mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 00:59:27 +07:00
5beec4aa2a
Remove some more references to dev->power.power_state. That field is overdue for removal, but we can't do that while it's still referenced in the kernel. The only reason to update it was to make the /sys/devices/.../power/state files (now removed) work better. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1591 lines
41 KiB
C
1591 lines
41 KiB
C
/*
|
|
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/clk.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/hardware.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include <asm/arch/hardware.h>
|
|
#include <asm/arch/pxa-regs.h>
|
|
#include <asm/arch/regs-ssp.h>
|
|
#include <asm/arch/ssp.h>
|
|
#include <asm/arch/pxa2xx_spi.h>
|
|
|
|
MODULE_AUTHOR("Stephen Street");
|
|
MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#define MAX_BUSES 3
|
|
|
|
#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
|
|
#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
|
|
#define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
|
|
|
|
/* for testing SSCR1 changes that require SSP restart, basically
|
|
* everything except the service and interrupt enables */
|
|
#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
|
|
| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
|
|
| SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
|
|
| SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
|
|
| SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
|
|
|
|
#define DEFINE_SSP_REG(reg, off) \
|
|
static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
|
|
static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
|
|
|
|
DEFINE_SSP_REG(SSCR0, 0x00)
|
|
DEFINE_SSP_REG(SSCR1, 0x04)
|
|
DEFINE_SSP_REG(SSSR, 0x08)
|
|
DEFINE_SSP_REG(SSITR, 0x0c)
|
|
DEFINE_SSP_REG(SSDR, 0x10)
|
|
DEFINE_SSP_REG(SSTO, 0x28)
|
|
DEFINE_SSP_REG(SSPSP, 0x2c)
|
|
|
|
#define START_STATE ((void*)0)
|
|
#define RUNNING_STATE ((void*)1)
|
|
#define DONE_STATE ((void*)2)
|
|
#define ERROR_STATE ((void*)-1)
|
|
|
|
#define QUEUE_RUNNING 0
|
|
#define QUEUE_STOPPED 1
|
|
|
|
struct driver_data {
|
|
/* Driver model hookup */
|
|
struct platform_device *pdev;
|
|
|
|
/* SSP Info */
|
|
struct ssp_device *ssp;
|
|
|
|
/* SPI framework hookup */
|
|
enum pxa_ssp_type ssp_type;
|
|
struct spi_master *master;
|
|
|
|
/* PXA hookup */
|
|
struct pxa2xx_spi_master *master_info;
|
|
|
|
/* DMA setup stuff */
|
|
int rx_channel;
|
|
int tx_channel;
|
|
u32 *null_dma_buf;
|
|
|
|
/* SSP register addresses */
|
|
void *ioaddr;
|
|
u32 ssdr_physical;
|
|
|
|
/* SSP masks*/
|
|
u32 dma_cr1;
|
|
u32 int_cr1;
|
|
u32 clear_sr;
|
|
u32 mask_sr;
|
|
|
|
/* Driver message queue */
|
|
struct workqueue_struct *workqueue;
|
|
struct work_struct pump_messages;
|
|
spinlock_t lock;
|
|
struct list_head queue;
|
|
int busy;
|
|
int run;
|
|
|
|
/* Message Transfer pump */
|
|
struct tasklet_struct pump_transfers;
|
|
|
|
/* Current message transfer state info */
|
|
struct spi_message* cur_msg;
|
|
struct spi_transfer* cur_transfer;
|
|
struct chip_data *cur_chip;
|
|
size_t len;
|
|
void *tx;
|
|
void *tx_end;
|
|
void *rx;
|
|
void *rx_end;
|
|
int dma_mapped;
|
|
dma_addr_t rx_dma;
|
|
dma_addr_t tx_dma;
|
|
size_t rx_map_len;
|
|
size_t tx_map_len;
|
|
u8 n_bytes;
|
|
u32 dma_width;
|
|
int cs_change;
|
|
int (*write)(struct driver_data *drv_data);
|
|
int (*read)(struct driver_data *drv_data);
|
|
irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
|
|
void (*cs_control)(u32 command);
|
|
};
|
|
|
|
struct chip_data {
|
|
u32 cr0;
|
|
u32 cr1;
|
|
u32 psp;
|
|
u32 timeout;
|
|
u8 n_bytes;
|
|
u32 dma_width;
|
|
u32 dma_burst_size;
|
|
u32 threshold;
|
|
u32 dma_threshold;
|
|
u8 enable_dma;
|
|
u8 bits_per_word;
|
|
u32 speed_hz;
|
|
int (*write)(struct driver_data *drv_data);
|
|
int (*read)(struct driver_data *drv_data);
|
|
void (*cs_control)(u32 command);
|
|
};
|
|
|
|
static void pump_messages(struct work_struct *work);
|
|
|
|
static int flush(struct driver_data *drv_data)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
do {
|
|
while (read_SSSR(reg) & SSSR_RNE) {
|
|
read_SSDR(reg);
|
|
}
|
|
} while ((read_SSSR(reg) & SSSR_BSY) && limit--);
|
|
write_SSSR(SSSR_ROR, reg);
|
|
|
|
return limit;
|
|
}
|
|
|
|
static void null_cs_control(u32 command)
|
|
{
|
|
}
|
|
|
|
static int null_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
u8 n_bytes = drv_data->n_bytes;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(0, reg);
|
|
drv_data->tx += n_bytes;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int null_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
u8 n_bytes = drv_data->n_bytes;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
read_SSDR(reg);
|
|
drv_data->rx += n_bytes;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static int u8_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(*(u8 *)(drv_data->tx), reg);
|
|
++drv_data->tx;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int u8_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
*(u8 *)(drv_data->rx) = read_SSDR(reg);
|
|
++drv_data->rx;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static int u16_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(*(u16 *)(drv_data->tx), reg);
|
|
drv_data->tx += 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int u16_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
*(u16 *)(drv_data->rx) = read_SSDR(reg);
|
|
drv_data->rx += 2;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static int u32_writer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
|
|
|| (drv_data->tx == drv_data->tx_end))
|
|
return 0;
|
|
|
|
write_SSDR(*(u32 *)(drv_data->tx), reg);
|
|
