* tBERS (during an erase) which all of them are u64 values that cannot be
* divided by usual kernel macros and must be handled with the special
* DIV_ROUND_UP_ULL() macro.
*
* Cast to type of dividend is needed here to guarantee that the result won't
* be an unsigned long long when the dividend is an unsigned long (or smaller),
* which is what the compiler does when it sees ternary operator with 2
* different return types (picks the largest type to make sure there's no
* loss).
*/
#define __DIVIDE(dividend, divisor) ({ \
(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
DIV_ROUND_UP(dividend, divisor) : \
DIV_ROUND_UP_ULL(dividend, divisor)); \
})
#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
#define NAND_OP_CMD(id, ns) \
{ \
.type = NAND_OP_CMD_INSTR, \
.ctx.cmd.opcode = id, \
.delay_ns = ns, \
}
#define NAND_OP_ADDR(ncycles, cycles, ns) \
{ \
.type = NAND_OP_ADDR_INSTR, \
.ctx.addr = { \
.naddrs = ncycles, \
.addrs = cycles, \
}, \
.delay_ns = ns, \
}
#define NAND_OP_DATA_IN(l, b, ns) \
{ \
.type = NAND_OP_DATA_IN_INSTR, \
.ctx.data = { \
.len = l, \
.buf.in = b, \
.force_8bit = false, \
}, \
.delay_ns = ns, \
}
#define NAND_OP_DATA_OUT(l, b, ns) \
{ \
.type = NAND_OP_DATA_OUT_INSTR, \
.ctx.data = { \
.len = l, \
.buf.out = b, \
.force_8bit = false, \
}, \
.delay_ns = ns, \
}
#define NAND_OP_8BIT_DATA_IN(l, b, ns) \
{ \
.type = NAND_OP_DATA_IN_INSTR, \
.ctx.data = { \
.len = l, \
.buf.in = b, \
.force_8bit = true, \
}, \
.delay_ns = ns, \
}
#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
{ \
.type = NAND_OP_DATA_OUT_INSTR, \
.ctx.data = { \
.len = l, \
.buf.out = b, \
.force_8bit = true, \
}, \
.delay_ns = ns, \
}
#define NAND_OP_WAIT_RDY(tout_ms, ns) \
{ \
.type = NAND_OP_WAITRDY_INSTR, \
.ctx.waitrdy.timeout_ms = tout_ms, \
.delay_ns = ns, \
}
/**
* struct nand_subop - a sub operation
* @instrs: array of instructions
* @ninstrs: length of the @instrs array
* @first_instr_start_off: offset to start from for the first instruction
* of the sub-operation
* @last_instr_end_off: offset to end at (excluded) for the last instruction
* of the sub-operation
*
* Both @first_instr_start_off and @last_instr_end_off only apply to data or
* address instructions.
*
* When an operation cannot be handled as is by the NAND controller, it will
* be split by the parser into sub-operations which will be passed to the
* controller driver.
*/
struct nand_subop {
const struct nand_op_instr *instrs;
unsigned int ninstrs;
unsigned int first_instr_start_off;
unsigned int last_instr_end_off;
};
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
unsigned int op_id);
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
unsigned int op_id);
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
unsigned int op_id);
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
unsigned int op_id);
/**
* struct nand_op_parser_addr_constraints - Constraints for address instructions
* @maxcycles: maximum number of address cycles the controller can issue in a
* single step
*/
struct nand_op_parser_addr_constraints {
unsigned int maxcycles;
};
/**
* struct nand_op_parser_data_constraints - Constraints for data instructions
* @maxlen: maximum data length that the controller can handle in a single step
*/
struct nand_op_parser_data_constraints {
unsigned int maxlen;
};
/**
* struct nand_op_parser_pattern_elem - One element of a pattern
* @type: the instructuction type
* @optional: whether this element of the pattern is optional or mandatory
* @ctx: address or data constraint
* @ctx.addr: address constraint (number of cycles)
* @ctx.data: data constraint (data length)
*/
struct nand_op_parser_pattern_elem {
enum nand_op_instr_type type;
bool optional;
union {
struct nand_op_parser_addr_constraints addr;
struct nand_op_parser_data_constraints data;
} ctx;
};
#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
{ \
.type = NAND_OP_CMD_INSTR, \
.optional = _opt, \
}
#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
{ \
.type = NAND_OP_ADDR_INSTR, \
.optional = _opt, \
.ctx.addr.maxcycles = _maxcycles, \
}
#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
{ \
.type = NAND_OP_DATA_IN_INSTR, \
.optional = _opt, \
.ctx.data.maxlen = _maxlen, \
}
#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
{ \
.type = NAND_OP_DATA_OUT_INSTR, \
.optional = _opt, \
.ctx.data.maxlen = _maxlen, \
}
#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
{ \
.type = NAND_OP_WAITRDY_INSTR, \
.optional = _opt, \
}
/**
* struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
* @elems: array of pattern elements
* @nelems: number of pattern elements in @elems array
* @exec: the function that will issue a sub-operation
*
* A pattern is a list of elements, each element reprensenting one instruction
* with its constraints. The pattern itself is used by the core to match NAND
* chip operation with NAND controller operations.
* Once a match between a NAND controller operation pattern and a NAND chip
* operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
* hook is called so that the controller driver can issue the operation on the
* bus.
*
* Controller drivers should declare as many patterns as they support and pass
* this list of patterns (created with the help of the following macro) to
* the nand_op_parser_exec_op() helper.
*/
struct nand_op_parser_pattern {
const struct nand_op_parser_pattern_elem *elems;
unsigned int nelems;
int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
};
#define NAND_OP_PARSER_PATTERN(_exec, ...) \
{ \
.exec = _exec, \
.elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
sizeof(struct nand_op_parser_pattern_elem), \
}
/**
* struct nand_op_parser - NAND controller operation parser descriptor
* @patterns: array of supported patterns
* @npatterns: length of the @patterns array
*
* The parser descriptor is just an array of supported patterns which will be
* iterated by nand_op_parser_exec_op() everytime it tries to execute an
* NAND operation (or tries to determine if a specific operation is supported).
*
* It is worth mentioning that patterns will be tested in their declaration
* order, and the first match will be taken, so it's important to order patterns
* appropriately so that simple/inefficient patterns are placed at the end of
* the list. Usually, this is where you put single instruction patterns.
*/
struct nand_op_parser {
const struct nand_op_parser_pattern *patterns;
unsigned int npatterns;
};
#define NAND_OP_PARSER(...) \
{ \
.patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
sizeof(struct nand_op_parser_pattern), \
}
/**
* struct nand_operation - NAND operation descriptor
* @instrs: array of instructions to execute
* @ninstrs: length of the @instrs array
*
* The actual operation structure that will be passed to chip->exec_op().
*/
struct nand_operation {
const struct nand_op_instr *instrs;
unsigned int ninstrs;
};
#define NAND_OPERATION(_instrs) \
{ \
.instrs = _instrs, \
.ninstrs = ARRAY_SIZE(_instrs), \
}
int nand_op_parser_exec_op(struct nand_chip *chip,
const struct nand_op_parser *parser,
const struct nand_operation *op, bool check_only);
/**
* struct nand_chip - NAND Private Flash Chip Data
* @mtd: MTD device registered to the MTD framework
* @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the
* flash device
* @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the
* flash device.
* @read_byte: [REPLACEABLE] read one byte from the chip
* @write_byte: [REPLACEABLE] write a single byte to the chip on the
* low 8 I/O lines
* @write_buf: [REPLACEABLE] write data from the buffer to the chip
* @read_buf: [REPLACEABLE] read data from the chip into the buffer
* @select_chip: [REPLACEABLE] select chip nr
* @block_bad: [REPLACEABLE] check if a block is bad, using OOB markers
* @block_markbad: [REPLACEABLE] mark a block bad
* @cmd_ctrl: [BOARDSPECIFIC] hardwarespecific function for controlling
* ALE/CLE/nCE. Also used to write command and address
* @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accessing
* device ready/busy line. If set to NULL no access to
* ready/busy is available and the ready/busy information
* is read from the chip status register.