drv_data->tx += 4;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int u32_reader(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
while ((read_SSSR(reg) & SSSR_RNE)
|
|
&& (drv_data->rx < drv_data->rx_end)) {
|
|
*(u32 *)(drv_data->rx) = read_SSDR(reg);
|
|
drv_data->rx += 4;
|
|
}
|
|
|
|
return drv_data->rx == drv_data->rx_end;
|
|
}
|
|
|
|
static void *next_transfer(struct driver_data *drv_data)
|
|
{
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
struct spi_transfer *trans = drv_data->cur_transfer;
|
|
|
|
/* Move to next transfer */
|
|
if (trans->transfer_list.next != &msg->transfers) {
|
|
drv_data->cur_transfer =
|
|
list_entry(trans->transfer_list.next,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
return RUNNING_STATE;
|
|
} else
|
|
return DONE_STATE;
|
|
}
|
|
|
|
static int map_dma_buffers(struct driver_data *drv_data)
|
|
{
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
struct device *dev = &msg->spi->dev;
|
|
|
|
if (!drv_data->cur_chip->enable_dma)
|
|
return 0;
|
|
|
|
if (msg->is_dma_mapped)
|
|
return drv_data->rx_dma && drv_data->tx_dma;
|
|
|
|
if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
|
|
return 0;
|
|
|
|
/* Modify setup if rx buffer is null */
|
|
if (drv_data->rx == NULL) {
|
|
*drv_data->null_dma_buf = 0;
|
|
drv_data->rx = drv_data->null_dma_buf;
|
|
drv_data->rx_map_len = 4;
|
|
} else
|
|
drv_data->rx_map_len = drv_data->len;
|
|
|
|
|
|
/* Modify setup if tx buffer is null */
|
|
if (drv_data->tx == NULL) {
|
|
*drv_data->null_dma_buf = 0;
|
|
drv_data->tx = drv_data->null_dma_buf;
|
|
drv_data->tx_map_len = 4;
|
|
} else
|
|
drv_data->tx_map_len = drv_data->len;
|
|
|
|
/* Stream map the rx buffer */
|
|
drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
|
|
drv_data->rx_map_len,
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(drv_data->rx_dma))
|
|
return 0;
|
|
|
|
/* Stream map the tx buffer */
|
|
drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
|
|
drv_data->tx_map_len,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(drv_data->tx_dma)) {
|
|
dma_unmap_single(dev, drv_data->rx_dma,
|
|
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void unmap_dma_buffers(struct driver_data *drv_data)
|
|
{
|
|
struct device *dev;
|
|
|
|
if (!drv_data->dma_mapped)
|
|
return;
|
|
|
|
if (!drv_data->cur_msg->is_dma_mapped) {
|
|
dev = &drv_data->cur_msg->spi->dev;
|
|
dma_unmap_single(dev, drv_data->rx_dma,
|
|
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
|
dma_unmap_single(dev, drv_data->tx_dma,
|
|
drv_data->tx_map_len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
drv_data->dma_mapped = 0;
|
|
}
|
|
|
|
/* caller already set message->status; dma and pio irqs are blocked */
|
|
static void giveback(struct driver_data *drv_data)
|
|
{
|
|
struct spi_transfer* last_transfer;
|
|
unsigned long flags;
|
|
struct spi_message *msg;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
msg = drv_data->cur_msg;
|
|
drv_data->cur_msg = NULL;
|
|
drv_data->cur_transfer = NULL;
|
|
drv_data->cur_chip = NULL;
|
|
queue_work(drv_data->workqueue, &drv_data->pump_messages);
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
last_transfer = list_entry(msg->transfers.prev,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
|
|
if (!last_transfer->cs_change)
|
|
drv_data->cs_control(PXA2XX_CS_DEASSERT);
|
|
|
|
msg->state = NULL;
|
|
if (msg->complete)
|
|
msg->complete(msg->context);
|
|
}
|
|
|
|
static int wait_ssp_rx_stall(void *ioaddr)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
|
|
cpu_relax();
|
|
|
|
return limit;
|
|
}
|
|
|
|
static int wait_dma_channel_stop(int channel)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
|
|
cpu_relax();
|
|
|
|
return limit;
|
|
}
|
|
|
|
void dma_error_stop(struct driver_data *drv_data, const char *msg)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
/* Stop and reset */
|
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
flush(drv_data);
|
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
|
|
|
unmap_dma_buffers(drv_data);
|
|
|
|
dev_err(&drv_data->pdev->dev, "%s\n", msg);
|
|
|
|
drv_data->cur_msg->state = ERROR_STATE;
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static void dma_transfer_complete(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
struct spi_message *msg = drv_data->cur_msg;
|
|
|
|
/* Clear and disable interrupts on SSP and DMA channels*/
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
|
|
|
if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
|
|
dev_err(&drv_data->pdev->dev,
|
|
"dma_handler: dma rx channel stop failed\n");
|
|
|
|
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
|
dev_err(&drv_data->pdev->dev,
|
|
"dma_transfer: ssp rx stall failed\n");
|
|
|
|
unmap_dma_buffers(drv_data);
|
|
|
|
/* update the buffer pointer for the amount completed in dma */
|
|
drv_data->rx += drv_data->len -
|
|
(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
|
|
|
|
/* read trailing data from fifo, it does not matter how many
|
|
* bytes are in the fifo just read until buffer is full
|
|
* or fifo is empty, which ever occurs first */
|
|
drv_data->read(drv_data);
|
|
|
|
/* return count of what was actually read */
|
|
msg->actual_length += drv_data->len -
|
|
(drv_data->rx_end - drv_data->rx);
|
|
|
|
/* Release chip select if requested, transfer delays are
|
|
* handled in pump_transfers */
|
|
if (drv_data->cs_change)
|
|
drv_data->cs_control(PXA2XX_CS_DEASSERT);
|
|
|
|
/* Move to next transfer */
|
|
msg->state = next_transfer(drv_data);
|
|
|
|
/* Schedule transfer tasklet */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static void dma_handler(int channel, void *data)
|
|
{
|
|
struct driver_data *drv_data = data;
|
|
u32 irq_status = DCSR(channel) & DMA_INT_MASK;
|
|
|
|
if (irq_status & DCSR_BUSERR) {
|
|
|
|
if (channel == drv_data->tx_channel)
|
|
dma_error_stop(drv_data,
|
|
"dma_handler: "
|
|
"bad bus address on tx channel");
|
|
else
|
|
dma_error_stop(drv_data,
|
|
"dma_handler: "
|
|
"bad bus address on rx channel");
|
|
return;
|
|
}
|
|
|
|
/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
|
|
if ((channel == drv_data->tx_channel)
|
|
&& (irq_status & DCSR_ENDINTR)
|
|
&& (drv_data->ssp_type == PXA25x_SSP)) {
|
|
|
|
/* Wait for rx to stall */
|
|
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
|
dev_err(&drv_data->pdev->dev,
|
|
"dma_handler: ssp rx stall failed\n");
|
|
|
|
/* finish this transfer, start the next */
|
|
dma_transfer_complete(drv_data);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t dma_transfer(struct driver_data *drv_data)
|
|
{
|
|
u32 irq_status;
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
irq_status = read_SSSR(reg) & drv_data->mask_sr;
|
|
if (irq_status & SSSR_ROR) {
|
|
dma_error_stop(drv_data, "dma_transfer: fifo overrun");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Check for false positive timeout */
|
|
if ((irq_status & SSSR_TINT)
|
|
&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
|
|
write_SSSR(SSSR_TINT, reg);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
|
|
|
|
/* Clear and disable timeout interrupt, do the rest in
|
|
* dma_transfer_complete */
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
|
|
/* finish this transfer, start the next */
|
|
dma_transfer_complete(drv_data);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Opps problem detected */
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static void int_error_stop(struct driver_data *drv_data, const char* msg)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
/* Stop and reset SSP */
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
flush(drv_data);
|
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
|
|
|
dev_err(&drv_data->pdev->dev, "%s\n", msg);
|
|
|
|
drv_data->cur_msg->state = ERROR_STATE;
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static void int_transfer_complete(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
/* Stop SSP */
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
|
|
/* Update total byte transfered return count actual bytes read */
|
|
drv_data->cur_msg->actual_length += drv_data->len -
|
|
(drv_data->rx_end - drv_data->rx);
|
|
|
|
/* Release chip select if requested, transfer delays are
|
|
* handled in pump_transfers */
|
|
if (drv_data->cs_change)
|
|
drv_data->cs_control(PXA2XX_CS_DEASSERT);
|
|
|
|
/* Move to next transfer */
|
|
drv_data->cur_msg->state = next_transfer(drv_data);
|
|
|
|
/* Schedule transfer tasklet */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
}
|
|
|
|
static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
|
|
{
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
|
|
drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
|
|
|
|
u32 irq_status = read_SSSR(reg) & irq_mask;
|
|
|
|
if (irq_status & SSSR_ROR) {
|
|
int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (irq_status & SSSR_TINT) {
|
|
write_SSSR(SSSR_TINT, reg);
|
|
if (drv_data->read(drv_data)) {
|
|
int_transfer_complete(drv_data);
|
|
return IRQ_HANDLED;
|
|
}
|
|
}
|
|
|
|
/* Drain rx fifo, Fill tx fifo and prevent overruns */
|
|
do {
|
|
if (drv_data->read(drv_data)) {
|
|
int_transfer_complete(drv_data);
|
|
return IRQ_HANDLED;
|
|
}
|
|
} while (drv_data->write(drv_data));
|
|
|
|
if (drv_data->read(drv_data)) {
|
|
int_transfer_complete(drv_data);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (drv_data->tx == drv_data->tx_end) {
|
|
write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
|
|
/* PXA25x_SSP has no timeout, read trailing bytes */
|
|
if (drv_data->ssp_type == PXA25x_SSP) {
|
|
if (!wait_ssp_rx_stall(reg))
|
|
{
|
|
int_error_stop(drv_data, "interrupt_transfer: "
|
|
"rx stall failed");
|
|
return IRQ_HANDLED;
|
|
}
|
|
if (!drv_data->read(drv_data))
|
|
{
|
|
int_error_stop(drv_data,
|
|
"interrupt_transfer: "
|
|
"trailing byte read failed");
|
|
return IRQ_HANDLED;
|
|
}
|
|
int_transfer_complete(drv_data);
|
|
}
|
|
}
|
|
|
|
/* We did something */
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t ssp_int(int irq, void *dev_id)
|
|
{
|
|
struct driver_data *drv_data = dev_id;
|
|
void *reg = drv_data->ioaddr;
|
|
|
|
if (!drv_data->cur_msg) {
|
|
|
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, reg);
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
|
|
dev_err(&drv_data->pdev->dev, "bad message state "
|
|
"in interrupt handler\n");
|
|
|
|
/* Never fail */
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return drv_data->transfer_handler(drv_data);
|
|
}
|
|
|
|
int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
|
|
u8 bits_per_word, u32 *burst_code,
|
|
u32 *threshold)
|
|
{
|
|
struct pxa2xx_spi_chip *chip_info =
|
|
(struct pxa2xx_spi_chip *)spi->controller_data;
|
|
int bytes_per_word;
|
|
int burst_bytes;
|
|
int thresh_words;
|
|
int req_burst_size;
|
|
int retval = 0;
|
|
|
|
/* Set the threshold (in registers) to equal the same amount of data
|
|
* as represented by burst size (in bytes). The computation below
|
|
* is (burst_size rounded up to nearest 8 byte, word or long word)
|
|
* divided by (bytes/register); the tx threshold is the inverse of
|
|
* the rx, so that there will always be enough data in the rx fifo
|
|
* to satisfy a burst, and there will always be enough space in the
|
|
* tx fifo to accept a burst (a tx burst will overwrite the fifo if
|
|
* there is not enough space), there must always remain enough empty
|
|
* space in the rx fifo for any data loaded to the tx fifo.