* @cmdfunc: [REPLACEABLE] hardwarespecific function for writing
* commands to the chip.
* @waitfunc: [REPLACEABLE] hardwarespecific function for wait on
* ready.
* @exec_op: controller specific method to execute NAND operations.
* This method replaces ->cmdfunc(),
* ->{read,write}_{buf,byte,word}(), ->dev_ready() and
* ->waifunc().
* @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for
* setting the read-retry mode. Mostly needed for MLC NAND.
* @ecc: [BOARDSPECIFIC] ECC control structure
* @buf_align: minimum buffer alignment required by a platform
* @dummy_controller: dummy controller implementation for drivers that can
* only control a single chip
* @erase: [REPLACEABLE] erase function
* @chip_delay: [BOARDSPECIFIC] chip dependent delay for transferring
* data from array to read regs (tR).
* @state: [INTERN] the current state of the NAND device
* @oob_poi: "poison value buffer," used for laying out OOB data
* before writing
* @page_shift: [INTERN] number of address bits in a page (column
* address bits).
* @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
* @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
* @chip_shift: [INTERN] number of address bits in one chip
* @options: [BOARDSPECIFIC] various chip options. They can partly
* be set to inform nand_scan about special functionality.
* See the defines for further explanation.
* @bbt_options: [INTERN] bad block specific options. All options used
* here must come from bbm.h. By default, these options
* will be copied to the appropriate nand_bbt_descr's.
* @badblockpos: [INTERN] position of the bad block marker in the oob
* area.
* @badblockbits: [INTERN] minimum number of set bits in a good block's
* bad block marker position; i.e., BBM == 11110111b is
* not bad when badblockbits == 7
* @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC.
* @ecc_strength_ds: [INTERN] ECC correctability from the datasheet.
* Minimum amount of bit errors per @ecc_step_ds guaranteed
* to be correctable. If unknown, set to zero.
* @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds,
* also from the datasheet. It is the recommended ECC step
* size, if known; if unknown, set to zero.
* @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
* set to the actually used ONFI mode if the chip is
* ONFI compliant or deduced from the datasheet if
* the NAND chip is not ONFI compliant.
* @numchips: [INTERN] number of physical chips
* @chipsize: [INTERN] the size of one chip for multichip arrays
* @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
* @data_buf: [INTERN] buffer for data, size is (page size + oobsize).
* @pagebuf: [INTERN] holds the pagenumber which is currently in
* data_buf.
* @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is
* currently in data_buf.
* @subpagesize: [INTERN] holds the subpagesize
* @id: [INTERN] holds NAND ID
* @parameters: [INTERN] holds generic parameters under an easily
* readable form.
* @max_bb_per_die: [INTERN] the max number of bad blocks each die of a
* this nand device will encounter their life times.
* @blocks_per_die: [INTERN] The number of PEBs in a die
* @data_interface: [INTERN] NAND interface timing information
* @read_retries: [INTERN] the number of read retry modes supported
* @set_features: [REPLACEABLE] set the NAND chip features
* @get_features: [REPLACEABLE] get the NAND chip features
* @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
* chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
* means the configuration should not be applied but
* only checked.
* @bbt: [INTERN] bad block table pointer
* @bbt_td: [REPLACEABLE] bad block table descriptor for flash
* lookup.
* @bbt_md: [REPLACEABLE] bad block table mirror descriptor
* @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial
* bad block scan.
* @controller: [REPLACEABLE] a pointer to a hardware controller
* structure which is shared among multiple independent
* devices.