|
|
* Whenever burst_size (in bytes) equals bits/word, the fifo threshold
|
|
* will be 8, or half the fifo;
|
|
* The threshold can only be set to 2, 4 or 8, but not 16, because
|
|
* to burst 16 to the tx fifo, the fifo would have to be empty;
|
|
* however, the minimum fifo trigger level is 1, and the tx will
|
|
* request service when the fifo is at this level, with only 15 spaces.
|
|
*/
|
|
|
|
/* find bytes/word */
|
|
if (bits_per_word <= 8)
|
|
bytes_per_word = 1;
|
|
else if (bits_per_word <= 16)
|
|
bytes_per_word = 2;
|
|
else
|
|
bytes_per_word = 4;
|
|
|
|
/* use struct pxa2xx_spi_chip->dma_burst_size if available */
|
|
if (chip_info)
|
|
req_burst_size = chip_info->dma_burst_size;
|
|
else {
|
|
switch (chip->dma_burst_size) {
|
|
default:
|
|
/* if the default burst size is not set,
|
|
* do it now */
|
|
chip->dma_burst_size = DCMD_BURST8;
|
|
case DCMD_BURST8:
|
|
req_burst_size = 8;
|
|
break;
|
|
case DCMD_BURST16:
|
|
req_burst_size = 16;
|
|
break;
|
|
case DCMD_BURST32:
|
|
req_burst_size = 32;
|
|
break;
|
|
}
|
|
}
|
|
if (req_burst_size <= 8) {
|
|
*burst_code = DCMD_BURST8;
|
|
burst_bytes = 8;
|
|
} else if (req_burst_size <= 16) {
|
|
if (bytes_per_word == 1) {
|
|
/* don't burst more than 1/2 the fifo */
|
|
*burst_code = DCMD_BURST8;
|
|
burst_bytes = 8;
|
|
retval = 1;
|
|
} else {
|
|
*burst_code = DCMD_BURST16;
|
|
burst_bytes = 16;
|
|
}
|
|
} else {
|
|
if (bytes_per_word == 1) {
|
|
/* don't burst more than 1/2 the fifo */
|
|
*burst_code = DCMD_BURST8;
|
|
burst_bytes = 8;
|
|
retval = 1;
|
|
} else if (bytes_per_word == 2) {
|
|
/* don't burst more than 1/2 the fifo */
|
|
*burst_code = DCMD_BURST16;
|
|
burst_bytes = 16;
|
|
retval = 1;
|
|
} else {
|
|
*burst_code = DCMD_BURST32;
|
|
burst_bytes = 32;
|
|
}
|
|
}
|
|
|
|
thresh_words = burst_bytes / bytes_per_word;
|
|
|
|
/* thresh_words will be between 2 and 8 */
|
|
*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
|
|
| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
|
|
{
|
|
unsigned long ssp_clk = clk_get_rate(ssp->clk);
|
|
|
|
if (ssp->type == PXA25x_SSP)
|
|
return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
|
|
else
|
|
return ((ssp_clk / rate - 1) & 0xfff) << 8;
|
|
}
|
|
|
|
static void pump_transfers(unsigned long data)
|
|
{
|
|
struct driver_data *drv_data = (struct driver_data *)data;
|
|
struct spi_message *message = NULL;
|
|
struct spi_transfer *transfer = NULL;
|
|
struct spi_transfer *previous = NULL;
|
|
struct chip_data *chip = NULL;
|
|
struct ssp_device *ssp = drv_data->ssp;
|
|
void *reg = drv_data->ioaddr;
|
|
u32 clk_div = 0;
|
|
u8 bits = 0;
|
|
u32 speed = 0;
|
|
u32 cr0;
|
|
u32 cr1;
|
|
u32 dma_thresh = drv_data->cur_chip->dma_threshold;
|
|
u32 dma_burst = drv_data->cur_chip->dma_burst_size;
|
|
|
|
/* Get current state information */
|
|
message = drv_data->cur_msg;
|
|
transfer = drv_data->cur_transfer;
|
|
chip = drv_data->cur_chip;
|
|
|
|
/* Handle for abort */
|
|
if (message->state == ERROR_STATE) {
|
|
message->status = -EIO;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
/* Handle end of message */
|
|
if (message->state == DONE_STATE) {
|
|
message->status = 0;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
/* Delay if requested at end of transfer*/
|
|
if (message->state == RUNNING_STATE) {
|
|
previous = list_entry(transfer->transfer_list.prev,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
if (previous->delay_usecs)
|
|
udelay(previous->delay_usecs);
|
|
}
|
|
|
|
/* Check transfer length */
|
|
if (transfer->len > 8191)
|
|
{
|
|
dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
|
|
"length greater than 8191\n");
|
|
message->status = -EINVAL;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
|
|
/* Setup the transfer state based on the type of transfer */
|
|
if (flush(drv_data) == 0) {
|
|
dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
|
|
message->status = -EIO;
|
|
giveback(drv_data);
|
|
return;
|
|
}
|
|
drv_data->n_bytes = chip->n_bytes;
|
|
drv_data->dma_width = chip->dma_width;
|
|
drv_data->cs_control = chip->cs_control;
|
|
drv_data->tx = (void *)transfer->tx_buf;
|
|
drv_data->tx_end = drv_data->tx + transfer->len;
|
|
drv_data->rx = transfer->rx_buf;
|
|
drv_data->rx_end = drv_data->rx + transfer->len;
|
|
drv_data->rx_dma = transfer->rx_dma;
|
|
drv_data->tx_dma = transfer->tx_dma;
|
|
drv_data->len = transfer->len & DCMD_LENGTH;
|
|
drv_data->write = drv_data->tx ? chip->write : null_writer;
|
|
drv_data->read = drv_data->rx ? chip->read : null_reader;
|
|
drv_data->cs_change = transfer->cs_change;
|
|
|
|
/* Change speed and bit per word on a per transfer */
|
|
cr0 = chip->cr0;
|
|
if (transfer->speed_hz || transfer->bits_per_word) {
|
|
|
|
bits = chip->bits_per_word;
|
|
speed = chip->speed_hz;
|
|
|
|
if (transfer->speed_hz)
|
|
speed = transfer->speed_hz;
|
|
|
|
if (transfer->bits_per_word)
|
|
bits = transfer->bits_per_word;
|
|
|
|
clk_div = ssp_get_clk_div(ssp, speed);
|
|
|
|
if (bits <= 8) {
|
|
drv_data->n_bytes = 1;
|
|
drv_data->dma_width = DCMD_WIDTH1;
|
|
drv_data->read = drv_data->read != null_reader ?
|
|
u8_reader : null_reader;
|
|
drv_data->write = drv_data->write != null_writer ?
|
|
u8_writer : null_writer;
|
|
} else if (bits <= 16) {
|
|
drv_data->n_bytes = 2;
|
|
drv_data->dma_width = DCMD_WIDTH2;
|
|
drv_data->read = drv_data->read != null_reader ?
|
|
u16_reader : null_reader;
|
|
drv_data->write = drv_data->write != null_writer ?
|
|
u16_writer : null_writer;
|
|
} else if (bits <= 32) {
|
|
drv_data->n_bytes = 4;
|
|
drv_data->dma_width = DCMD_WIDTH4;
|
|
drv_data->read = drv_data->read != null_reader ?
|
|
u32_reader : null_reader;
|
|
drv_data->write = drv_data->write != null_writer ?
|
|
u32_writer : null_writer;
|
|
}
|
|
/* if bits/word is changed in dma mode, then must check the
|
|
* thresholds and burst also */
|
|
if (chip->enable_dma) {
|
|
if (set_dma_burst_and_threshold(chip, message->spi,
|
|
bits, &dma_burst,
|
|
&dma_thresh))
|
|
if (printk_ratelimit())
|
|
dev_warn(&message->spi->dev,
|
|
"pump_transfer: "
|
|
"DMA burst size reduced to "
|
|
"match bits_per_word\n");
|
|
}
|
|
|
|
cr0 = clk_div
|
|
| SSCR0_Motorola
|
|
| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
|
|
| SSCR0_SSE
|
|
| (bits > 16 ? SSCR0_EDSS : 0);
|
|
}
|
|
|
|
message->state = RUNNING_STATE;
|
|
|
|
/* Try to map dma buffer and do a dma transfer if successful */
|
|
if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
|
|
|
|
/* Ensure we have the correct interrupt handler */
|
|
drv_data->transfer_handler = dma_transfer;
|
|
|
|
/* Setup rx DMA Channel */
|
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
|
DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
|
|
DTADR(drv_data->rx_channel) = drv_data->rx_dma;
|
|
if (drv_data->rx == drv_data->null_dma_buf)
|
|
/* No target address increment */
|
|
DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
else
|
|
DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
|
|
| DCMD_FLOWSRC
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
|
|
/* Setup tx DMA Channel */
|
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
|
DSADR(drv_data->tx_channel) = drv_data->tx_dma;
|
|
DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
|
|
if (drv_data->tx == drv_data->null_dma_buf)
|
|
/* No source address increment */
|
|
DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
else
|
|
DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
|
|
| DCMD_FLOWTRG
|
|
| drv_data->dma_width
|
|
| dma_burst
|
|
| drv_data->len;
|
|
|
|
/* Enable dma end irqs on SSP to detect end of transfer */
|
|
if (drv_data->ssp_type == PXA25x_SSP)
|
|
DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
|
|
|
|
/* Fix me, need to handle cs polarity */
|
|
drv_data->cs_control(PXA2XX_CS_ASSERT);
|
|
|
|
/* Clear status and start DMA engine */
|
|
cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
DCSR(drv_data->rx_channel) |= DCSR_RUN;
|
|
DCSR(drv_data->tx_channel) |= DCSR_RUN;
|
|
} else {
|
|
/* Ensure we have the correct interrupt handler */
|
|
drv_data->transfer_handler = interrupt_transfer;
|
|
|
|
/* Fix me, need to handle cs polarity */
|
|
drv_data->cs_control(PXA2XX_CS_ASSERT);
|
|
|
|
/* Clear status */
|
|
cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
|
|
write_SSSR(drv_data->clear_sr, reg);
|
|
}
|
|
|
|
/* see if we need to reload the config registers */
|
|
if ((read_SSCR0(reg) != cr0)
|
|
|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
|
|
(cr1 & SSCR1_CHANGE_MASK)) {
|
|
|
|
write_SSCR0(cr0 & ~SSCR0_SSE, reg);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(chip->timeout, reg);
|
|
write_SSCR1(cr1, reg);
|
|
write_SSCR0(cr0, reg);
|
|
} else {
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(chip->timeout, reg);
|
|
write_SSCR1(cr1, reg);
|
|
}
|
|
}
|
|
|
|
static void pump_messages(struct work_struct *work)
|
|
{
|
|
struct driver_data *drv_data =
|
|
container_of(work, struct driver_data, pump_messages);
|
|
unsigned long flags;
|
|
|
|
/* Lock queue and check for queue work */
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
|
|
drv_data->busy = 0;
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Make sure we are not already running a message */
|
|
if (drv_data->cur_msg) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Extract head of queue */
|
|
drv_data->cur_msg = list_entry(drv_data->queue.next,