* @priv: [OPTIONAL] pointer to private chip data
* @manufacturer: [INTERN] Contains manufacturer information
* @manufacturer.desc: [INTERN] Contains manufacturer's description
* @manufacturer.priv: [INTERN] Contains manufacturer private information
*/
struct nand_chip {
struct mtd_info mtd;
void __iomem *IO_ADDR_R;
void __iomem *IO_ADDR_W;
uint8_t (*read_byte)(struct mtd_info *mtd);
void (*write_byte)(struct mtd_info *mtd, uint8_t byte);
void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
void (*select_chip)(struct mtd_info *mtd, int chip);
int (*block_bad)(struct mtd_info *mtd, loff_t ofs);
int (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl);
int (*dev_ready)(struct mtd_info *mtd);
void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column,
int page_addr);
int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
int (*exec_op)(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only);
int (*erase)(struct mtd_info *mtd, int page);
int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip,
int feature_addr, uint8_t *subfeature_para);
int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip,
int feature_addr, uint8_t *subfeature_para);
int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
const struct nand_data_interface *conf);
int chip_delay;
unsigned int options;
unsigned int bbt_options;
int page_shift;
int phys_erase_shift;
int bbt_erase_shift;
int chip_shift;
int numchips;
uint64_t chipsize;
int pagemask;
u8 *data_buf;
int pagebuf;
unsigned int pagebuf_bitflips;
int subpagesize;
uint8_t bits_per_cell;
uint16_t ecc_strength_ds;
uint16_t ecc_step_ds;
int onfi_timing_mode_default;
int badblockpos;
int badblockbits;
struct nand_id id;
struct nand_parameters parameters;
u16 max_bb_per_die;
u32 blocks_per_die;
struct nand_data_interface data_interface;
int read_retries;
flstate_t state;
uint8_t *oob_poi;
struct nand_controller *controller;
struct nand_ecc_ctrl ecc;
unsigned long buf_align;
struct nand_controller dummy_controller;
uint8_t *bbt;
struct nand_bbt_descr *bbt_td;
struct nand_bbt_descr *bbt_md;
struct nand_bbt_descr *badblock_pattern;
void *priv;
struct {
const struct nand_manufacturer *desc;
void *priv;
} manufacturer;
};
static inline int nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op)
{
if (!chip->exec_op)
return -ENOTSUPP;
return chip->exec_op(chip, op, false);
}
extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
static inline void nand_set_flash_node(struct nand_chip *chip,
struct device_node *np)
{
mtd_set_of_node(&chip->mtd, np);
}
static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
{
return mtd_get_of_node(&chip->mtd);
}
static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
{
return container_of(mtd, struct nand_chip, mtd);
}
static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
{
return &chip->mtd;
}
static inline void *nand_get_controller_data(struct nand_chip *chip)
{
return chip->priv;
}
static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
{
chip->priv = priv;
}
static inline void nand_set_manufacturer_data(struct nand_chip *chip,
void *priv)
{
chip->manufacturer.priv = priv;
}
static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
{
return chip->manufacturer.priv;
}
/*
* NAND Flash Manufacturer ID Codes
*/
#define NAND_MFR_TOSHIBA 0x98
#define NAND_MFR_ESMT 0xc8
#define NAND_MFR_SAMSUNG 0xec
#define NAND_MFR_FUJITSU 0x04
#define NAND_MFR_NATIONAL 0x8f
#define NAND_MFR_RENESAS 0x07
#define NAND_MFR_STMICRO 0x20
#define NAND_MFR_HYNIX 0xad
#define NAND_MFR_MICRON 0x2c
#define NAND_MFR_AMD 0x01
#define NAND_MFR_MACRONIX 0xc2
#define NAND_MFR_EON 0x92
#define NAND_MFR_SANDISK 0x45
#define NAND_MFR_INTEL 0x89
#define NAND_MFR_ATO 0x9b
#define NAND_MFR_WINBOND 0xef
/*
* A helper for defining older NAND chips where the second ID byte fully
* defined the chip, including the geometry (chip size, eraseblock size, page
* size). All these chips have 512 bytes NAND page size.
*/
#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
.chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
/*
* A helper for defining newer chips which report their page size and
* eraseblock size via the extended ID bytes.
*
* The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
* EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
* device ID now only represented a particular total chip size (and voltage,
* buswidth), and the page size, eraseblock size, and OOB size could vary while
* using the same device ID.