|
|
struct spi_message, queue);
|
|
list_del_init(&drv_data->cur_msg->queue);
|
|
|
|
/* Initial message state*/
|
|
drv_data->cur_msg->state = START_STATE;
|
|
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
|
|
/* prepare to setup the SSP, in pump_transfers, using the per
|
|
* chip configuration */
|
|
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
|
|
|
|
/* Mark as busy and launch transfers */
|
|
tasklet_schedule(&drv_data->pump_transfers);
|
|
|
|
drv_data->busy = 1;
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
}
|
|
|
|
static int transfer(struct spi_device *spi, struct spi_message *msg)
|
|
{
|
|
struct driver_data *drv_data = spi_master_get_devdata(spi->master);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
|
|
if (drv_data->run == QUEUE_STOPPED) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
msg->actual_length = 0;
|
|
msg->status = -EINPROGRESS;
|
|
msg->state = START_STATE;
|
|
|
|
list_add_tail(&msg->queue, &drv_data->queue);
|
|
|
|
if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
|
|
queue_work(drv_data->workqueue, &drv_data->pump_messages);
|
|
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* the spi->mode bits understood by this driver: */
|
|
#define MODEBITS (SPI_CPOL | SPI_CPHA)
|
|
|
|
static int setup(struct spi_device *spi)
|
|
{
|
|
struct pxa2xx_spi_chip *chip_info = NULL;
|
|
struct chip_data *chip;
|
|
struct driver_data *drv_data = spi_master_get_devdata(spi->master);
|
|
struct ssp_device *ssp = drv_data->ssp;
|
|
unsigned int clk_div;
|
|
|
|
if (!spi->bits_per_word)
|
|
spi->bits_per_word = 8;
|
|
|
|
if (drv_data->ssp_type != PXA25x_SSP
|
|
&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
|
|
dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
|
|
"b/w not 4-32 for type non-PXA25x_SSP\n",
|
|
drv_data->ssp_type, spi->bits_per_word);
|
|
return -EINVAL;
|
|
}
|
|
else if (drv_data->ssp_type == PXA25x_SSP
|
|
&& (spi->bits_per_word < 4
|
|
|| spi->bits_per_word > 16)) {
|
|
dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
|
|
"b/w not 4-16 for type PXA25x_SSP\n",
|
|
drv_data->ssp_type, spi->bits_per_word);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (spi->mode & ~MODEBITS) {
|
|
dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
|
|
spi->mode & ~MODEBITS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Only alloc on first setup */
|
|
chip = spi_get_ctldata(spi);
|
|
if (!chip) {
|
|
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
|
|
if (!chip) {
|
|
dev_err(&spi->dev,
|
|
"failed setup: can't allocate chip data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chip->cs_control = null_cs_control;
|
|
chip->enable_dma = 0;
|
|
chip->timeout = 1000;
|
|
chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
|
|
chip->dma_burst_size = drv_data->master_info->enable_dma ?
|
|
DCMD_BURST8 : 0;
|
|
}
|
|
|
|
/* protocol drivers may change the chip settings, so...
|
|
* if chip_info exists, use it */
|
|
chip_info = spi->controller_data;
|
|
|
|
/* chip_info isn't always needed */
|
|
chip->cr1 = 0;
|
|
if (chip_info) {
|
|
if (chip_info->cs_control)
|
|
chip->cs_control = chip_info->cs_control;
|
|
|
|
chip->timeout = chip_info->timeout;
|
|
|
|
chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
|
|
SSCR1_RFT) |
|
|
(SSCR1_TxTresh(chip_info->tx_threshold) &
|
|
SSCR1_TFT);
|
|
|
|
chip->enable_dma = chip_info->dma_burst_size != 0
|
|
&& drv_data->master_info->enable_dma;
|
|
chip->dma_threshold = 0;
|
|
|
|
if (chip_info->enable_loopback)
|
|
chip->cr1 = SSCR1_LBM;
|
|
}
|
|
|
|
/* set dma burst and threshold outside of chip_info path so that if
|
|
* chip_info goes away after setting chip->enable_dma, the
|
|
* burst and threshold can still respond to changes in bits_per_word */
|
|
if (chip->enable_dma) {
|
|
/* set up legal burst and threshold for dma */
|
|
if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
|
|
&chip->dma_burst_size,
|
|
&chip->dma_threshold)) {
|
|
dev_warn(&spi->dev, "in setup: DMA burst size reduced "
|
|
"to match bits_per_word\n");
|
|
}
|
|
}
|
|
|
|
clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
|
|
chip->speed_hz = spi->max_speed_hz;
|
|
|
|
chip->cr0 = clk_div
|
|
| SSCR0_Motorola
|
|
| SSCR0_DataSize(spi->bits_per_word > 16 ?
|
|
spi->bits_per_word - 16 : spi->bits_per_word)
|
|
| SSCR0_SSE
|
|
| (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
|
|
chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
|
|
chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
|
|
| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
|
|
|
|
/* NOTE: PXA25x_SSP _could_ use external clocking ... */
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
|
|
spi->bits_per_word,
|
|
clk_get_rate(ssp->clk)
|
|
/ (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
|
|
spi->mode & 0x3);
|
|
else
|
|
dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
|
|
spi->bits_per_word,
|
|
clk_get_rate(ssp->clk)
|
|
/ (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
|
|
spi->mode & 0x3);
|
|
|
|
if (spi->bits_per_word <= 8) {
|
|
chip->n_bytes = 1;
|
|
chip->dma_width = DCMD_WIDTH1;
|
|
chip->read = u8_reader;
|
|
chip->write = u8_writer;
|
|
} else if (spi->bits_per_word <= 16) {
|
|
chip->n_bytes = 2;
|
|
chip->dma_width = DCMD_WIDTH2;
|
|
chip->read = u16_reader;
|
|
chip->write = u16_writer;
|
|
} else if (spi->bits_per_word <= 32) {
|
|
chip->cr0 |= SSCR0_EDSS;
|
|
chip->n_bytes = 4;
|
|
chip->dma_width = DCMD_WIDTH4;
|
|
chip->read = u32_reader;
|
|
chip->write = u32_writer;
|
|
} else {
|
|
dev_err(&spi->dev, "invalid wordsize\n");
|
|
return -ENODEV;
|
|
}
|
|
chip->bits_per_word = spi->bits_per_word;
|
|
|
|
spi_set_ctldata(spi, chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cleanup(struct spi_device *spi)
|
|
{
|
|
struct chip_data *chip = spi_get_ctldata(spi);
|
|
|
|
kfree(chip);
|
|
}
|
|
|
|
static int __init init_queue(struct driver_data *drv_data)
|
|
{
|
|
INIT_LIST_HEAD(&drv_data->queue);
|
|
spin_lock_init(&drv_data->lock);
|
|
|
|
drv_data->run = QUEUE_STOPPED;
|
|
drv_data->busy = 0;
|
|
|
|
tasklet_init(&drv_data->pump_transfers,
|
|
pump_transfers, (unsigned long)drv_data);
|
|
|
|
INIT_WORK(&drv_data->pump_messages, pump_messages);
|
|
drv_data->workqueue = create_singlethread_workqueue(
|
|
drv_data->master->dev.parent->bus_id);
|
|
if (drv_data->workqueue == NULL)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int start_queue(struct driver_data *drv_data)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
|
|
if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
return -EBUSY;
|
|
}
|
|
|
|
drv_data->run = QUEUE_RUNNING;
|
|
drv_data->cur_msg = NULL;
|
|
drv_data->cur_transfer = NULL;
|
|
drv_data->cur_chip = NULL;
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
queue_work(drv_data->workqueue, &drv_data->pump_messages);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stop_queue(struct driver_data *drv_data)
|
|
{
|
|
unsigned long flags;
|
|
unsigned limit = 500;
|
|
int status = 0;
|
|
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
|
|
/* This is a bit lame, but is optimized for the common execution path.
|
|
* A wait_queue on the drv_data->busy could be used, but then the common
|
|
* execution path (pump_messages) would be required to call wake_up or
|
|
* friends on every SPI message. Do this instead */
|
|
drv_data->run = QUEUE_STOPPED;
|
|
while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
msleep(10);
|
|
spin_lock_irqsave(&drv_data->lock, flags);
|
|
}
|
|
|
|
if (!list_empty(&drv_data->queue) || drv_data->busy)
|
|
status = -EBUSY;
|
|
|
|
spin_unlock_irqrestore(&drv_data->lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int destroy_queue(struct driver_data *drv_data)
|
|
{
|
|
int status;
|
|
|
|
status = stop_queue(drv_data);
|
|
/* we are unloading the module or failing to load (only two calls
|
|
* to this routine), and neither call can handle a return value.
|
|
* However, destroy_workqueue calls flush_workqueue, and that will
|
|
* block until all work is done. If the reason that stop_queue
|
|
* timed out is that the work will never finish, then it does no
|
|
* good to call destroy_workqueue, so return anyway. */
|
|
if (status != 0)
|
|
return status;
|
|
|
|
destroy_workqueue(drv_data->workqueue);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init pxa2xx_spi_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct pxa2xx_spi_master *platform_info;
|
|
struct spi_master *master;
|
|
struct driver_data *drv_data = 0;
|
|
struct ssp_device *ssp;
|
|
int status = 0;
|
|
|
|
platform_info = dev->platform_data;
|
|
|
|
ssp = ssp_request(pdev->id, pdev->name);
|
|
if (ssp == NULL) {
|
|
dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Allocate master with space for drv_data and null dma buffer */
|
|
master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
|
|
if (!master) {
|
|
dev_err(&pdev->dev, "can not alloc spi_master\n");
|
|
ssp_free(ssp);
|
|
return -ENOMEM;
|
|
}
|
|
drv_data = spi_master_get_devdata(master);
|
|
drv_data->master = master;
|
|
drv_data->master_info = platform_info;
|
|
drv_data->pdev = pdev;
|
|
drv_data->ssp = ssp;
|
|
|
|
master->bus_num = pdev->id;
|
|
master->num_chipselect = platform_info->num_chipselect;
|
|
master->cleanup = cleanup;
|
|
master->setup = setup;
|
|
master->transfer = transfer;
|
|
|
|
drv_data->ssp_type = ssp->type;
|
|
drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
|
|
sizeof(struct driver_data)), 8);
|
|
|
|
drv_data->ioaddr = ssp->mmio_base;
|
|
drv_data->ssdr_physical = ssp->phys_base + SSDR;
|
|
if (ssp->type == PXA25x_SSP) {
|
|
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
|
|
drv_data->dma_cr1 = 0;
|
|
drv_data->clear_sr = SSSR_ROR;
|
|
drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
|
|
} else {
|
|
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
|
|
drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
|
|
drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
|
|
drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