*/
#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
.options = (opts) }
#define NAND_ECC_INFO(_strength, _step) \
{ .strength_ds = (_strength), .step_ds = (_step) }
#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
#define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
/**
* struct nand_flash_dev - NAND Flash Device ID Structure
* @name: a human-readable name of the NAND chip
* @dev_id: the device ID (the second byte of the full chip ID array)
* @mfr_id: manufecturer ID part of the full chip ID array (refers the same
* memory address as @id[0])
* @dev_id: device ID part of the full chip ID array (refers the same memory
* address as @id[1])
* @id: full device ID array
* @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
* well as the eraseblock size) is determined from the extended NAND
* chip ID array)
* @chipsize: total chip size in MiB
* @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
* @options: stores various chip bit options
* @id_len: The valid length of the @id.
* @oobsize: OOB size
* @ecc: ECC correctability and step information from the datasheet.
* @ecc.strength_ds: The ECC correctability from the datasheet, same as the
* @ecc_strength_ds in nand_chip{}.
* @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
* @ecc_step_ds in nand_chip{}, also from the datasheet.
* For example, the "4bit ECC for each 512Byte" can be set with
* NAND_ECC_INFO(4, 512).
* @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
* reset. Should be deduced from timings described
* in the datasheet.
*
*/
struct nand_flash_dev {
char *name;
union {
struct {
uint8_t mfr_id;
uint8_t dev_id;
};
uint8_t id[NAND_MAX_ID_LEN];
};
unsigned int pagesize;
unsigned int chipsize;
unsigned int erasesize;
unsigned int options;
uint16_t id_len;
uint16_t oobsize;
struct {
uint16_t strength_ds;
uint16_t step_ds;
} ecc;
int onfi_timing_mode_default;
};
/**
* struct nand_manufacturer - NAND Flash Manufacturer structure
* @name: Manufacturer name
* @id: manufacturer ID code of device.
* @ops: manufacturer operations
*/
struct nand_manufacturer {
int id;
char *name;
const struct nand_manufacturer_ops *ops;
};
const struct nand_manufacturer *nand_get_manufacturer(u8 id);
static inline const char *
nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
{
return manufacturer ? manufacturer->name : "Unknown";
}
extern struct nand_flash_dev nand_flash_ids[];
extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops;
extern const struct nand_manufacturer_ops samsung_nand_manuf_ops;
extern const struct nand_manufacturer_ops hynix_nand_manuf_ops;
extern const struct nand_manufacturer_ops micron_nand_manuf_ops;
extern const struct nand_manufacturer_ops amd_nand_manuf_ops;
extern const struct nand_manufacturer_ops macronix_nand_manuf_ops;
int nand_create_bbt(struct nand_chip *chip);
int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs);
int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs);
int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt);
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
int allowbbt);
/**
* struct platform_nand_chip - chip level device structure
* @nr_chips: max. number of chips to scan for
* @chip_offset: chip number offset
* @nr_partitions: number of partitions pointed to by partitions (or zero)
* @partitions: mtd partition list
* @chip_delay: R/B delay value in us
* @options: Option flags, e.g. 16bit buswidth
* @bbt_options: BBT option flags, e.g. NAND_BBT_USE_FLASH
* @part_probe_types: NULL-terminated array of probe types
*/
struct platform_nand_chip {
int nr_chips;
int chip_offset;
int nr_partitions;
struct mtd_partition *partitions;
int chip_delay;
unsigned int options;
unsigned int bbt_options;
const char **part_probe_types;
};
/* Keep gcc happy */
struct platform_device;
/**
* struct platform_nand_ctrl - controller level device structure
* @probe: platform specific function to probe/setup hardware
* @remove: platform specific function to remove/teardown hardware
* @dev_ready: platform specific function to read ready/busy pin
* @select_chip: platform specific chip select function
* @cmd_ctrl: platform specific function for controlling
* ALE/CLE/nCE. Also used to write command and address
* @write_buf: platform specific function for write buffer
* @read_buf: platform specific function for read buffer
* @priv: private data to transport driver specific settings
*
* All fields are optional and depend on the hardware driver requirements
*/
struct platform_nand_ctrl {
int (*probe)(struct platform_device *pdev);
void (*remove)(struct platform_device *pdev);
int (*dev_ready)(struct nand_chip *chip);
void (*select_chip)(struct nand_chip *chip, int cs);
void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
void (*write_buf)(struct nand_chip *chip, const uint8_t *buf, int len);
void (*read_buf)(struct nand_chip *chip, uint8_t *buf, int len);
void *priv;
};
/**
* struct platform_nand_data - container structure for platform-specific data
* @chip: chip level chip structure
* @ctrl: controller level device structure
*/
struct platform_nand_data {
struct platform_nand_chip chip;
struct platform_nand_ctrl ctrl;
};
/* return the supported asynchronous timing mode. */
static inline int onfi_get_async_timing_mode(struct nand_chip *chip)
{
if (!chip->parameters.onfi)
return ONFI_TIMING_MODE_UNKNOWN;
return chip->parameters.onfi->async_timing_mode;
}
int onfi_fill_data_interface(struct nand_chip *chip,
enum nand_data_interface_type type,
int timing_mode);
/*
* Check if it is a SLC nand.