|
|
}
|
|
|
|
status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
|
|
if (status < 0) {
|
|
dev_err(&pdev->dev, "can not get IRQ\n");
|
|
goto out_error_master_alloc;
|
|
}
|
|
|
|
/* Setup DMA if requested */
|
|
drv_data->tx_channel = -1;
|
|
drv_data->rx_channel = -1;
|
|
if (platform_info->enable_dma) {
|
|
|
|
/* Get two DMA channels (rx and tx) */
|
|
drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
|
|
DMA_PRIO_HIGH,
|
|
dma_handler,
|
|
drv_data);
|
|
if (drv_data->rx_channel < 0) {
|
|
dev_err(dev, "problem (%d) requesting rx channel\n",
|
|
drv_data->rx_channel);
|
|
status = -ENODEV;
|
|
goto out_error_irq_alloc;
|
|
}
|
|
drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
|
|
DMA_PRIO_MEDIUM,
|
|
dma_handler,
|
|
drv_data);
|
|
if (drv_data->tx_channel < 0) {
|
|
dev_err(dev, "problem (%d) requesting tx channel\n",
|
|
drv_data->tx_channel);
|
|
status = -ENODEV;
|
|
goto out_error_dma_alloc;
|
|
}
|
|
|
|
DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
|
|
DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
|
|
}
|
|
|
|
/* Enable SOC clock */
|
|
clk_enable(ssp->clk);
|
|
|
|
/* Load default SSP configuration */
|
|
write_SSCR0(0, drv_data->ioaddr);
|
|
write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
|
|
write_SSCR0(SSCR0_SerClkDiv(2)
|
|
| SSCR0_Motorola
|
|
| SSCR0_DataSize(8),
|
|
drv_data->ioaddr);
|
|
if (drv_data->ssp_type != PXA25x_SSP)
|
|
write_SSTO(0, drv_data->ioaddr);
|
|
write_SSPSP(0, drv_data->ioaddr);
|
|
|
|
/* Initial and start queue */
|
|
status = init_queue(drv_data);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem initializing queue\n");
|
|
goto out_error_clock_enabled;
|
|
}
|
|
status = start_queue(drv_data);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem starting queue\n");
|
|
goto out_error_clock_enabled;
|
|
}
|
|
|
|
/* Register with the SPI framework */
|
|
platform_set_drvdata(pdev, drv_data);
|
|
status = spi_register_master(master);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem registering spi master\n");
|
|
goto out_error_queue_alloc;
|
|
}
|
|
|
|
return status;
|
|
|
|
out_error_queue_alloc:
|
|
destroy_queue(drv_data);
|
|
|
|
out_error_clock_enabled:
|
|
clk_disable(ssp->clk);
|
|
|
|
out_error_dma_alloc:
|
|
if (drv_data->tx_channel != -1)
|
|
pxa_free_dma(drv_data->tx_channel);
|
|
if (drv_data->rx_channel != -1)
|
|
pxa_free_dma(drv_data->rx_channel);
|
|
|
|
out_error_irq_alloc:
|
|
free_irq(ssp->irq, drv_data);
|
|
|
|
out_error_master_alloc:
|
|
spi_master_put(master);
|
|
ssp_free(ssp);
|
|
return status;
|
|
}
|
|
|
|
static int pxa2xx_spi_remove(struct platform_device *pdev)
|
|
{
|
|
struct driver_data *drv_data = platform_get_drvdata(pdev);
|
|
struct ssp_device *ssp = drv_data->ssp;
|
|
int status = 0;
|
|
|
|
if (!drv_data)
|
|
return 0;
|
|
|
|
/* Remove the queue */
|
|
status = destroy_queue(drv_data);
|
|
if (status != 0)
|
|
/* the kernel does not check the return status of this
|
|
* this routine (mod->exit, within the kernel). Therefore
|
|
* nothing is gained by returning from here, the module is
|
|
* going away regardless, and we should not leave any more
|
|
* resources allocated than necessary. We cannot free the
|
|
* message memory in drv_data->queue, but we can release the
|
|
* resources below. I think the kernel should honor -EBUSY
|
|
* returns but... */
|
|
dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
|
|
"complete, message memory not freed\n");
|
|
|
|
/* Disable the SSP at the peripheral and SOC level */
|
|
write_SSCR0(0, drv_data->ioaddr);
|
|
clk_disable(ssp->clk);
|
|
|
|
/* Release DMA */
|
|
if (drv_data->master_info->enable_dma) {
|
|
DRCMR(ssp->drcmr_rx) = 0;
|
|
DRCMR(ssp->drcmr_tx) = 0;
|
|
pxa_free_dma(drv_data->tx_channel);
|
|
pxa_free_dma(drv_data->rx_channel);
|
|
}
|
|
|
|
/* Release IRQ */
|
|
free_irq(ssp->irq, drv_data);
|
|
|
|
/* Release SSP */
|
|
ssp_free(ssp);
|
|
|
|
/* Disconnect from the SPI framework */
|
|
spi_unregister_master(drv_data->master);
|
|
|
|
/* Prevent double remove */
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_spi_shutdown(struct platform_device *pdev)
|
|
{
|
|
int status = 0;
|
|
|
|
if ((status = pxa2xx_spi_remove(pdev)) != 0)
|
|
dev_err(&pdev->dev, "shutdown failed with %d\n", status);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
struct driver_data *drv_data = platform_get_drvdata(pdev);
|
|
struct ssp_device *ssp = drv_data->ssp;
|
|
int status = 0;
|
|
|
|
status = stop_queue(drv_data);
|
|
if (status != 0)
|
|
return status;
|
|
write_SSCR0(0, drv_data->ioaddr);
|
|
clk_disable(ssp->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxa2xx_spi_resume(struct platform_device *pdev)
|
|
{
|
|
struct driver_data *drv_data = platform_get_drvdata(pdev);
|
|
struct ssp_device *ssp = drv_data->ssp;
|
|
int status = 0;
|
|
|
|
/* Enable the SSP clock */
|
|
clk_disable(ssp->clk);
|
|
|
|
/* Start the queue running */
|
|
status = start_queue(drv_data);
|
|
if (status != 0) {
|
|
dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define pxa2xx_spi_suspend NULL
|
|
#define pxa2xx_spi_resume NULL
|
|
#endif /* CONFIG_PM */
|
|
|
|
static struct platform_driver driver = {
|
|
.driver = {
|
|
.name = "pxa2xx-spi",
|
|
.bus = &platform_bus_type,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.remove = pxa2xx_spi_remove,
|
|
.shutdown = pxa2xx_spi_shutdown,
|
|
.suspend = pxa2xx_spi_suspend,
|
|
.resume = pxa2xx_spi_resume,
|
|
};
|
|
|
|
static int __init pxa2xx_spi_init(void)
|
|
{
|
|
return platform_driver_probe(&driver, pxa2xx_spi_probe);
|
|
}
|
|
module_init(pxa2xx_spi_init);
|
|
|
|
static void __exit pxa2xx_spi_exit(void)
|
|
{
|
|
platform_driver_unregister(&driver);
|
|
}
|
|
module_exit(pxa2xx_spi_exit);
|