* The !nand_is_slc() can be used to check the MLC/TLC nand chips.
* We do not distinguish the MLC and TLC now.
*/
static inline bool nand_is_slc(struct nand_chip *chip)
{
WARN(chip->bits_per_cell == 0,
"chip->bits_per_cell is used uninitialized\n");
return chip->bits_per_cell == 1;
}
/**
* Check if the opcode's address should be sent only on the lower 8 bits
* @command: opcode to check
*/
static inline int nand_opcode_8bits(unsigned int command)
{
switch (command) {
case NAND_CMD_READID:
case NAND_CMD_PARAM:
case NAND_CMD_GET_FEATURES:
case NAND_CMD_SET_FEATURES:
return 1;
default:
break;
}
return 0;
}
/* get timing characteristics from ONFI timing mode. */
const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode);
int nand_check_erased_ecc_chunk(void *data, int datalen,
void *ecc, int ecclen,
void *extraoob, int extraooblen,
int threshold);
int nand_ecc_choose_conf(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail);
/* Default write_oob implementation */
int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
/* Default write_oob syndrome implementation */
int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
int page);
/* Default read_oob implementation */
int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
/* Default read_oob syndrome implementation */
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
int page);
/* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */
int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
/* Stub used by drivers that do not support GET/SET FEATURES operations */
int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
int addr, u8 *subfeature_param);
/* Default read_page_raw implementation */
int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page);
int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page);
/* Default write_page_raw implementation */
int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page);
int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required, int page);
/* Reset and initialize a NAND device */
int nand_reset(struct nand_chip *chip, int chipnr);
/* NAND operation helpers */
int nand_reset_op(struct nand_chip *chip);
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
unsigned int len);
int nand_status_op(struct nand_chip *chip, u8 *status);
int nand_exit_status_op(struct nand_chip *chip);
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf, unsigned int len);
int nand_change_read_column_op(struct nand_chip *chip,
unsigned int offset_in_page, void *buf,
unsigned int len, bool force_8bit);
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf, unsigned int len);
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len);
int nand_prog_page_end_op(struct nand_chip *chip);
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len);
int nand_change_write_column_op(struct nand_chip *chip,
unsigned int offset_in_page, const void *buf,
unsigned int len, bool force_8bit);
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
bool force_8bit);
int nand_write_data_op(struct nand_chip *chip, const void *buf,
unsigned int len, bool force_8bit);
/*
* Free resources held by the NAND device, must be called on error after a
* sucessful nand_scan().
*/
void nand_cleanup(struct nand_chip *chip);
/* Unregister the MTD device and calls nand_cleanup() */
void nand_release(struct nand_chip *chip);
/* Default extended ID decoding function */
void nand_decode_ext_id(struct nand_chip *chip);
/*
* External helper for controller drivers that have to implement the WAITRDY
* instruction and have no physical pin to check it.
*/
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
#endif /* __LINUX_MTD_RAWNAND_H */